Derleme
BibTex RIS Kaynak Göster

Çimlendirilmiş Bazı Tahıl ve Baklagillerin Kimyasal Özellikleri ve Çimlendirmeyle Açığa Çıkan Biyoaktif Bileşenlerin Sağlık Üzerine Etkileri

Yıl 2021, , 198 - 207, 01.08.2021
https://doi.org/10.24323/akademik-gida.977300

Öz

Çeşitli metabolik ve kronik hastalıkların dünya genelindeki görülme sıklığının artması, beslenmenin sağlık üzerinde çok önemli bir role sahip olduğunu göstermektedir. Son zamanlarda bilinçli tüketiciler beslenme alışkanlıklarını değiştirme eğilimi göstermekte, vitamin, mineral, biyoaktif bileşenler ve antioksidan maddelerden zengin doğal gıdalara yönlenmektedir. Günlük diyette fonksiyonel besin adı altındaki filizlenmiş tanelerin tüketimindeki artışa bağlı olarak, çimlendirilmiş tanelerde biyoaktif bileşenler ve antioksidan kapasite içerikleriyle ilgili araştırmalar da artış göstermiştir. Hayvansal proteinlere iyi bir alternatif olan tahıl ve baklagil tanelerinden yüksek besin değeri elde etmek için çimlendirme işlemi uygulanabilmektedir. Çimlendirme sırasında, bitki ve tohumlarda diyet lifi, vitamin, mineral ve fenolik madde gibi bileşiklerin sentezlenmesi, protein, karbonhidrat ve yağ asidi kompozisyonlarının değişmesi gibi önemli biyokimyasal olaylar gerçekleşmektedir. Çimlendirme ile tanenin besin içeriğinde meydana gelen bu değişiklikler insan beslenmesinde önemli bir yere sahip olma yanında birçok hastalığın önlenmesinde etkili olabilmektedir. Bu derleme çalışmasında, çimlenme sürecinde bazı tahıl ve baklagillerde meydana gelen biyokimyasal değişiklikler; makro ve mikro besin öğeleri, biyoaktif bileşenler, antibesinsel faktörler ve antioksidan kapasite göz önüne alınarak incelenmiştir.

