Araştırma Makalesi
BibTex RIS Kaynak Göster

Modified Low Glycemic Index Ingredients in Noodle Processing: Rheology and Microstructural Characteristics

Yıl 2017, Cilt: 15 Sayı: 3, 211 - 221, 23.10.2017
https://doi.org/10.24323/akademik-gida.345247

Öz

Low glycemic index ingredients are now getting attention due to their
effect on human nutrition and health. Modification of these ingredients further
enhances the beneficial properties of food products. Objective of the study was
to modify some of the low GI ingredients such as rajma, guar, guar seed and oats with different chemical treatments.
These chemical treatments were earlier used for the modification of starches.
Studies on the modification of complex foods having both starch and proteins
were scanty. These modification techniques yielded some ingredients which had
improved rheological behavior and also enhanced product quality parameters. Modification
of ingredients has become a new innovation in food technology, with ease of
preparation and utilization. These ingredients can be used in a variety of
foods from bakery to pasta products. These are having worthy nutritive
principles which are beneficial for several health related issues. Further
study is needed to understand the molecular changes during modification.

Kaynakça

  • [1] Ludwig, D.S., 2002. The glycemic index: physiological mechanisms relating to obesity, diabetes, and cardiovascular disease. The Journal of the American Medical Association 287(18): 2414-2423.
  • [2] Onayemi, O., Badifu, G.I.O., 1987. Effect of blanching and drying methods on the nutritional and sensory quality of leafy vegetables. Plant Foods for Human Nutrition 37(4): 291-298.
  • [3] Yang, Y., Wang, H., Cui, H., Wang, Y., Yu, L., Xiang, S., Zhou, S., 2006. Glycemic index of cereals and tubers produced in China. World Journal of Gastroenterology 12(21): 3430–3433.
  • [4] Bharath Kumar, S., Prabhasankar, P., 2014. Low glycemic index ingredients and modified starches in wheat based food processing: A review. Trends in Food Science & Technology 35(1): 32–41.
  • [5] Singh, J., Kaur, L., McCarthy, O.J., 2007. Factors influencing the physico-chemical, morphological, thermal and rheological properties of some chemically modified starches for food applications—A review. Food Hydrocolloids 21(1): 1–22.
  • [6] Bharath Kumar, S., Prabhasankar, P., 2013. Modified ingredients in noodle processing and its effect on in vitro starch digestibility. Presented in 7th International Food Convention (IFCON), Mysore, India, December 18-21, 2013.
  • [7] Ranganna, S., 1986. Handbook of Analysis and Quality Control for Fruit and Vegetable Products. India: Tata McGraw-Hill Education.
  • [8] Bharath Kumar, S., Prabhasankar, P., 2015a. A study on noodle dough rheology and product quality characteristics of fresh and dried noodles as influenced by low glycemic index ingredient. Journal of Food Science and Technology 52(3): 1404-1413.
  • [9] American Association of Cereal Chemists (AACC), 2009. Approved Methods of the AACC, 10 th edition. AACC Method 44-15A, One Stage Moisture Air Oven Method; AACC Method 08-01, Ash–Basic Method; AACC Method 46-13, Micro-Kjeldahl Method; AACC Method 22-10A; AOAC 991.43; Dietary fiber, AACC Method 16-50; Pasta Cooking Time- 66–50, AACC, AACC 2, method 54–21 St. Paul, Minnesota: AACC.
  • [10] Han, J.A., BeMiller, J.N., 2007. Preparation and physical characteristics of slowly digesting modified food starches. Carbohydrate Polymers 67(3): 366-374.
  • [11] Takizawa, F.F., Silva, G.O., Konkel, F.E., Demiate, I.M., 2004. Characterization of tropical starches modified with potassium permanganate and lactic acid. Brazilian Archives of Biology and Technology 47(6): 921-931.
  • [12] Association of Official Analytical Chemists (AOAC), 2007. Official methods of analysis (18th ed.). Washington, DC, USA.
  • [13] Association of Official Analytical Chemists (AOAC), 1995. Official methods of analysis (16th ed.). Washington, DC, USA.
  • [14] Stone, H., Sidel, J.L., 1998. Quantitative descriptive analysis: developments, applications, and the future. Journal of Food Technology 52: 48–52.
  • [15] Bharath Kumar, S., Prabhasankar, P., 2015b. A study on starch profile of rajma bean (Phaseolus vulgaris) incorporated noodle dough and its functional characteristics. Food Chemistry 180: 124-132.
