Araştırma Makalesi
BibTex RIS Kaynak Göster

Yağ Türünün Bir Fonksiyonu Olarak Lesitin Adsorbe Edilmiş Yağ/Su Emülsiyonlarının Ara Yüzey Reolojik Özellikleri

Yıl 2021, , 159 - 168, 01.08.2021
https://doi.org/10.24323/akademik-gida.977276

Öz

Bu çalışmada stabil emülsiyonların oluşturulması için önemli bir faktör olan farklı yağ çeşitlerinin emülsiyon oluşturma olanakları incelenmiştir. Bu amaçla mısır yağı, soya yağı ve zeytinyağı kullanılarak %1 oranında lesitin içeren emülsiyonlar hazırlanmıştır. Emülsiyonların karakterizasyonunu gerçekleştirmek amacıyla emülsiyonların fizikokimyasal ve emülsifikasyon özellikleri ile reolojik ve yağ/su katmanındaki ara yüzey (interfacial) reolojik özellikleri belirlenmiştir. Elde edilen bulgular, farklı kaynaklardan elde edilen yağların emülsiyonların reolojik özelliklerinde önemli farklılıklar meydana getirdiğini göstermiştir. En düşük görünür viskozite (η50) değeri soya yağı ile hazırlanan emülsiyonlarda kaydedilmiştir. Farklı yağların kullanılması emülsiyonların kıvam katsayısı ve η50 değerleri üzerinde istatistiksel olarak anlamlı bir değişim meydana getirmiştir. Emülsiyonların ara yüzey reolojik özellikleri incelendiğinde zeytinyağı ile hazırlanan emülsiyonlarda daha zayıf bir ara yüzey filminin oluştuğu gözlenmiştir. Farklı yağlarla hazırlanan emülsiyonlar birbiri ile kıyaslandığında ise soya yağı ile hazırlanan emülsiyonların kompleks viskozite (ηi*) değerlerinin daha yüksek olduğu tespit edilmiştir. Çalışma kapsamında, emülsiyonlarda kullanılan farklı yağların yağ/su (Y/S) emülsiyonlarının ara yüzeyini etkilediği ve termodinamik olarak daha dayanıklı emülsiyonların oluşturulabilmesi için emülsiyonların sürekli fazı içerisinde kullanılan yağların ara yüzey özelliklerinin dikkate alınması gerektiği sonucuna varılmıştır.