Kaynakça

  • [1] Yetim, H., Öztürk, İ., Törnük, F., Sağdıç, O., Hayta, M. (2009). Yenilebilir bitki ve tohum filizlerinin fonksiyonel özellikleri. Gıda , 35(3), 205-210.
  • [2] WHO. Cardiovascular diseases (CVDs). Erişim adresi: WHO: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (Erişim tarihi: 10.03.2020).
  • [3] WHO. Cancer. Erişim adresi: WHO: https://www.who.int/news-room/fact-sheets/detail/cancer (Erişim tarihi: 10.03.2020).
  • [4] WHO. Diabetes. Erişim adresi: WHO: https://www.who.int/news-room/fact-sheets/detail/diabetes (Erişim tarihi: 10.03.2020).
  • [5] WHO. Obesity and Overweight. Erişim adresi: WHO: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (Erişim tarihi: 10.03.2020).
  • [6] Kılınçer, F.N., Demir, M.K. (2019). Çimlendirilmiş bazı tahıl ve baklagillerin fiziksel ve kimyasal özellikleri. Gıda , 3, 419-429.
  • [7] Tarzi, B.G., Gharachorloo, M., Baharinia, M., Mortazavi, S.A. (2012). The effect of germination on phenolic content and antioxidant activity of chickpea. Iranian Journal of Pharmaceutical Research, 11(4), 1137-1143.
  • [8] Lopez-Martinez, L.X., Leyva-Lopez, N., Gutierrez-Grijalva, E.P., Heredia, J.B. (2017). Effect of cooking and germination on bioactive compounds in pulses and their health benefits. Journal of Functional Foods , 38, 624-634.
  • [9] Uyar, B., Sürücüoğlu, M.S. (2010). Besinlerdeki biyolojik aktif bileşenler. Beslenme ve Diyet Dergisi, 1-2(38), 69-76.
  • [10] Benincasa, P., Falcinelli, B., Lutts, S., Galieni, A. (2019). Sprouted grains: A comprehensive review. Nutrient, 2(11), 421.
  • [11] Baysal, A. (2012). Beslenme. Hatiboğlu yayınları, Ankara.
  • [12] Charoenthaikij, P., Jangchud, K., Jangchud, A., Prinyawiwatkul, W., No, H.K. (2012). Composite wheat–germinated brown rice flours: selected physicochemical properties and bread application. International Journal of Food Science Technology, 47, 75-82.
  • [13] Xu, L., Wang, P., Ali, B., Yang, N., Chen, Y., Wu, F., Xu, X. (2017). Changes of the phenolic compounds and antioxidant activities in germinated adlay seeds. Journal of the Science of Food and Agriculture, 97(12), 4227-4234.
  • [14] Donkor, O.N., Stojanovska, L., Ginn, P., Ashton, J., Vasiljevik, T. (2012). Germinated grains – sources of bioactive compounds. Food Chemistry, 135(3), 950-959.
  • [15] Agu, R.C., Chiba, Y., Goodfellow, V., Mackinlay, J., Brosnan, J.M., Bringhurst, T. A., Jack, F.R., Bryce, J.H. (2012). Effect of germination temperatures on proteolysis of the gluten-free grains rice and buckwheat during malting and mashing. Journal of Agricultural and Food Chemistry, 60(40), 10147-10154.
  • [16] Chiba, Y., Bryce, J. H., Goodfellow, V., Mackinlay, J., Agu, R. C., Brosnan, J. M., Bringhurst, T.A., Harrison, B. (2012). Effect of germination temperatures on proteolysis of the gluten-free grains sorghum and millet during malting and mashing. Journal of Agricultural and Food Chemistry, 60(14), 3745-3753.
  • [17] Scofield, G.N., Aoki, N., Hirose, T., Takano, M., Jenkins, C.L., Furbank, R. T. (2007). The role of the sucrose transporter, OsSUT1, in germination and early seedling growth and development of rice plants. Journal of Experimental Botany, 58(3), 483-495.
  • [18] Pal, R.S., Bhartiya, A., Yadav, P., Kant, L., Mishra, K.K., Aditya, J.P. (2016). Effect of dehulling, germination and cooking on nutrients, anti-nutrients, fatty acid composition and antioxidant properties in lentil (Lens culinaris). Journal of Food Science and Technology, 4(54), 909-920.
  • [19] Hung, P.V., Maeda, T., Yamamoto, S., Morita, N. (2012). Effects of germination on nutritional composition of waxy wheat. Journal of the Science of Food and Agriculture, 92(3), 667-672.
  • [20] Lin, P.L., Lai, H.M. (2006). Bioactive compounds in legumes and their germinated products. Journal of Agriculture and Food Chemistry, 54, 3807-3814.