  • [16] Hutchings, JB., 1994. Food color and appearance. Chapman and Hall, Blackie Academic and Professional, Great Britain and London.
  • [17] Prabhasankar, P., Ganesan, P. Baskar, N., 2009. Influence of Indian brown seaweed (Sargassum marginatum) as an ingredient on quality, bio-functional and microstructure characteristics of pasta. Food Science and Technology International 15: 471–479.
  • [18] Duncan, B.D., 1955. Multiple range and multiple F-tests. Biometrics 11:1–42.
  • [19] Xiao, H., Lin, Q., Liu, G., Yu, F., 2012. A comparative study of the characteristics of cross-linked, oxidized and dual-modified rice starches. Molecules 17: 10946-10957.
  • [20] Yeates, T.E., Babcock, G.E., Mehltretter, C.L., 1963. Permanganate oxidation of corn starch. Presented in 144th meeting of American Chemical Society, Los Angeles, California, March 31- April 5, 1963.
  • [21] Goycoolea, F.M., Morris, E.R., Gidley M.J., 1995. Viscosity of galactomannans at alkaline and neutral pH: evidence of ‘hyperentanglement’ in solution. Carbohydrate Polymers 27(1): 69-71.
  • [22] Yusuf, A.A., Ayedun, H., Logunleko, G.B., 2007. Functional properties of unmodified and modified Jack bean (Canavalia ensiformis) starches. Nigerian Food Journal 25(2): 141-149.
  • [23] Anttila, H., Sontag-Strohm, T., Salovaara, H., 2004. Viscosity of beta-glucan in oat products. Agricultural and Food Science 13: 80-87.
  • [24] DapcevicHadnadev, T.R., Dokic, L.P., Hadnadev, M.S., Pojic, M.M., Torbica A.M., 2014. Rheological and breadmaking properties of wheat flours supplemented with octenyl succinic anhydride-modified waxy maize starches. Food and Bioprocess Technology 7(1): 235–247.
  • [25] Wang, J., Rosell, C.M., Benedito de Barber, C., 2002. Effect of the addition of different fibres on wheat dough performance and bread quality. Food Chemistry 79(2): 221–226.
  • [26] Shiau, S., Yeh, A., 2001. Effects of alkali and acid on dough rheological properties and characteristics of extruded noodles. Journal of Cereal Science 33: 27–37.
  • [27] Rosell, C.M., Rojas, J.A., Barber, C.B., 2001. Influence of hydrocolloids on dough rheology and bread quality. Food Hydrocolloids 15(1): 75–81.
  • [28] Van Vliet, T., Janssen, A.M., Bloksma, A.H., Walstra, P., 1992. Strain hardening of dough as a requirement for gas retention. Journal of Texture Studies 23: 439–460.
  • [29] Nielsen, M.A., Sumner, A.K., Whalley, L.L., 1980. Fortification of pasta with pea flour and air-classified pea protein concentrate. Cereal Chemistry 57(3): 203-206.
  • [30] Heller, S.N., Rivers, J.M., Hackler, L.R., 1977. Dietary fiber: the effect of particle size and pH on its measurement. Journal of Food Science 42(2): 436–439.
  • [31] Plaami, S.P., 1997. Content of dietary fiber in foods and its physiological effects. Food Review International 13(1): 29-76.
  • [32] Doyle, J.P., Lyons, G., Morris, E.R., 2009. New proposals on “hyperentanglement” of galactomannans: Solution viscosity of fenugreek gum under neutral and alkaline conditions. Food Hydrocolloids 26(6): 1501-1510.
  • [33] Tosh, S.M., Yada, S., 2010. Dietary fibres in pulse seeds and fractions: Characterization, functional attributes, and applications. Food Research International 43(2): 450-460.
  • [34] Walker, A.F., Kochhar, N., 1982. Effect of processing including domestic cooking on nutritional quality of legumes. Proceedings of the Nutrition Society 41(1): 41-51.
  • [35] Tudorica, C.M., Kuri, V., Brennan, C.S., 2002. Nutritional and physicochemical characteristics of dietary fiber enriched pasta. Journal of Agricultural and Food Chemistry 50: 347–356.
  • [36] Epstein, J., Morris, C.F. Huber, K.C., 2002. Instrumental texture of white salted noodles prepared from recombinant inbred lines of wheat differing in the three granule bound starch synthase (waxy) genes. Journal of Cereal Science 35(1): 51–63.
  • [37] Murray, J.M., Delahunty, C.M., Baxter, I.A., 2001. Descriptive sensory analysis: past, present and future. Food Research International 34: 461-471.
  • [38] Chandrashekar, A., Kirleis, A.W., 1988. Influence of protein on starch gelatinization in sorghum. Cereal Chemistry 65(6): 457-462.