Kaynakça

  • [1] Dickinson, E., Stainsby, G. (1982). Colloids in Food. Elsevier Applied Science, USA, 533p.
  • [2] Busmante, A.H.C., Chun, P. (1993). Coarse Dispersion. In Physical Pharmacy Fourth Ed., Lea and Febiger, Philadelphia, USA, pp. 477–511.
  • [3] Lawrence, H. (1989). Emulsions and microemulsions, in Pharmaceutical Dosage Forms:Disperse Systems, B. H.,Lieberman, M., Rieger, G., Ed., Marcel Dekker Inc, 335–378p.
  • [4] McClements, D. J. (2016). Food emulsions: Principles, practices, and techniques.Thirth Edition, CRC Press, USA, 714p.
  • [5] Donsì, F., Annunziata, M., Vincensi, M., Ferrari, G. (2012). Design of nanoemulsion-based delivery systems of natural antimicrobials: Effect of the emulsifier. Journal of Biotechnology, 159(4), 342–350.
  • [6] Dickinson, E. (2009). Hydrocolloids as emulsifiers and emulsion stabilizers. Food Hydrocolloid, 23, 1473–1482.
  • [7] Çelebi, N. (2009). Emülsiyonlar. Modern Farmosetik Teknolojisi, Türk Eczacılar Birliği Eczacılık Akademisi Yayını, 277–279.
  • [8] Moran-Valero, M.I., Ruiz-Henestrosa, V.M.P., Pilosof, A.M.R. (2017). Synergistic performance of lecithin and glycerol monostearate in oil/water emulsions. Colloids Surfaces B Biointerfaces, 151, 68–75.
  • [9] Dickinson, E., Leser, M.E. (2013). Food colloids today understanding structural change during processing, storage, eating and digestion. Current Opinion Colloid Interface Science, 18, 245–248.
  • [10] Bueschelberger, H.G., Tirok, S., Stoffels, I., Schoeppe, A. (2015). Lecithins. In Emulsifiers in Food Technology: Second Edition, Wiley & Blackwell, 21–61p.
  • [11] Chen, H., Guan, Y., Zhong, Q. (2015). Microemulsions based on a sunflower lecithin-tween 20 blend have high capacity for dissolving peppermint oil and stabilizing coenzyme Q10. Journal of Agriculturel Food Chemistry, 63(3), 983–989.
  • [12] Mottola, M., Vico, R.V., Villanueva, M.E., Fanani, M.L. (2015). Alkyl esters of l-ascorbic acid: Stability, surface behaviour and interaction with phospholipid monolayers. Journal of Colloid Interface Science, 457, 232–242.
  • [13] Bhattacharya, S., Shylaja, M.H., Manjunath, M.S., Sankar,U. (1998). Rheology of lecithin dispersions. Journal of American Oil Chemists Society, 75(7), 871–874.
  • [14] Hasenhuettl, G.L., Hartel, R.W. (2008). Food emulsifiers and their applications: Second edition, Springer-Verlag New York, USA.
  • [15] Turbiano, P.C. (1995). The role of specialty food starches in flavor emulsions. In Flavor Technology: Physical Chemistry, Modification and Process. ACS Symposium Series, No. 610, American Chemical Society, Washington, DC, USA, pp. 199-209.
  • [16] Taherian, A.R., Fustier, P., Ramaswamy, H.S. (2006). Effect of added oil and modified starch on rheological properties, droplet size distribution, opacity and stability of beverage cloud emulsions. Journal of Food Engineering, 77(3), 687–696.
  • [17] Miller, R., Ferri, J.K., Javadi, A., Krägel, J., Mucic, N., Wüstneck, R. (2010). Rheology of interfacial layers. Colloid Polymer Science, 288(9), 937–950.
  • [18] Krägel, J., Derkatch, S.R. (2010). Interfacial shear rheology. Current Opinion Colloid Interface Science, 5(4), 246–255.
  • [19] Bos, M.A., Van Vliet, T. (2001). Interfacial rheological properties of adsorbed protein layers and surfactants: A review, Advance Colloid Interface Science, 91, 437–471.
  • [20] Nash, J.J., Erk, K.A. (2017). Stability and interfacial viscoelasticity of oil-water nanoemulsions stabilized by soy lecithin and Tween 20 for the encapsulation of bioactive carvacrol. Colloids Surfaces A Physicochemical Engineering Aspects, 517, 1–11.
  • [21] Zou, H., Zhao, N., Li, S., Sun, S., Dong, X., Yu, C. (2020). Physicochemical and emulsifying properties of mussel water-soluble proteins as affected by lecithin concentration, International Journal Of Biological Macromolecules, 163, 180–189.
  • [22] Doğan, M., Göksel Saraç, M., Aslan Türker, D. (2020). Effect of salt on the inter-relationship between the morphological, emulsifying and interfacial rheological properties of O/W emulsions at oil/water interface, Journal of Food Engineering, 275, 109871.
  • [23] Firebaugh, J.D., Daubert, C.R. (2005). Emulsifying and foaming properties of a derivatized whey protein ingredient. International Journal Of Food Properties., 8(2), 243–253.
  • [24] Göksel Saraç, M., (2018). Rendering Artık Yağlarından Emülgatör Üretimi ve Model Gıdalarda Arayüzey (interfacial) Reolojik Uygulamaları, Erciyes Üniversitesi, Fen Bilimleri Enstitüsü, Gıda Mühendisliği Anabilim Dalı. 247.
  • [25] Kato, A., Fujıshıge, T., Matsudomı, N., Kobayashı, K. (1985). Determination of emulsifying properties of some proteins by conductivity measurements. Journal of Food Science, 50, 56–62.
  • [26] Gundersen, S.A., Sather, Ø., Sjöblom, J. (2001). Salt effects on lignosulfonate and Kraft lignin stabilized O/W-emulsions studied by means of electrical conductivity and video-enhanced microscopy, Colloids Surfaces A Physicochemical Engineering Aspects, 186(3), 141–153.
  • [27] Tonay, A.N. (2012). Çoklu Emülsiyonların Üretimine Kolloid Değirmendeki Dönüş Hızının Etkisi ve Enkapsülasyon Verimliliklerinin Hesaplanması. Ege Üniversitesi, Fen Bilimleri Enstitüsü, Gıda Mühendisliği Anabilim Dalı. 61s.
  • [28] Aslan, D. (2015). Ultrason Tekniği İle Farklı Fonksiyonel Yağlar Kullanılarak Yeni Süt Bazlı Emülsiyonların Geliştirilmesi, Erciyes Üniversitesi, Fen Bilimleri Enstitüsü, Gıda Mühendisliği Anabilim Dalı. 103s.
  • [29] Pearce, K.N., Kinsella, J.E. (1978) Emulsifying properties of proteins: Evaluation of a turbidimetric technique. Journal of Agriculturel Food Chemistry, 26(3), 716–723.
  • [30] Koroleva, M., Tokarev, A., Yurtov, E. (2015). Simulation of flocculation in W/O emulsions and experimental study. Colloids Surfaces A Physicochemical Engineering Aspects, 481, 237–243.
  • [31] Shi, X yan., Gao, H., Lazouskaya, V.I., Kang, Q., Jin, Y., Wang, L.P. (2010). Viscous flow and colloid transport near air-water interface in a microchannel. Computers and Mathematics with Applications, 59(7), 2290–2304.
  • [32] Hong, I.K., Kim, S. I., Lee, S.B. (2018). Effects of HLB value on oil-in-water emulsions: Droplet size, rheological behavior, zeta-potential, and creaming index. Journal of Industrial Engineering Chemistry, 67, 123–131.
  • [33] Wang, B., Li, D., Wang, L.J., Özkan, N. (2010). Effect of concentrated flaxseed protein on the stability and rheological properties of soybean oil-in-water emulsions. Journal of Food Engineering, 96(4), 555–561.
  • [34] McKenna, B.M., Lyng, J.G. (2003). Introduction to food rheology and its measurement. In Texture in Food, Woodhead Publishing Limited, USA, pp. 1-130p.
  • [35] Yalcin, H., Toker, O.S., Dogan, M. (2012). Effect of oil type and fatty acid composition on dynamic and steady shear rheology of vegetable oils. Journal Oleo Science, 61(4), 181–187.
  • [36] Wang, L., Xie, H., Qiao, X., Goffin, A., Hodgkinson, T., Yuan, X., Sung, K., Fuller, G. G. (2012). Interfacial rheology of natural silk fibroin at air/water and oil/water interfaces. Langmuir, 28(1), 459-467.
  • [37] Kang, W., Xu, B., Wang, Y., Li, Y., Shan, X., An, F., Liu, J. (2011). Stability mechanism of W/O crude oil emulsion stabilized by polymer and surfactant. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 384(1-3), 555-560.
  • [38] Seta, L., Baldino, N., Gabriele, D., Lupi, F.R., De Cindio, B. (2012).The effect of surfactant type on the rheology of ovalbumin layers at the air/water and oil/water interfaces. Food Hydrocolloid, 29(2), 247–257.