  • [21] Güzel Seydim, Z.B. (2016). Fonksiyonel Beslenme. Sidas Medya, İzmir.
  • [22] Van Hung, P., Maeda, T., & Morita, N. (2015). Improvement of nutritional composition and antioxidant capacity of high-amylose wheat during germination. Journal of Food Science and Technology, 52(10), 6756-6762.
  • [23] Domínguez-Arispuro, D.M., Cuevas-Rodríguez, E.O., Milán-Carrillo, J., León-López, L., Gutiérrez-Dorado, R., Reyes-Moreno, C. (2017). Optimal germination condition impacts on the antioxidant activity and phenolic acids profile in pigmented desi chickpea (Cicer arietinum L.) seeds. Journal of Food Science and Technology, 2(55), 638-647.
  • [24] Martin-Cabrejas, M.A., Ariza, N., Esteban, R., Molla, E., Waldron, K., Lopez-Andreu, F.J. (2003). Effect of germination on the carbohydrate composition of the dietary fiber of peas (Pisum sativum L.). Journal of Agriculture and Food Chemistry, 51, 1254-1259.
  • [25] Singkhornart, S., Ryu, G.H. (2011). Effect of soaking time and steeping temperature on biochemical properties and γ-aminobutyric acid (GABA) content of germinated wheat and barley. Journal Food Science Nutrition, 16, 67-73.
  • [26] Gómez-Favela, M.A., Gutiérrez-Dorado, R., Cuevas-Rodríguez, E.O., Canizalez-Román, V.A., del Rosario León-Sicairos, C., Milán-Carrillo, J., Reyes-Moreno, C. (2017). Improvement of chia seeds with antioxidant activity, GABA, essential amino acids, and dietary fiber by controlled germination bioprocess. Plant Foods for Human Nutrition, 72(4), 345-352.
  • [27] Kavas, A., El, S. (1991). Nutritive value of germinated mung beans and lentils. Journal of Consumer Studies and Home Economics, 4 (15), 357-366.
  • [28] Bibi, N., Aurang, Z., Amal, B., Mohammad, S. (2008). Effect of germination time and type of illumination on proximate composition of chickpea seed (Cicer arietinum L.). American Journal of Food Technology, 1(3), 24-32.
  • [29] Kaukovirta-Norja, A., Wilhelmson, A., & Poutanen, K. (2004). Germination: a means to improve the functionality of oat. Agricultural and Food Science, 13(1-2), 100-112.
  • [30] Kim, M.J., Kwak, H.S., Kim, S.S. (2018). Effects of germination on protein, γ-aminobutyric acid, phenolic acids, and antioxidant capacity in wheat. Molecules, 9(23), 2244-2257.
  • [31] Tiansawang, K., Luangpituksa, P., Varanyanond, W., Hansawasdi, C. (2016). GABA (γ-aminobutyric acid) production, antioxidant activity in some germinated dietary seeds and the effect of cooking on their GABA content. Food Science and Technology, 36(2), 313-321.
  • [32] Öztürk, İ., Sağdıç, O., Hayta, M., Yetim, H. (2012). Alteration in α-tocopherol, some Minerals, and fatty acid contents of wheat through sproutıng. Chemistry of Natural Compounds, 47, 770-772.
  • [33] Márton, M., Mándoki, Z. S., Csapo, J. (2010). Evaluation of biological value of sprouts-I. Fat content, fatty acid composition. Acta Univ Sapientiae Aliment, 3, 53-65.
  • [34] Fouad, A.A., Rehab, F.A. (2015). Effect of germinatıon time on proximate analysis, bioactive compounds and antioxidant activity of lentil (Lens Culinaris Medık.) sprouts. Acta Scientiarum Polonorum Technologia Alimentaria, 14(3), 233-246.
  • [35] Kim, H. Y., Hwang, I. G., Kim, T. M., Woo, K. S., Park, D. S., Kim, J. H., Jeong, H. S. (2012). Chemical and functional components in different parts of rough rice (Oryza sativa L.) before and after germination. Food Chemistry, 134(1), 288-293.
  • [36] Şat, İ.G., Keleş, F. (2004). Fitik asit ve beslenmeye etkisi. Gıda , 6(29), 405-409.
  • [37] Cornejo, F., Caceres, J.P., Martinez-Villaluenga, C., Rosell, M.R., Frias, J. (2014). Effect of germination on nutritive value and bioactive compounds of brown rice breads. Food Chemistry, 173, 298-304.