Erişte Üretiminde Modifiye Düşük Glisemik İndeksli Bileşenlerin Kullanımı: Reoloji ve Mikroyapı Özellikleri

Yıl 2017, Cilt: 15 Sayı: 3, 211 - 221, 23.10.2017
https://doi.org/10.24323/akademik-gida.345247

Öz

Düşük glisemik indekse sahip gıda bileşenleri insan beslenmesi ve
sağlığı üzerindeki etkileri nedeniyle son yıllarda dikkat çekmektedir. Bu
bileşenlerin modifikasyonu, ürünün yararlı özelliklerini daha da
iyileştirmektedir. Bu çalışmanın amacı,
rajma,
guar, guar tohumu ve yulaf gibi bazı düşük glisemik indekse sahip bileşenlerin
farklı kimyasal işlemlerle modifikasyonudur. Bu kimyasal işlemler daha önce
nişastaların modifikasyonu için kullanılmıştır. Nişasta ve protein içeren
kompleks gıdaların modifikasyonu üzerine çalışmalar oldukça yetersizdir. Bazı
bileşenlere uygulanan modifikasyon teknikleri, reolojik davranışları
iyileştirdiği gibi ürün kalite parametrelerini de geliştirmiştir. Gıda
bileşenlerinin modifikasyonu, hazırlanma ve kullanma kolaylığı ile gıda
teknolojisinde yeni bir yenilik haline gelmiştir. Söz konusu bileşenler fırıncılık
ürünlerinden makarna ürünlerine kadar birçok gıdada kullanılabilir. Bunlar
sağlık ile ilgili birçok konuda faydalı olan değerli besleyici özelliklere
sahipler. Bileşenlerin modifikasyonu sırasında ortaya çıkan moleküler
değişiklikleri anlamak için daha fazla çalışmanın yapılması gereklidir.