Interfacial Viscoelastic Properties of Lecithin-Adsorbed Oil/Water Emulsions as a Function of Oil Type

Yıl 2021, , 159 - 168, 01.08.2021
https://doi.org/10.24323/akademik-gida.977276

Öz

In this study, the emulsification potential of various oil types, which is an important factor for the formation of stable emulsions, was determined. For this purpose, emulsions containing 1% lecithin were prepared using corn oil, soybean oil and olive oil. In order to characterize the emulsions, physicochemical and emulsification properties, rheological and interfacial rheological properties in the oil / water layer were determined. Results have shown that oils of different sources lead significant changes in the rheological properties of emulsions. The lowest apparent viscosity (η50) value was found in emulsions with soybean oil. The use of different oils caused statistically significant changes in the consistency coefficients and η50 values of emulsions. When the interface rheological properties of emulsions were considered, it was found that a weaker interfacial film was formed in emulsions with olive oil. When emulsions with different oils were compared with each other, it was found that the complex viscosity (ηi*) values of emulsions with soybean oil were higher. Within the scope of the study, it was concluded that different oils used in emulsions influenced the interfacial properties of oil/water (O/W) emulsions and that the interfacial properties of oils used in the continuous phase of emulsions should be taken into account in order to form thermodynamically stable emulsions.