  • [38] Kumar, V., Sinha, A.K., Makkar, H.P., Becker, K. (2009). Dietary roles of phytate and phytase in human nutrition: A review. Food Chemistry, 120, 945-959.
  • [39] Sung, H., Shin, H., Ha, J., Lai, H., Cheng, K., Lee, J. (2005). Effect of germination temperature on characteristics of phytase production from barley. Bioresource Technology,96, 1297-1303.
  • [40] Lopez-Amoroz, M.L., Hernandez, T., Estrella, I. (2004). Effect of germination on legume phenolic compounds and their antioxidant capacity. Journal of Food Composition and Analysis, 19(4), 277-283.
  • [41] Dykes, L., Rooney, L.W. (2007). Phenolic compounds in cereal grains and their health benefits. Cereal Foods World , 52(3), 105-111.
  • [42] Koo, S.C., Kim, S.G., Bae, D.W., Kim, H.Y., Kim, H.T., Lee, Y.H., Kang, B.K., Baek, S.B., Baek, I.Y., Yun, H.T., Choi, M.S. (2015). Biochemical and proteomic analysis of soybean sprouts at different germination temperatures. Journal of the Korean Society for Applied Biological Chemistry, 58(3), 397-407.
  • [43] Ren, W., Qiao, Z., Wang, H., Zhu, L., Zhang, L. (2003). Flavonoids: promising anticancer agents. Medicinal Research Reviews, 23, 519-534.
  • [44] Wu, Z., Song, L., Feng, S., Liu, Y., He, G., Yioe, Y. (2012). Germination dramatically increases isoflavonoid content and diversity in chickpea (Cicer arietinum L.) seeds. Journal of Agriculture and Food Chemistry, 60, 8606-8615.
  • [45] Zhu, D., Hettiarachchy, N., Horax, R., Chen, P. (2005). Isoflavone contents in germinated soybean seeds. Plant Foods for Human Nutrition, 60, 147-151.
  • [46] Sharma, S., Saxena, D.C., Riar, C.S. (2018). Changes in the GABA and polyphenols contents of foxtail millet on germination and their relationship with in vitro antioxidant activity. Food Chemistry, 245, 863-870.
  • [47] Pekşen, E., Artık, C. (2005). Antibesinsel maddeler ve yemeklik tane baklagillerin besleyici değerleri. OMÜ Ziraat Fakültesi Dergisi, 2(20), 110-120.
  • [48] Wang, N., Lewis, M., Brennan, J., Westby, A. (1997). Effect of processing methods on nutrients and antinutritional factors in cowpea. Food Chemistry, 58, 59-68.
  • [49] Sangronis, E., Machado, C. (2007). Influence of germination on the nutritional quality of Phaseolus vulgaris and Cajanus cajan. Journal of Food Science and Agriculture Technology, 1(40), 116-120.
  • [50] Huang, X., Cai, W., Xu, B. (2013). Kinetic changes on nutrients and antioxidant capacities of germinated soybean (Glycine max L.) and mung bean (Vigna radiata L.) with germination time. Food Chemistry, 143, 268-276.
  • [51] Mamilla, R.K., Mishra, V.K. (2015). Effect of germination on antioxidant and ACE inhibitory activities of legumes. Food Science and Technology , 75, 51-58.
  • [52] Rico, D., Peñas, E., García, M.D.C., Martínez-Villaluenga, C., Rai, D.K., Birsan, R.I., Frias, J., Martín-Diana, A.B. (2020). Sprouted barley flour as a nutritious and functional ingredient. Foods, 9(3), 296.
  • [53] Sattar, D.E.S., Fauqiha, A.T., Mohamed, M., Ali, T.M., Hasnain, A. (2021). Comparative study on effects of adding germinated and non‐germinated legumes on bioactive components, antioxidant, textural and sensory characteristics of cereal flakes. Legume Science, 3(1), e68.
  • [54] Sattar, D.E.S., Ali, T.M., Hasnain, A. (2017). Effect of nongerminated and germinated legumes on antioxidant, functional, and sensory characteristics of rice puddings. Cereal Chemistry, 94(3), 417-423.
  • [55] Inyang, C.U., Zakari, U.M. (2008). Effect of germination and fermentation of pearl millet on proximate, chemical and sensory properties of instant “Fura”-a Nigerian cereal food. Pakistan Journal of Nutrition, 7(1), 9-12.
  • [56] Torres, A., Frias, J., Granito, M., Vidal-Valverde, C. (2007). Germinated Cajanus cajan seeds as ingredients in pasta products: Chemical, biological and sensory evaluation. Food Chemistry, 101(1), 202-211.

