Araştırma Makalesi
BibTex RIS Kaynak Göster

Development of Graphene Oxide-Polyaniline Nanocomposite Based Amperometric Glucose Biosensor

Yıl 2017, Cilt: 15 Sayı: 2, 124 - 129, 11.08.2017
https://doi.org/10.24323/akademik-gida.333663

Öz

In
this study, Pt electrode was modified with graphene oxide-polyaniline (GO-PANI)
nanocomposite and used in the fabrication of amperometric glucose biosensor.
Glucose oxidase (GOD) was immobilized on the modified Pt electrode by using a cross-linking
agent. The proposed Pt/GO-PANI/GOD biosensor exhibited a sensitivity value of 36.11 μA mM-1 cm-2 with a linear
range of 0.59-9.15 mM and the detection limit of 0.24 mM under optimum
conditions. The interference effects of ascorbic acid (AA) and uric acid (UA)
on the developed glucose biosensor were studied, and it was observed that the
biosensor was highly selective to glucose.

Kaynakça

  • [1] Mello, L.D., Kubota, L.T., 2002. Review of the use of biosensors as analytical tools in the food and drink industries. Food Chemistry 77: 237-256.
  • [2] Borisov, S.M., Wolfbeis, O.S., 2008. Optical Biosensors. Chemical Reviews 108: 423-461.
  • [3] Luong, J.H.T., Bouvrette, P., Male, K.B., 1997. Developments and applications of biosensors in food analysis. Trends in Biotechnology 15: 369-377.
  • [4] McGrath, T.F., Elliott, C.T., Fodey, T.L., 2012. Biosensors for the analysis of microbiological and chemical contaminants in food. Analytical and Bioanalytical Chemistry 403: 75-92.
  • [5] Ayenimo, J.G., Adeloju, S.B. 2017. Amperometric detection of glucose in fruit juices with polypyrrole-based biosensor with an integrated permselective layer for exclusion of interferences. Food Chemistry 229: 127-135.
  • [6] Boujtita, M., Boitard, M., El Murr, N., 1999. Development of renewable surface biosensors to meet industrial needs for measurement of glucose in fruit juices. Biosensors and Bioelectronics 14: 545-553.
  • [7] Ocvirk, G., Buck, H., DuVall, S.H., 2017. Electrochemical glucose biosensors for diabetes care. Bioanalytical Reviews 6.
  • [8] Marquette, C.A., Degiuli, A., Blum, L.J., 2003. Electrochemiluminescent biosensors array for the concomitant detection of choline, glucose, glutamate, lactate, lysine and urate. Biosensors and Bioelectronics 19: 433-439.
  • [9] Wang, J., 2008. Electrochemical glucose biosensors. Chemical Reviews 108: 814-825.
  • [10] Hong, S.G., Kim, J.H., Kim, R.E., Kwon, S.J., Kim, D.W., Jung, H.T., Dordick, J.S., Kim, J., 2016. Immobilization of glucose oxidase on graphene oxide for highly sensitive biosensors. Biotechnology and Bioprocess Engineering 21: 573-579.
  • [11] Ekanayake, E.M.I.M., Preethichandra, D.M.G., Kaneto, K., 2008. Effect of glucose oxidase immobilizing techniques on performances of nano scale polypyrrole glucose biosensors. Japanese Journal of Applied Physics 47: 1321-1324.
  • [12] Schuhmann, W., Huber, J., Mirlach, A., Daub, J., 1993. Covalent binding of glucose oxidase to functionalized polyazulenes. The first application of polyazulenes in amperometric biosensors. Advanced Materials 5: 124-126.
  • [13] Stejskal, J., Gilbert, R.G., 2002. Polyaniline. Preparation of a conducting polymer (IUPAC Technical Report). Pure Applied Chemistry 74: 857–867.
  • [14] Geim, A.K., 2009. Graphene: status and prospects. Science 324: 1530–1534.
  • [15] Chen, D., Feng, H., Li, J., 2012. Graphene oxide: Preparation, functionalization, and electrochemical applications. Chemical Reviews 112: 6027-6053.
  • [16] Xu, G., Wang, N., Wei, J., Lv, L., Zhang, J., Chen, Z., Xu, Q., 2012. Preparation of graphene oxide/polyaniline nanocomposite with assistance of supercritical carbon dioxide for supercapacitor electrodes. Industrial and Engineering Chemistry Research 51: 14390-14398.
  • [17] Yang, Y., Kang, M., Fang, S., Wang, M., He, L., Zhao, J., Zhang, H., Zhang, Z., 2015. Electrochemical biosensor based on three-dimensional reduced graphene oxide and polyaniline nanocomposite for selective detection of mercury ions. Sensors and Actuators, B: Chemical 214: 63-69.
  • [18] Hummers, W.S., Offeman, R.E., 1958. Preparation of Graphitic Oxide. Journal of the American Chemical Society 80: 1339-1339.
  • [19] Gui, D., Liu, C., Chen, F., Liu, J., 2014. Preparation of polyaniline/graphene oxide nanocomposites for the application of supercapacitor. Applied Surface Science 307: 172-177.
  • [20] Kamin, R.A., Wilson, G.S., 1980. Rotating ring-disk enzyme electrode for biocatalysis kinetic studies and characterization of the immobilized enzyme layer. Analytical Chemistry 52: 1198-1205.
  • [21] Rogers, M.J., Brandt, K.G., 1971. Interaction of d-glucal with Aspergillus niger glucose oxidase. Biochemistry 10: 4624–4630.
  • [22] Feng, X., Cheng, H., Pan, Y., Zheng, H., 2015. Development of glucose biosensors based on nanostructured graphene-conducting polyaniline composite. Biosensors and Bioelectronics 70: 411-417.
  • [23] Kong, F.Y., Gu, S.X., Li, W.W., Chen, T.T., Xu, Q., Wang, W., 2014. A paper disk equipped with graphene/polyaniline/Au nanoparticles/glucose oxidase biocomposite modified screen-printed electrode: Toward whole blood glucose determination. Biosensors and Bioelectronics 56: 77-82.
  • [24] Hansen, B., Hocevar, M.A., Ferreira, C.A., 2016. A facile and simple polyaniline-poly(ethylene oxide) based glucose biosensor. Synthetic Metals 222: 224-231.
  • [25] Unnikrishnan, B., Palanisamy, S., Chen, S.M., 2013. A simple electrochemical approach to fabricate a glucose biosensor based on graphene-glucose oxidase biocomposite. Biosensors and Bioelectronics 39(1): 70-75.
  • [26] Çoğal, S., Şen Gürsoy, S., Çelik Çoğal, G., Gürsoy, O., 2016. Sütte laktoz tayini için biyosensörlerin kullanımı. Akademik Gıda 14(1): 33-42.