Kaynakça

  • [1] Ludwig, D.S., 2002. The glycemic index: physiological mechanisms relating to obesity, diabetes, and cardiovascular disease. The Journal of the American Medical Association 287(18): 2414-2423.
  • [2] Onayemi, O., Badifu, G.I.O., 1987. Effect of blanching and drying methods on the nutritional and sensory quality of leafy vegetables. Plant Foods for Human Nutrition 37(4): 291-298.
  • [3] Yang, Y., Wang, H., Cui, H., Wang, Y., Yu, L., Xiang, S., Zhou, S., 2006. Glycemic index of cereals and tubers produced in China. World Journal of Gastroenterology 12(21): 3430–3433.
  • [4] Bharath Kumar, S., Prabhasankar, P., 2014. Low glycemic index ingredients and modified starches in wheat based food processing: A review. Trends in Food Science & Technology 35(1): 32–41.
  • [5] Singh, J., Kaur, L., McCarthy, O.J., 2007. Factors influencing the physico-chemical, morphological, thermal and rheological properties of some chemically modified starches for food applications—A review. Food Hydrocolloids 21(1): 1–22.
  • [6] Bharath Kumar, S., Prabhasankar, P., 2013. Modified ingredients in noodle processing and its effect on in vitro starch digestibility. Presented in 7th International Food Convention (IFCON), Mysore, India, December 18-21, 2013.
  • [7] Ranganna, S., 1986. Handbook of Analysis and Quality Control for Fruit and Vegetable Products. India: Tata McGraw-Hill Education.
  • [8] Bharath Kumar, S., Prabhasankar, P., 2015a. A study on noodle dough rheology and product quality characteristics of fresh and dried noodles as influenced by low glycemic index ingredient. Journal of Food Science and Technology 52(3): 1404-1413.
  • [9] American Association of Cereal Chemists (AACC), 2009. Approved Methods of the AACC, 10 th edition. AACC Method 44-15A, One Stage Moisture Air Oven Method; AACC Method 08-01, Ash–Basic Method; AACC Method 46-13, Micro-Kjeldahl Method; AACC Method 22-10A; AOAC 991.43; Dietary fiber, AACC Method 16-50; Pasta Cooking Time- 66–50, AACC, AACC 2, method 54–21 St. Paul, Minnesota: AACC.
  • [10] Han, J.A., BeMiller, J.N., 2007. Preparation and physical characteristics of slowly digesting modified food starches. Carbohydrate Polymers 67(3): 366-374.
  • [11] Takizawa, F.F., Silva, G.O., Konkel, F.E., Demiate, I.M., 2004. Characterization of tropical starches modified with potassium permanganate and lactic acid. Brazilian Archives of Biology and Technology 47(6): 921-931.
  • [12] Association of Official Analytical Chemists (AOAC), 2007. Official methods of analysis (18th ed.). Washington, DC, USA.
  • [13] Association of Official Analytical Chemists (AOAC), 1995. Official methods of analysis (16th ed.). Washington, DC, USA.
  • [14] Stone, H., Sidel, J.L., 1998. Quantitative descriptive analysis: developments, applications, and the future. Journal of Food Technology 52: 48–52.
  • [15] Bharath Kumar, S., Prabhasankar, P., 2015b. A study on starch profile of rajma bean (Phaseolus vulgaris) incorporated noodle dough and its functional characteristics. Food Chemistry 180: 124-132.
  • [16] Hutchings, JB., 1994. Food color and appearance. Chapman and Hall, Blackie Academic and Professional, Great Britain and London.
  • [17] Prabhasankar, P., Ganesan, P. Baskar, N., 2009. Influence of Indian brown seaweed (Sargassum marginatum) as an ingredient on quality, bio-functional and microstructure characteristics of pasta. Food Science and Technology International 15: 471–479.
  • [18] Duncan, B.D., 1955. Multiple range and multiple F-tests. Biometrics 11:1–42.
  • [19] Xiao, H., Lin, Q., Liu, G., Yu, F., 2012. A comparative study of the characteristics of cross-linked, oxidized and dual-modified rice starches. Molecules 17: 10946-10957.
  • [20] Yeates, T.E., Babcock, G.E., Mehltretter, C.L., 1963. Permanganate oxidation of corn starch. Presented in 144th meeting of American Chemical Society, Los Angeles, California, March 31- April 5, 1963.
  • [21] Goycoolea, F.M., Morris, E.R., Gidley M.J., 1995. Viscosity of galactomannans at alkaline and neutral pH: evidence of ‘hyperentanglement’ in solution. Carbohydrate Polymers 27(1): 69-71.
  • [22] Yusuf, A.A., Ayedun, H., Logunleko, G.B., 2007. Functional properties of unmodified and modified Jack bean (Canavalia ensiformis) starches. Nigerian Food Journal 25(2): 141-149.
  • [23] Anttila, H., Sontag-Strohm, T., Salovaara, H., 2004. Viscosity of beta-glucan in oat products. Agricultural and Food Science 13: 80-87.
  • [24] DapcevicHadnadev, T.R., Dokic, L.P., Hadnadev, M.S., Pojic, M.M., Torbica A.M., 2014. Rheological and breadmaking properties of wheat flours supplemented with octenyl succinic anhydride-modified waxy maize starches. Food and Bioprocess Technology 7(1): 235–247.
  • [25] Wang, J., Rosell, C.M., Benedito de Barber, C., 2002. Effect of the addition of different fibres on wheat dough performance and bread quality. Food Chemistry 79(2): 221–226.
  • [26] Shiau, S., Yeh, A., 2001. Effects of alkali and acid on dough rheological properties and characteristics of extruded noodles. Journal of Cereal Science 33: 27–37.
  • [27] Rosell, C.M., Rojas, J.A., Barber, C.B., 2001. Influence of hydrocolloids on dough rheology and bread quality. Food Hydrocolloids 15(1): 75–81.
  • [28] Van Vliet, T., Janssen, A.M., Bloksma, A.H., Walstra, P., 1992. Strain hardening of dough as a requirement for gas retention. Journal of Texture Studies 23: 439–460.
  • [29] Nielsen, M.A., Sumner, A.K., Whalley, L.L., 1980. Fortification of pasta with pea flour and air-classified pea protein concentrate. Cereal Chemistry 57(3): 203-206.
  • [30] Heller, S.N., Rivers, J.M., Hackler, L.R., 1977. Dietary fiber: the effect of particle size and pH on its measurement. Journal of Food Science 42(2): 436–439.
  • [31] Plaami, S.P., 1997. Content of dietary fiber in foods and its physiological effects. Food Review International 13(1): 29-76.
  • [32] Doyle, J.P., Lyons, G., Morris, E.R., 2009. New proposals on “hyperentanglement” of galactomannans: Solution viscosity of fenugreek gum under neutral and alkaline conditions. Food Hydrocolloids 26(6): 1501-1510.
  • [33] Tosh, S.M., Yada, S., 2010. Dietary fibres in pulse seeds and fractions: Characterization, functional attributes, and applications. Food Research International 43(2): 450-460.
  • [34] Walker, A.F., Kochhar, N., 1982. Effect of processing including domestic cooking on nutritional quality of legumes. Proceedings of the Nutrition Society 41(1): 41-51.
  • [35] Tudorica, C.M., Kuri, V., Brennan, C.S., 2002. Nutritional and physicochemical characteristics of dietary fiber enriched pasta. Journal of Agricultural and Food Chemistry 50: 347–356.
  • [36] Epstein, J., Morris, C.F. Huber, K.C., 2002. Instrumental texture of white salted noodles prepared from recombinant inbred lines of wheat differing in the three granule bound starch synthase (waxy) genes. Journal of Cereal Science 35(1): 51–63.
  • [37] Murray, J.M., Delahunty, C.M., Baxter, I.A., 2001. Descriptive sensory analysis: past, present and future. Food Research International 34: 461-471.
  • [38] Chandrashekar, A., Kirleis, A.W., 1988. Influence of protein on starch gelatinization in sorghum. Cereal Chemistry 65(6): 457-462.
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Bölüm Araştırma Makaleleri
Yazarlar