Chemical Properties of Some Germinated Grains and Legumes and Effects of Bioactive Constituents Released during Germination on Human Health

Yıl 2021, , 198 - 207, 01.08.2021
https://doi.org/10.24323/akademik-gida.977300

Öz

Increasing prevalence of various metabolic and chronic diseases worldwide indicates the importance of nutrition role on health. Recently, conscious consumers tend to change their eating habits, turning to natural foods rich in vitamins, minerals, bioactive components and antioxidants. Due to the increase in the consumption of sprouted grains called functional nutrients in the daily diet, researches on bioactive components and antioxidant capacity content in germinated grains have also increased. Germination process can be used to obtain high nutritional value from grains and legumes that are good alternatives to animal proteins. Important biochemical cases such as the synthesis of dietary fiber, vitamins, minerals and phenolic substances, changes in protein, carbohydrate and fatty acid compositions occur in plants and seeds during germination. These changes in the nutrient content of grains with germination have an important place in human nutrition and can be effective in preventing many diseases. In this study, biochemical changes in some cereals and legumes during germination were reviewed in terms of macro and micronutrients, bioactive components, anti-nutritional factors and antioxidant capacity.

Kaynakça

  • [1] Yetim, H., Öztürk, İ., Törnük, F., Sağdıç, O., Hayta, M. (2009). Yenilebilir bitki ve tohum filizlerinin fonksiyonel özellikleri. Gıda , 35(3), 205-210.
  • [2] WHO. Cardiovascular diseases (CVDs). Erişim adresi: WHO: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (Erişim tarihi: 10.03.2020).
  • [3] WHO. Cancer. Erişim adresi: WHO: https://www.who.int/news-room/fact-sheets/detail/cancer (Erişim tarihi: 10.03.2020).
  • [4] WHO. Diabetes. Erişim adresi: WHO: https://www.who.int/news-room/fact-sheets/detail/diabetes (Erişim tarihi: 10.03.2020).
  • [5] WHO. Obesity and Overweight. Erişim adresi: WHO: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (Erişim tarihi: 10.03.2020).
  • [6] Kılınçer, F.N., Demir, M.K. (2019). Çimlendirilmiş bazı tahıl ve baklagillerin fiziksel ve kimyasal özellikleri. Gıda , 3, 419-429.
  • [7] Tarzi, B.G., Gharachorloo, M., Baharinia, M., Mortazavi, S.A. (2012). The effect of germination on phenolic content and antioxidant activity of chickpea. Iranian Journal of Pharmaceutical Research, 11(4), 1137-1143.
  • [8] Lopez-Martinez, L.X., Leyva-Lopez, N., Gutierrez-Grijalva, E.P., Heredia, J.B. (2017). Effect of cooking and germination on bioactive compounds in pulses and their health benefits. Journal of Functional Foods , 38, 624-634.
  • [9] Uyar, B., Sürücüoğlu, M.S. (2010). Besinlerdeki biyolojik aktif bileşenler. Beslenme ve Diyet Dergisi, 1-2(38), 69-76.
  • [10] Benincasa, P., Falcinelli, B., Lutts, S., Galieni, A. (2019). Sprouted grains: A comprehensive review. Nutrient, 2(11), 421.
  • [11] Baysal, A. (2012). Beslenme. Hatiboğlu yayınları, Ankara.
  • [12] Charoenthaikij, P., Jangchud, K., Jangchud, A., Prinyawiwatkul, W., No, H.K. (2012). Composite wheat–germinated brown rice flours: selected physicochemical properties and bread application. International Journal of Food Science Technology, 47, 75-82.
  • [13] Xu, L., Wang, P., Ali, B., Yang, N., Chen, Y., Wu, F., Xu, X. (2017). Changes of the phenolic compounds and antioxidant activities in germinated adlay seeds. Journal of the Science of Food and Agriculture, 97(12), 4227-4234.
  • [14] Donkor, O.N., Stojanovska, L., Ginn, P., Ashton, J., Vasiljevik, T. (2012). Germinated grains – sources of bioactive compounds. Food Chemistry, 135(3), 950-959.
  • [15] Agu, R.C., Chiba, Y., Goodfellow, V., Mackinlay, J., Brosnan, J.M., Bringhurst, T. A., Jack, F.R., Bryce, J.H. (2012). Effect of germination temperatures on proteolysis of the gluten-free grains rice and buckwheat during malting and mashing. Journal of Agricultural and Food Chemistry, 60(40), 10147-10154.
  • [16] Chiba, Y., Bryce, J. H., Goodfellow, V., Mackinlay, J., Agu, R. C., Brosnan, J. M., Bringhurst, T.A., Harrison, B. (2012). Effect of germination temperatures on proteolysis of the gluten-free grains sorghum and millet during malting and mashing. Journal of Agricultural and Food Chemistry, 60(14), 3745-3753.