Grafen Oksit-Polianilin Nanokompozit Temelli Amperometrik Glukoz Biyosensörü Geliştirilmesi

Yıl 2017, Cilt: 15 Sayı: 2, 124 - 129, 11.08.2017
https://doi.org/10.24323/akademik-gida.333663

Öz

Bu çalışmada, Pt elektrot, grafen
oksit-polianilin (GO-PANI) nanokompoziti ile modifiye edilerek amperometrik
glukoz biyosensörü geliştirilmesinde kullanılmıştır. Modifiye edilmiş Pt
elektroda glukoz oksidaz (GOD) enzimi çapraz bağlayıcı kullanılarak immobilize
edilmiştir. Bu şekilde hazırlanan Pt/GO-PANI/GOD biyosensörünün optimum çalışma
koşullarında amperometrik yöntemle glukoza karşı cevabı çalışılmış ve 36.11
μA mM-1 cm-2 hassasiyet, 0.59-9.15 mM lineer çalışma aralığı ve 0.24 mM tayin limiti sergilemiştir. Geliştirilen
glukoz biyosensörü üzerine askorbik asit (AA) ve ürik asidin (UA) girişim
etkileri incelenmiş ve biyosensörün glukoza karşı oldukça seçici olduğu
gözlenmiştir.

Kaynakça

  • [1] Mello, L.D., Kubota, L.T., 2002. Review of the use of biosensors as analytical tools in the food and drink industries. Food Chemistry 77: 237-256.
  • [2] Borisov, S.M., Wolfbeis, O.S., 2008. Optical Biosensors. Chemical Reviews 108: 423-461.
  • [3] Luong, J.H.T., Bouvrette, P., Male, K.B., 1997. Developments and applications of biosensors in food analysis. Trends in Biotechnology 15: 369-377.
  • [4] McGrath, T.F., Elliott, C.T., Fodey, T.L., 2012. Biosensors for the analysis of microbiological and chemical contaminants in food. Analytical and Bioanalytical Chemistry 403: 75-92.
  • [5] Ayenimo, J.G., Adeloju, S.B. 2017. Amperometric detection of glucose in fruit juices with polypyrrole-based biosensor with an integrated permselective layer for exclusion of interferences. Food Chemistry 229: 127-135.
  • [6] Boujtita, M., Boitard, M., El Murr, N., 1999. Development of renewable surface biosensors to meet industrial needs for measurement of glucose in fruit juices. Biosensors and Bioelectronics 14: 545-553.
  • [7] Ocvirk, G., Buck, H., DuVall, S.H., 2017. Electrochemical glucose biosensors for diabetes care. Bioanalytical Reviews 6.
  • [8] Marquette, C.A., Degiuli, A., Blum, L.J., 2003. Electrochemiluminescent biosensors array for the concomitant detection of choline, glucose, glutamate, lactate, lysine and urate. Biosensors and Bioelectronics 19: 433-439.
  • [9] Wang, J., 2008. Electrochemical glucose biosensors. Chemical Reviews 108: 814-825.
  • [10] Hong, S.G., Kim, J.H., Kim, R.E., Kwon, S.J., Kim, D.W., Jung, H.T., Dordick, J.S., Kim, J., 2016. Immobilization of glucose oxidase on graphene oxide for highly sensitive biosensors. Biotechnology and Bioprocess Engineering 21: 573-579.
  • [11] Ekanayake, E.M.I.M., Preethichandra, D.M.G., Kaneto, K., 2008. Effect of glucose oxidase immobilizing techniques on performances of nano scale polypyrrole glucose biosensors. Japanese Journal of Applied Physics 47: 1321-1324.