Kaynakça

  • [1] Dickinson, E., Stainsby, G. (1982). Colloids in Food. Elsevier Applied Science, USA, 533p.
  • [2] Busmante, A.H.C., Chun, P. (1993). Coarse Dispersion. In Physical Pharmacy Fourth Ed., Lea and Febiger, Philadelphia, USA, pp. 477–511.
  • [3] Lawrence, H. (1989). Emulsions and microemulsions, in Pharmaceutical Dosage Forms:Disperse Systems, B. H.,Lieberman, M., Rieger, G., Ed., Marcel Dekker Inc, 335–378p.
  • [4] McClements, D. J. (2016). Food emulsions: Principles, practices, and techniques.Thirth Edition, CRC Press, USA, 714p.
  • [5] Donsì, F., Annunziata, M., Vincensi, M., Ferrari, G. (2012). Design of nanoemulsion-based delivery systems of natural antimicrobials: Effect of the emulsifier. Journal of Biotechnology, 159(4), 342–350.
  • [6] Dickinson, E. (2009). Hydrocolloids as emulsifiers and emulsion stabilizers. Food Hydrocolloid, 23, 1473–1482.
  • [7] Çelebi, N. (2009). Emülsiyonlar. Modern Farmosetik Teknolojisi, Türk Eczacılar Birliği Eczacılık Akademisi Yayını, 277–279.
  • [8] Moran-Valero, M.I., Ruiz-Henestrosa, V.M.P., Pilosof, A.M.R. (2017). Synergistic performance of lecithin and glycerol monostearate in oil/water emulsions. Colloids Surfaces B Biointerfaces, 151, 68–75.
  • [9] Dickinson, E., Leser, M.E. (2013). Food colloids today understanding structural change during processing, storage, eating and digestion. Current Opinion Colloid Interface Science, 18, 245–248.
  • [10] Bueschelberger, H.G., Tirok, S., Stoffels, I., Schoeppe, A. (2015). Lecithins. In Emulsifiers in Food Technology: Second Edition, Wiley & Blackwell, 21–61p.
  • [11] Chen, H., Guan, Y., Zhong, Q. (2015). Microemulsions based on a sunflower lecithin-tween 20 blend have high capacity for dissolving peppermint oil and stabilizing coenzyme Q10. Journal of Agriculturel Food Chemistry, 63(3), 983–989.
  • [12] Mottola, M., Vico, R.V., Villanueva, M.E., Fanani, M.L. (2015). Alkyl esters of l-ascorbic acid: Stability, surface behaviour and interaction with phospholipid monolayers. Journal of Colloid Interface Science, 457, 232–242.
  • [13] Bhattacharya, S., Shylaja, M.H., Manjunath, M.S., Sankar,U. (1998). Rheology of lecithin dispersions. Journal of American Oil Chemists Society, 75(7), 871–874.
  • [14] Hasenhuettl, G.L., Hartel, R.W. (2008). Food emulsifiers and their applications: Second edition, Springer-Verlag New York, USA.
  • [15] Turbiano, P.C. (1995). The role of specialty food starches in flavor emulsions. In Flavor Technology: Physical Chemistry, Modification and Process. ACS Symposium Series, No. 610, American Chemical Society, Washington, DC, USA, pp. 199-209.
  • [16] Taherian, A.R., Fustier, P., Ramaswamy, H.S. (2006). Effect of added oil and modified starch on rheological properties, droplet size distribution, opacity and stability of beverage cloud emulsions. Journal of Food Engineering, 77(3), 687–696.
  • [17] Miller, R., Ferri, J.K., Javadi, A., Krägel, J., Mucic, N., Wüstneck, R. (2010). Rheology of interfacial layers. Colloid Polymer Science, 288(9), 937–950.
  • [18] Krägel, J., Derkatch, S.R. (2010). Interfacial shear rheology. Current Opinion Colloid Interface Science, 5(4), 246–255.
  • [19] Bos, M.A., Van Vliet, T. (2001). Interfacial rheological properties of adsorbed protein layers and surfactants: A review, Advance Colloid Interface Science, 91, 437–471.
  • [20] Nash, J.J., Erk, K.A. (2017). Stability and interfacial viscoelasticity of oil-water nanoemulsions stabilized by soy lecithin and Tween 20 for the encapsulation of bioactive carvacrol. Colloids Surfaces A Physicochemical Engineering Aspects, 517, 1–11.
  • [21] Zou, H., Zhao, N., Li, S., Sun, S., Dong, X., Yu, C. (2020). Physicochemical and emulsifying properties of mussel water-soluble proteins as affected by lecithin concentration, International Journal Of Biological Macromolecules, 163, 180–189.