  • [17] Scofield, G.N., Aoki, N., Hirose, T., Takano, M., Jenkins, C.L., Furbank, R. T. (2007). The role of the sucrose transporter, OsSUT1, in germination and early seedling growth and development of rice plants. Journal of Experimental Botany, 58(3), 483-495.
  • [18] Pal, R.S., Bhartiya, A., Yadav, P., Kant, L., Mishra, K.K., Aditya, J.P. (2016). Effect of dehulling, germination and cooking on nutrients, anti-nutrients, fatty acid composition and antioxidant properties in lentil (Lens culinaris). Journal of Food Science and Technology, 4(54), 909-920.
  • [19] Hung, P.V., Maeda, T., Yamamoto, S., Morita, N. (2012). Effects of germination on nutritional composition of waxy wheat. Journal of the Science of Food and Agriculture, 92(3), 667-672.
  • [20] Lin, P.L., Lai, H.M. (2006). Bioactive compounds in legumes and their germinated products. Journal of Agriculture and Food Chemistry, 54, 3807-3814.
  • [21] Güzel Seydim, Z.B. (2016). Fonksiyonel Beslenme. Sidas Medya, İzmir.
  • [22] Van Hung, P., Maeda, T., & Morita, N. (2015). Improvement of nutritional composition and antioxidant capacity of high-amylose wheat during germination. Journal of Food Science and Technology, 52(10), 6756-6762.
  • [23] Domínguez-Arispuro, D.M., Cuevas-Rodríguez, E.O., Milán-Carrillo, J., León-López, L., Gutiérrez-Dorado, R., Reyes-Moreno, C. (2017). Optimal germination condition impacts on the antioxidant activity and phenolic acids profile in pigmented desi chickpea (Cicer arietinum L.) seeds. Journal of Food Science and Technology, 2(55), 638-647.
  • [24] Martin-Cabrejas, M.A., Ariza, N., Esteban, R., Molla, E., Waldron, K., Lopez-Andreu, F.J. (2003). Effect of germination on the carbohydrate composition of the dietary fiber of peas (Pisum sativum L.). Journal of Agriculture and Food Chemistry, 51, 1254-1259.
  • [25] Singkhornart, S., Ryu, G.H. (2011). Effect of soaking time and steeping temperature on biochemical properties and γ-aminobutyric acid (GABA) content of germinated wheat and barley. Journal Food Science Nutrition, 16, 67-73.
  • [26] Gómez-Favela, M.A., Gutiérrez-Dorado, R., Cuevas-Rodríguez, E.O., Canizalez-Román, V.A., del Rosario León-Sicairos, C., Milán-Carrillo, J., Reyes-Moreno, C. (2017). Improvement of chia seeds with antioxidant activity, GABA, essential amino acids, and dietary fiber by controlled germination bioprocess. Plant Foods for Human Nutrition, 72(4), 345-352.
  • [27] Kavas, A., El, S. (1991). Nutritive value of germinated mung beans and lentils. Journal of Consumer Studies and Home Economics, 4 (15), 357-366.
  • [28] Bibi, N., Aurang, Z., Amal, B., Mohammad, S. (2008). Effect of germination time and type of illumination on proximate composition of chickpea seed (Cicer arietinum L.). American Journal of Food Technology, 1(3), 24-32.
  • [29] Kaukovirta-Norja, A., Wilhelmson, A., & Poutanen, K. (2004). Germination: a means to improve the functionality of oat. Agricultural and Food Science, 13(1-2), 100-112.
  • [30] Kim, M.J., Kwak, H.S., Kim, S.S. (2018). Effects of germination on protein, γ-aminobutyric acid, phenolic acids, and antioxidant capacity in wheat. Molecules, 9(23), 2244-2257.
  • [31] Tiansawang, K., Luangpituksa, P., Varanyanond, W., Hansawasdi, C. (2016). GABA (γ-aminobutyric acid) production, antioxidant activity in some germinated dietary seeds and the effect of cooking on their GABA content. Food Science and Technology, 36(2), 313-321.
  • [32] Öztürk, İ., Sağdıç, O., Hayta, M., Yetim, H. (2012). Alteration in α-tocopherol, some Minerals, and fatty acid contents of wheat through sproutıng. Chemistry of Natural Compounds, 47, 770-772.
  • [33] Márton, M., Mándoki, Z. S., Csapo, J. (2010). Evaluation of biological value of sprouts-I. Fat content, fatty acid composition. Acta Univ Sapientiae Aliment, 3, 53-65.
  • [34] Fouad, A.A., Rehab, F.A. (2015). Effect of germinatıon time on proximate analysis, bioactive compounds and antioxidant activity of lentil (Lens Culinaris Medık.) sprouts. Acta Scientiarum Polonorum Technologia Alimentaria, 14(3), 233-246.
  • [35] Kim, H. Y., Hwang, I. G., Kim, T. M., Woo, K. S., Park, D. S., Kim, J. H., Jeong, H. S. (2012). Chemical and functional components in different parts of rough rice (Oryza sativa L.) before and after germination. Food Chemistry, 134(1), 288-293.