  • [12] Schuhmann, W., Huber, J., Mirlach, A., Daub, J., 1993. Covalent binding of glucose oxidase to functionalized polyazulenes. The first application of polyazulenes in amperometric biosensors. Advanced Materials 5: 124-126.
  • [13] Stejskal, J., Gilbert, R.G., 2002. Polyaniline. Preparation of a conducting polymer (IUPAC Technical Report). Pure Applied Chemistry 74: 857–867.
  • [14] Geim, A.K., 2009. Graphene: status and prospects. Science 324: 1530–1534.
  • [15] Chen, D., Feng, H., Li, J., 2012. Graphene oxide: Preparation, functionalization, and electrochemical applications. Chemical Reviews 112: 6027-6053.
  • [16] Xu, G., Wang, N., Wei, J., Lv, L., Zhang, J., Chen, Z., Xu, Q., 2012. Preparation of graphene oxide/polyaniline nanocomposite with assistance of supercritical carbon dioxide for supercapacitor electrodes. Industrial and Engineering Chemistry Research 51: 14390-14398.
  • [17] Yang, Y., Kang, M., Fang, S., Wang, M., He, L., Zhao, J., Zhang, H., Zhang, Z., 2015. Electrochemical biosensor based on three-dimensional reduced graphene oxide and polyaniline nanocomposite for selective detection of mercury ions. Sensors and Actuators, B: Chemical 214: 63-69.
  • [18] Hummers, W.S., Offeman, R.E., 1958. Preparation of Graphitic Oxide. Journal of the American Chemical Society 80: 1339-1339.
  • [19] Gui, D., Liu, C., Chen, F., Liu, J., 2014. Preparation of polyaniline/graphene oxide nanocomposites for the application of supercapacitor. Applied Surface Science 307: 172-177.
  • [20] Kamin, R.A., Wilson, G.S., 1980. Rotating ring-disk enzyme electrode for biocatalysis kinetic studies and characterization of the immobilized enzyme layer. Analytical Chemistry 52: 1198-1205.
  • [21] Rogers, M.J., Brandt, K.G., 1971. Interaction of d-glucal with Aspergillus niger glucose oxidase. Biochemistry 10: 4624–4630.
  • [22] Feng, X., Cheng, H., Pan, Y., Zheng, H., 2015. Development of glucose biosensors based on nanostructured graphene-conducting polyaniline composite. Biosensors and Bioelectronics 70: 411-417.
  • [23] Kong, F.Y., Gu, S.X., Li, W.W., Chen, T.T., Xu, Q., Wang, W., 2014. A paper disk equipped with graphene/polyaniline/Au nanoparticles/glucose oxidase biocomposite modified screen-printed electrode: Toward whole blood glucose determination. Biosensors and Bioelectronics 56: 77-82.
  • [24] Hansen, B., Hocevar, M.A., Ferreira, C.A., 2016. A facile and simple polyaniline-poly(ethylene oxide) based glucose biosensor. Synthetic Metals 222: 224-231.
  • [25] Unnikrishnan, B., Palanisamy, S., Chen, S.M., 2013. A simple electrochemical approach to fabricate a glucose biosensor based on graphene-glucose oxidase biocomposite. Biosensors and Bioelectronics 39(1): 70-75.
  • [26] Çoğal, S., Şen Gürsoy, S., Çelik Çoğal, G., Gürsoy, O., 2016. Sütte laktoz tayini için biyosensörlerin kullanımı. Akademik Gıda 14(1): 33-42.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Bölüm Araştırma Makaleleri
Yazarlar