  • [22] Doğan, M., Göksel Saraç, M., Aslan Türker, D. (2020). Effect of salt on the inter-relationship between the morphological, emulsifying and interfacial rheological properties of O/W emulsions at oil/water interface, Journal of Food Engineering, 275, 109871.
  • [23] Firebaugh, J.D., Daubert, C.R. (2005). Emulsifying and foaming properties of a derivatized whey protein ingredient. International Journal Of Food Properties., 8(2), 243–253.
  • [24] Göksel Saraç, M., (2018). Rendering Artık Yağlarından Emülgatör Üretimi ve Model Gıdalarda Arayüzey (interfacial) Reolojik Uygulamaları, Erciyes Üniversitesi, Fen Bilimleri Enstitüsü, Gıda Mühendisliği Anabilim Dalı. 247.
  • [25] Kato, A., Fujıshıge, T., Matsudomı, N., Kobayashı, K. (1985). Determination of emulsifying properties of some proteins by conductivity measurements. Journal of Food Science, 50, 56–62.
  • [26] Gundersen, S.A., Sather, Ø., Sjöblom, J. (2001). Salt effects on lignosulfonate and Kraft lignin stabilized O/W-emulsions studied by means of electrical conductivity and video-enhanced microscopy, Colloids Surfaces A Physicochemical Engineering Aspects, 186(3), 141–153.
  • [27] Tonay, A.N. (2012). Çoklu Emülsiyonların Üretimine Kolloid Değirmendeki Dönüş Hızının Etkisi ve Enkapsülasyon Verimliliklerinin Hesaplanması. Ege Üniversitesi, Fen Bilimleri Enstitüsü, Gıda Mühendisliği Anabilim Dalı. 61s.
  • [28] Aslan, D. (2015). Ultrason Tekniği İle Farklı Fonksiyonel Yağlar Kullanılarak Yeni Süt Bazlı Emülsiyonların Geliştirilmesi, Erciyes Üniversitesi, Fen Bilimleri Enstitüsü, Gıda Mühendisliği Anabilim Dalı. 103s.
  • [29] Pearce, K.N., Kinsella, J.E. (1978) Emulsifying properties of proteins: Evaluation of a turbidimetric technique. Journal of Agriculturel Food Chemistry, 26(3), 716–723.
  • [30] Koroleva, M., Tokarev, A., Yurtov, E. (2015). Simulation of flocculation in W/O emulsions and experimental study. Colloids Surfaces A Physicochemical Engineering Aspects, 481, 237–243.
  • [31] Shi, X yan., Gao, H., Lazouskaya, V.I., Kang, Q., Jin, Y., Wang, L.P. (2010). Viscous flow and colloid transport near air-water interface in a microchannel. Computers and Mathematics with Applications, 59(7), 2290–2304.
  • [32] Hong, I.K., Kim, S. I., Lee, S.B. (2018). Effects of HLB value on oil-in-water emulsions: Droplet size, rheological behavior, zeta-potential, and creaming index. Journal of Industrial Engineering Chemistry, 67, 123–131.
  • [33] Wang, B., Li, D., Wang, L.J., Özkan, N. (2010). Effect of concentrated flaxseed protein on the stability and rheological properties of soybean oil-in-water emulsions. Journal of Food Engineering, 96(4), 555–561.
  • [34] McKenna, B.M., Lyng, J.G. (2003). Introduction to food rheology and its measurement. In Texture in Food, Woodhead Publishing Limited, USA, pp. 1-130p.
  • [35] Yalcin, H., Toker, O.S., Dogan, M. (2012). Effect of oil type and fatty acid composition on dynamic and steady shear rheology of vegetable oils. Journal Oleo Science, 61(4), 181–187.
  • [36] Wang, L., Xie, H., Qiao, X., Goffin, A., Hodgkinson, T., Yuan, X., Sung, K., Fuller, G. G. (2012). Interfacial rheology of natural silk fibroin at air/water and oil/water interfaces. Langmuir, 28(1), 459-467.
  • [37] Kang, W., Xu, B., Wang, Y., Li, Y., Shan, X., An, F., Liu, J. (2011). Stability mechanism of W/O crude oil emulsion stabilized by polymer and surfactant. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 384(1-3), 555-560.
  • [38] Seta, L., Baldino, N., Gabriele, D., Lupi, F.R., De Cindio, B. (2012).The effect of surfactant type on the rheology of ovalbumin layers at the air/water and oil/water interfaces. Food Hydrocolloid, 29(2), 247–257.
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Gıda Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Duygu Aslan Türker Bu kişi benim 0000-0002-9579-8347

