BibTex RIS Kaynak Göster

Stabilizing Agents from Marine Algae

Yıl 2016, Cilt: 14 Sayı: 3, 315 - 321, 01.09.2016

Öz

Stabilizing agents are extracted from plants, marine algae and microbial sources, and these agents have a great potential to be used in industrial applications especially in food industry. Agents with hydrocolloidal structure are frequently used in food industry to solve process problems and to extent the shelf life of food products in addition to their functionality like antioxidant properties and several beneficial effects on human health. Marine algae have recently gained importance as a sustainable natural source of hydrocolloids. They can rapidly increase their biomass since they multiply by division; thus, they produce more mass with hydrocolloidal property. In this study, extraction techniques of stabilizing agents such as agar, carragenan, alginic acid and furcellaran from marine algae and their potential uses in industrial applications were reviewed

Kaynakça

  • Dickinson, E., 1988. The role of hydrocolloids in stabilising particulate dispersions and emulsions. In: Gums and Stabilisers for the Food Industry, Vol. 4. Phillips GO, Wedlock DJ, Williams PA (eds.). IRL Press, Oxford. 249-263.
  • Garti, N., Reichman, D., 1994. Surface properties and emulsification activity of galactomannans. Food Hydrocolloids 8(2): 155-173.
  • Dickinson, E., 2003. Hydrocolloids at interfaces and the influence on the properties of dispersed systems. Food Hydrocolloids 17(1): 25-39.
  • Chan, C.X., Ho, C.L., Phang, S.M., 2006. Trends in seaweed research. Trends in Plant Science 11(4): 165-166.
  • McHugh, D.J., 1991. Worldwide distribution of commercial sources of seaweeds including Gelidium. Hydrobiologia 221: 19–21.
  • Suganya, T., Varman, M., Masjuki, H.H., Renganathan, microalgae as a potential source for commercial applications along with biofuels production: A bio refinery approach. Renewable and Sustainable Energy Reviews 55: 909–941.
  • Armisen, R., Galatas, F., 1987. Production, properties and uses of agar. In: McHugh DJ, editor. Production and utilization of products from commercial sea- weeds. FAO fisheries technical paper nr 288. Food and Agriculture Organization of the United Nations, 1–57.
  • Bird, K.T., 1988. Agar production and quality from Gracilaria sp. strain G-16: effects of environmental factors. Botanica Marina 31: 33– 39.
  • Lahaye, M., Yaphe, W., 1988. Effects of seasons on the chemical structure and gel strength of Gracilaria pseudoverrucosa Rhodophyta). Carbohydrate Polymers 8: 285–301.
  • Freile-Pelegrin, Y., Murano, E., 2005. Agars from three species of Gracilaria (Rhodophyta) from Yucatan Peninsula. Bioresource Technology 96(3): 295-302.
  • Gargiulo, G.M., De Mais, F., Tripodi, G., 1992. Morphology, reproduction and taxonomy of the Mediterranean species of Gracilaria (Gracilariales, Rhodophyta). Phycologia 31: 53–80.
  • Gerbal, M.,Verlaque, M., 1995. Macrophytobentos de substratmeuble de letang de Thau (France, Mediterranee) etfacteursenvironnementauxassocies. Oceanologica Acta 18: 557–571.
  • Arvizu-Higuera, D. L., Rodríguez-Montesinos, Y. E., Murillo-Alvarez, J. I., Munoz-Ochoa, M., Hernandez- Carmona, G., 2008. Effect of alkali treatment time and extraction time on agar from Gracilaria vermiculophylla. Journal of Applied Phycology 20(5):515-519.
  • Yousefi, M. K., Islami, H. R., Filizadeh, Y., 2013. Effect of extraction process on agar properties of Gracilaria corticata (Rhodophyta) collected from the Persian Gulf. Phycologia 52(6): 481-487.
  • Freile-Pelegrin, Y., Robledo, D., 1997. Influence of alkali treatment on agar from Gracilaria cornea from Yucatan Mexico. Journal of Applied Phycology 9: 533–539.
  • Stanley, N., 1987. Production, properties and uses of carrageenan. In:McHugh DJ, editor. Production and utilization of products from commercial seaweeds. FAO fisheries technical paper nr 288. Food and Drug Administration of the United Nations .p.116–46.
  • van de Velde, F., Antipova, A. S., Rollema, H. S., Burova, T. V., Grinberg, N. V., Pereira, L., 2005. The structure of kappa/iota-hybrid carrageenans II. Coilhelix transition as a function of chain composition. Carbohydrate Research 340: 1113- 1129.
  • Hayashi, L., Oliveira, E. C., Bleicher-Lhonneur, G., Boulenguer, P., Pereira, R. T. L. von Seckendorff, R., 2007. The effect of selected cultivation conditions on the carrageenan characteristics of Kappaphycusal varezii (Rhodophyta, Solieriaceae) in Ubatuba Bay, Sao Paulo, Brazil. Journal of Applied Phycology 19: 505-511.
  • Hung, L. D., Hori, K., Nang, H. Q., Kha, T. Hoa, L. T., 2008. Seasonal changes in growth rate, carrageenan yield and lectin content in the red alga Kappaphycusal varezii cultivated in Camranh Bay, Vietnam. Journal of Applied Phycology 21: 265-272.