Sadık Çoğal Bu kişi benim

Yayımlanma Tarihi 11 Ağustos 2017
Gönderilme Tarihi 9 Ağustos 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 15 Sayı: 2

Kaynak Göster

APA Çoğal, S. (2017). Grafen Oksit-Polianilin Nanokompozit Temelli Amperometrik Glukoz Biyosensörü Geliştirilmesi. Akademik Gıda, 15(2), 124-129. https://doi.org/10.24323/akademik-gida.333663
AMA Çoğal S. Grafen Oksit-Polianilin Nanokompozit Temelli Amperometrik Glukoz Biyosensörü Geliştirilmesi. Akademik Gıda. Ağustos 2017;15(2):124-129. doi:10.24323/akademik-gida.333663
Chicago Çoğal, Sadık. “Grafen Oksit-Polianilin Nanokompozit Temelli Amperometrik Glukoz Biyosensörü Geliştirilmesi”. Akademik Gıda 15, sy. 2 (Ağustos 2017): 124-29. https://doi.org/10.24323/akademik-gida.333663.
EndNote Çoğal S (01 Ağustos 2017) Grafen Oksit-Polianilin Nanokompozit Temelli Amperometrik Glukoz Biyosensörü Geliştirilmesi. Akademik Gıda 15 2 124–129.
IEEE S. Çoğal, “Grafen Oksit-Polianilin Nanokompozit Temelli Amperometrik Glukoz Biyosensörü Geliştirilmesi”, Akademik Gıda, c. 15, sy. 2, ss. 124–129, 2017, doi: 10.24323/akademik-gida.333663.
ISNAD Çoğal, Sadık. “Grafen Oksit-Polianilin Nanokompozit Temelli Amperometrik Glukoz Biyosensörü Geliştirilmesi”. Akademik Gıda 15/2 (Ağustos 2017), 124-129. https://doi.org/10.24323/akademik-gida.333663.
JAMA Çoğal S. Grafen Oksit-Polianilin Nanokompozit Temelli Amperometrik Glukoz Biyosensörü Geliştirilmesi. Akademik Gıda. 2017;15:124–129.
MLA Çoğal, Sadık. “Grafen Oksit-Polianilin Nanokompozit Temelli Amperometrik Glukoz Biyosensörü Geliştirilmesi”. Akademik Gıda, c. 15, sy. 2, 2017, ss. 124-9, doi:10.24323/akademik-gida.333663.
Vancouver Çoğal S. Grafen Oksit-Polianilin Nanokompozit Temelli Amperometrik Glukoz Biyosensörü Geliştirilmesi. Akademik Gıda. 2017;15(2):124-9.

Cited By

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).