Srinivasan Bharath Kumar Bu kişi benim

Pichan Prabhasankar Bu kişi benim

Yayımlanma Tarihi 23 Ekim 2017
Gönderilme Tarihi 19 Ekim 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 15 Sayı: 3

Kaynak Göster

APA Kumar, S. B., & Prabhasankar, P. (2017). Erişte Üretiminde Modifiye Düşük Glisemik İndeksli Bileşenlerin Kullanımı: Reoloji ve Mikroyapı Özellikleri. Akademik Gıda, 15(3), 211-221. https://doi.org/10.24323/akademik-gida.345247
AMA Kumar SB, Prabhasankar P. Erişte Üretiminde Modifiye Düşük Glisemik İndeksli Bileşenlerin Kullanımı: Reoloji ve Mikroyapı Özellikleri. Akademik Gıda. Ekim 2017;15(3):211-221. doi:10.24323/akademik-gida.345247
Chicago Kumar, Srinivasan Bharath, ve Pichan Prabhasankar. “Erişte Üretiminde Modifiye Düşük Glisemik İndeksli Bileşenlerin Kullanımı: Reoloji Ve Mikroyapı Özellikleri”. Akademik Gıda 15, sy. 3 (Ekim 2017): 211-21. https://doi.org/10.24323/akademik-gida.345247.
EndNote Kumar SB, Prabhasankar P (01 Ekim 2017) Erişte Üretiminde Modifiye Düşük Glisemik İndeksli Bileşenlerin Kullanımı: Reoloji ve Mikroyapı Özellikleri. Akademik Gıda 15 3 211–221.
IEEE S. B. Kumar ve P. Prabhasankar, “Erişte Üretiminde Modifiye Düşük Glisemik İndeksli Bileşenlerin Kullanımı: Reoloji ve Mikroyapı Özellikleri”, Akademik Gıda, c. 15, sy. 3, ss. 211–221, 2017, doi: 10.24323/akademik-gida.345247.
ISNAD Kumar, Srinivasan Bharath - Prabhasankar, Pichan. “Erişte Üretiminde Modifiye Düşük Glisemik İndeksli Bileşenlerin Kullanımı: Reoloji Ve Mikroyapı Özellikleri”. Akademik Gıda 15/3 (Ekim 2017), 211-221. https://doi.org/10.24323/akademik-gida.345247.
JAMA Kumar SB, Prabhasankar P. Erişte Üretiminde Modifiye Düşük Glisemik İndeksli Bileşenlerin Kullanımı: Reoloji ve Mikroyapı Özellikleri. Akademik Gıda. 2017;15:211–221.
MLA Kumar, Srinivasan Bharath ve Pichan Prabhasankar. “Erişte Üretiminde Modifiye Düşük Glisemik İndeksli Bileşenlerin Kullanımı: Reoloji Ve Mikroyapı Özellikleri”. Akademik Gıda, c. 15, sy. 3, 2017, ss. 211-2, doi:10.24323/akademik-gida.345247.
Vancouver Kumar SB, Prabhasankar P. Erişte Üretiminde Modifiye Düşük Glisemik İndeksli Bileşenlerin Kullanımı: Reoloji ve Mikroyapı Özellikleri. Akademik Gıda. 2017;15(3):211-2.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).