  • [36] Şat, İ.G., Keleş, F. (2004). Fitik asit ve beslenmeye etkisi. Gıda , 6(29), 405-409.
  • [37] Cornejo, F., Caceres, J.P., Martinez-Villaluenga, C., Rosell, M.R., Frias, J. (2014). Effect of germination on nutritive value and bioactive compounds of brown rice breads. Food Chemistry, 173, 298-304.
  • [38] Kumar, V., Sinha, A.K., Makkar, H.P., Becker, K. (2009). Dietary roles of phytate and phytase in human nutrition: A review. Food Chemistry, 120, 945-959.
  • [39] Sung, H., Shin, H., Ha, J., Lai, H., Cheng, K., Lee, J. (2005). Effect of germination temperature on characteristics of phytase production from barley. Bioresource Technology,96, 1297-1303.
  • [40] Lopez-Amoroz, M.L., Hernandez, T., Estrella, I. (2004). Effect of germination on legume phenolic compounds and their antioxidant capacity. Journal of Food Composition and Analysis, 19(4), 277-283.
  • [41] Dykes, L., Rooney, L.W. (2007). Phenolic compounds in cereal grains and their health benefits. Cereal Foods World , 52(3), 105-111.
  • [42] Koo, S.C., Kim, S.G., Bae, D.W., Kim, H.Y., Kim, H.T., Lee, Y.H., Kang, B.K., Baek, S.B., Baek, I.Y., Yun, H.T., Choi, M.S. (2015). Biochemical and proteomic analysis of soybean sprouts at different germination temperatures. Journal of the Korean Society for Applied Biological Chemistry, 58(3), 397-407.
  • [43] Ren, W., Qiao, Z., Wang, H., Zhu, L., Zhang, L. (2003). Flavonoids: promising anticancer agents. Medicinal Research Reviews, 23, 519-534.
  • [44] Wu, Z., Song, L., Feng, S., Liu, Y., He, G., Yioe, Y. (2012). Germination dramatically increases isoflavonoid content and diversity in chickpea (Cicer arietinum L.) seeds. Journal of Agriculture and Food Chemistry, 60, 8606-8615.
  • [45] Zhu, D., Hettiarachchy, N., Horax, R., Chen, P. (2005). Isoflavone contents in germinated soybean seeds. Plant Foods for Human Nutrition, 60, 147-151.
  • [46] Sharma, S., Saxena, D.C., Riar, C.S. (2018). Changes in the GABA and polyphenols contents of foxtail millet on germination and their relationship with in vitro antioxidant activity. Food Chemistry, 245, 863-870.
  • [47] Pekşen, E., Artık, C. (2005). Antibesinsel maddeler ve yemeklik tane baklagillerin besleyici değerleri. OMÜ Ziraat Fakültesi Dergisi, 2(20), 110-120.
  • [48] Wang, N., Lewis, M., Brennan, J., Westby, A. (1997). Effect of processing methods on nutrients and antinutritional factors in cowpea. Food Chemistry, 58, 59-68.
  • [49] Sangronis, E., Machado, C. (2007). Influence of germination on the nutritional quality of Phaseolus vulgaris and Cajanus cajan. Journal of Food Science and Agriculture Technology, 1(40), 116-120.
  • [50] Huang, X., Cai, W., Xu, B. (2013). Kinetic changes on nutrients and antioxidant capacities of germinated soybean (Glycine max L.) and mung bean (Vigna radiata L.) with germination time. Food Chemistry, 143, 268-276.
  • [51] Mamilla, R.K., Mishra, V.K. (2015). Effect of germination on antioxidant and ACE inhibitory activities of legumes. Food Science and Technology , 75, 51-58.
  • [52] Rico, D., Peñas, E., García, M.D.C., Martínez-Villaluenga, C., Rai, D.K., Birsan, R.I., Frias, J., Martín-Diana, A.B. (2020). Sprouted barley flour as a nutritious and functional ingredient. Foods, 9(3), 296.
  • [53] Sattar, D.E.S., Fauqiha, A.T., Mohamed, M., Ali, T.M., Hasnain, A. (2021). Comparative study on effects of adding germinated and non‐germinated legumes on bioactive components, antioxidant, textural and sensory characteristics of cereal flakes. Legume Science, 3(1), e68.
  • [54] Sattar, D.E.S., Ali, T.M., Hasnain, A. (2017). Effect of nongerminated and germinated legumes on antioxidant, functional, and sensory characteristics of rice puddings. Cereal Chemistry, 94(3), 417-423.
  • [55] Inyang, C.U., Zakari, U.M. (2008). Effect of germination and fermentation of pearl millet on proximate, chemical and sensory properties of instant “Fura”-a Nigerian cereal food. Pakistan Journal of Nutrition, 7(1), 9-12.
  • [56] Torres, A., Frias, J., Granito, M., Vidal-Valverde, C. (2007). Germinated Cajanus cajan seeds as ingredients in pasta products: Chemical, biological and sensory evaluation. Food Chemistry, 101(1), 202-211.
Toplam 56 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Gıda Mühendisliği
Bölüm Derleme Makaleler
Yazarlar