Meryem Göksel Saraç Bu kişi benim 0000-0002-8190-2406

Mahmut Doğan Bu kişi benim 0000-0003-1639-4641

Yayımlanma Tarihi 1 Ağustos 2021
Gönderilme Tarihi 6 Ekim 2020
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Aslan Türker, D., Göksel Saraç, M., & Doğan, M. (2021). Yağ Türünün Bir Fonksiyonu Olarak Lesitin Adsorbe Edilmiş Yağ/Su Emülsiyonlarının Ara Yüzey Reolojik Özellikleri. Akademik Gıda, 19(2), 159-168. https://doi.org/10.24323/akademik-gida.977276
AMA Aslan Türker D, Göksel Saraç M, Doğan M. Yağ Türünün Bir Fonksiyonu Olarak Lesitin Adsorbe Edilmiş Yağ/Su Emülsiyonlarının Ara Yüzey Reolojik Özellikleri. Akademik Gıda. Ağustos 2021;19(2):159-168. doi:10.24323/akademik-gida.977276
Chicago Aslan Türker, Duygu, Meryem Göksel Saraç, ve Mahmut Doğan. “Yağ Türünün Bir Fonksiyonu Olarak Lesitin Adsorbe Edilmiş Yağ/Su Emülsiyonlarının Ara Yüzey Reolojik Özellikleri”. Akademik Gıda 19, sy. 2 (Ağustos 2021): 159-68. https://doi.org/10.24323/akademik-gida.977276.
EndNote Aslan Türker D, Göksel Saraç M, Doğan M (01 Ağustos 2021) Yağ Türünün Bir Fonksiyonu Olarak Lesitin Adsorbe Edilmiş Yağ/Su Emülsiyonlarının Ara Yüzey Reolojik Özellikleri. Akademik Gıda 19 2 159–168.
IEEE D. Aslan Türker, M. Göksel Saraç, ve M. Doğan, “Yağ Türünün Bir Fonksiyonu Olarak Lesitin Adsorbe Edilmiş Yağ/Su Emülsiyonlarının Ara Yüzey Reolojik Özellikleri”, Akademik Gıda, c. 19, sy. 2, ss. 159–168, 2021, doi: 10.24323/akademik-gida.977276.
ISNAD Aslan Türker, Duygu vd. “Yağ Türünün Bir Fonksiyonu Olarak Lesitin Adsorbe Edilmiş Yağ/Su Emülsiyonlarının Ara Yüzey Reolojik Özellikleri”. Akademik Gıda 19/2 (Ağustos 2021), 159-168. https://doi.org/10.24323/akademik-gida.977276.
JAMA Aslan Türker D, Göksel Saraç M, Doğan M. Yağ Türünün Bir Fonksiyonu Olarak Lesitin Adsorbe Edilmiş Yağ/Su Emülsiyonlarının Ara Yüzey Reolojik Özellikleri. Akademik Gıda. 2021;19:159–168.
MLA Aslan Türker, Duygu vd. “Yağ Türünün Bir Fonksiyonu Olarak Lesitin Adsorbe Edilmiş Yağ/Su Emülsiyonlarının Ara Yüzey Reolojik Özellikleri”. Akademik Gıda, c. 19, sy. 2, 2021, ss. 159-68, doi:10.24323/akademik-gida.977276.
Vancouver Aslan Türker D, Göksel Saraç M, Doğan M. Yağ Türünün Bir Fonksiyonu Olarak Lesitin Adsorbe Edilmiş Yağ/Su Emülsiyonlarının Ara Yüzey Reolojik Özellikleri. Akademik Gıda. 2021;19(2):159-68.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).