Ayşe Seda Şenlik Bu kişi benim 0000-0002-4526-2288

Derya Alkan Bu kişi benim 0000-0003-0608-296X

Yayımlanma Tarihi 1 Ağustos 2021
Gönderilme Tarihi 18 Eylül 2020
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Şenlik, A. S., & Alkan, D. (2021). Çimlendirilmiş Bazı Tahıl ve Baklagillerin Kimyasal Özellikleri ve Çimlendirmeyle Açığa Çıkan Biyoaktif Bileşenlerin Sağlık Üzerine Etkileri. Akademik Gıda, 19(2), 198-207. https://doi.org/10.24323/akademik-gida.977300
AMA Şenlik AS, Alkan D. Çimlendirilmiş Bazı Tahıl ve Baklagillerin Kimyasal Özellikleri ve Çimlendirmeyle Açığa Çıkan Biyoaktif Bileşenlerin Sağlık Üzerine Etkileri. Akademik Gıda. Ağustos 2021;19(2):198-207. doi:10.24323/akademik-gida.977300
Chicago Şenlik, Ayşe Seda, ve Derya Alkan. “Çimlendirilmiş Bazı Tahıl Ve Baklagillerin Kimyasal Özellikleri Ve Çimlendirmeyle Açığa Çıkan Biyoaktif Bileşenlerin Sağlık Üzerine Etkileri”. Akademik Gıda 19, sy. 2 (Ağustos 2021): 198-207. https://doi.org/10.24323/akademik-gida.977300.
EndNote Şenlik AS, Alkan D (01 Ağustos 2021) Çimlendirilmiş Bazı Tahıl ve Baklagillerin Kimyasal Özellikleri ve Çimlendirmeyle Açığa Çıkan Biyoaktif Bileşenlerin Sağlık Üzerine Etkileri. Akademik Gıda 19 2 198–207.
IEEE A. S. Şenlik ve D. Alkan, “Çimlendirilmiş Bazı Tahıl ve Baklagillerin Kimyasal Özellikleri ve Çimlendirmeyle Açığa Çıkan Biyoaktif Bileşenlerin Sağlık Üzerine Etkileri”, Akademik Gıda, c. 19, sy. 2, ss. 198–207, 2021, doi: 10.24323/akademik-gida.977300.
ISNAD Şenlik, Ayşe Seda - Alkan, Derya. “Çimlendirilmiş Bazı Tahıl Ve Baklagillerin Kimyasal Özellikleri Ve Çimlendirmeyle Açığa Çıkan Biyoaktif Bileşenlerin Sağlık Üzerine Etkileri”. Akademik Gıda 19/2 (Ağustos 2021), 198-207. https://doi.org/10.24323/akademik-gida.977300.
JAMA Şenlik AS, Alkan D. Çimlendirilmiş Bazı Tahıl ve Baklagillerin Kimyasal Özellikleri ve Çimlendirmeyle Açığa Çıkan Biyoaktif Bileşenlerin Sağlık Üzerine Etkileri. Akademik Gıda. 2021;19:198–207.
MLA Şenlik, Ayşe Seda ve Derya Alkan. “Çimlendirilmiş Bazı Tahıl Ve Baklagillerin Kimyasal Özellikleri Ve Çimlendirmeyle Açığa Çıkan Biyoaktif Bileşenlerin Sağlık Üzerine Etkileri”. Akademik Gıda, c. 19, sy. 2, 2021, ss. 198-07, doi:10.24323/akademik-gida.977300.
Vancouver Şenlik AS, Alkan D. Çimlendirilmiş Bazı Tahıl ve Baklagillerin Kimyasal Özellikleri ve Çimlendirmeyle Açığa Çıkan Biyoaktif Bileşenlerin Sağlık Üzerine Etkileri. Akademik Gıda. 2021;19(2):198-207.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).