  • Mendoza, W. G., Ganzon-Fortes, E. T., Villanueva, R. D., Romero, J. B., Montano, M. N. E., 2006. Tissue age as a factor affecting carrageenan quantity and quality in farmed Kappaphycus striatum (Schmitz) Doty ex Silva. Botanica Marina 49: 57-64.
  • Mendoza, W. G., Montano, M. N. E., Ganzon- Fortes, E. T., Villanueva, R. D., 2002. Chemical and gelling profile of ice-ice infected carrageenan from Kappaphycus striatum (Schmitz) Doty “sacol” strain (Solieriaceae, Gigartinales, Rhodophyta). Journal of Applied Phycology 14: 409-418.
  • Hilliou, L., Larotonda, F. D. S., Abreu, P., Abreu, M. H., Sereno, A. M., Gonçalves, M. P., 2011. The impact of seaweed life phase and postharvest storage duration on the chemical and rheological properties of hybrid carrageenans isolated from Portuguese Mastocarpusstellatus. Carbohydrate Polymers 87: 2655-2663.
  • Hilliou, L., Larotonda, F. D. S., Sereno, A. M., Gonçalves, M. P., 2006. Thermal and viscoelastic properties of kappa/iota-hybrid carrageenan gels obtained Mastocarpus stellatus. Journal of Agricultural and Food Chemistry 54: 7870-7878. seaweed
  • Estevez, J. M., Ciancia, M., Cerezo, A.S., 2000. The system of low-molecular-weight carrageenans and agaroids from the room temperature-extracted fraction of Kappaphycusal varezii. Carbohydrate Research 325: 287–299.
  • Rodrigues, D., Freitas, A.C., Pereira, L., Rocha- Santos, T.A.P., Vasconcelos, M.W., Roriz, M., Rodríguez-Alcalá, L.M., Gomes, A.M.P., Duarte, A.C., 2015 Chemical composition of red, brown and green macroalgae from Buarcos bay in central west coast of Portugal. Food Chemistry 183: 197–207.
  • Toffanin, R., Knutsen, S.H., Bertocchi, C., Bertocchi, C., Rizzo, R., Murano, E., 1994. Detection of cellulose in the cell wall of some red algae by 13C NMR spectroscopy. Carbohydrate Research 262: 167–171.
  • Myslabodski, D.E., Stancioff, D., Heckert, R.A., 1996. Effect of acid hydrolysis on the molecular weight of kappa carrageenan by GPC-LS. Carbohydrate Polymers 31: 83–92.
  • Chen, H. M., Yan, X. J., Wang, F., Xu, W.F., Zhang, L., 2010. Assessment of the oxidative cellular toxicity of a κ-carrageenan oxidative degradation product towards caco-2 cells. Food Research International 43: 2390–2401.
  • Relleve, L., Nagasawa, N., Luan, L.Q., Yagi, T., Aranilla, C., Abad, L., Kume, T., Yoshii, F., dela Rosa, A., 2005. Degradation of carrageenan by radiation. Polymer Degradation and Stability 87: 403–410.
  • Zhou, G., Yao, W., Wang, C., 2006. Kinetics of microwave degradation of λ-carrageenan from Chondruso cellatus. Carbohydrate Polymers 64: 73–77.
  • Guibet, M., Kervarec, N., Génicot, S., Chevolot, Y., Helbert, W., 2006. Complete assignment of 1H and 13C NMR spectra of Gigartina skottsbergii λ- carrageenan using carrabiose oligosaccharides prepared by enzymatic hydrolysis. Carbohydrate Research 341: 1859–1869.
  • Abd-Rahim, F., Wasoh, H., Zakaria, M.R., Ariff A., Kapri R., Ramli N., Siew-Ling, L., 2014. Production of high yield sugars from Kappaphycusal varezii using combined methods of chemical and enzymatic hydrolysis. Food Hydrocolloids 42: 309– 315.
  • Bylaite, E., Ilgunaite, Z., Meyer, A. S., Adler-Nissen, J., 2004. Influence of λ-carrageenan on the release of systematic series of volatile flavor compounds from viscous food model systems. Journal of Agricultural and Food Chemistry 52: 3542–3549.
  • Cáceres, P.J., Carlucci, M.J., Damonte, E.B., Matsuhiro, B., Zuñiga, E.A., 2000. Carrageenans from Chilean samples of Stenogramme interrupta (phyllophoraceae): structural analysis and biological activity. Phytochemistry 53: 81–86.
  • Hiroishi, S., Sugie, K., Yoshida, T., Morimoto, J., Taniguchi, Y., Imai, S., Kurebayashi, J., 2001. Antitumor effects of Marginisporum crassissimum (Rhodophyceae), a marine red alga, Cancer Letters 167: 145–150.
  • Alban, S., Schauerte, A. Franz, G., 2002. Anticoagulant sulfated polysaccharides: Part I. Synthesis and structure–activity relationships of new pullulan sulfates. Carbohydrate Polymers 47: 267–276.
  • Haghighimanesh, S., Farahnaky, A., 2011. Ice cream powder production and investigation of its rheological International Journal of Food Engineering 7(4) DOI: 10.2202/1556-3758.2200. properties.
  • Bixler, H.J., Johndro, K., Falshaw, R., 2001. Kappa- 2 carrageenan: structure and performance of commercial extracts: II. Performance in two simulated dairy applications. Food Hydrocolloids 15(4): 619-630.
  • Shon, J., Yun, Y., Shin, M., Chin, K.B., Eun, J.B., 2009. Effects of milk proteins and gums on quality of bread made from frozen dough. Journal of the Science of Food and Agriculture 89(8): 1407-1415.
  • Seol, K.H., Lim, D.G., Jang, A., Jo, C., Lee, M., 2009. Antimicrobial effect of κ- carrageenan-based edible film containing ovotransferrin in fresh chicken breast stored at 5°C. Meat Science 83(3): 479-483.
  • Volesky, B., Holan, Z.R., 1995. Biosorption of heavy metals. Biotechnol. Prog. 11: 235-250
  • Arvizu-Higuera, D.L., Hernández-Carmona, G., Rodríguez-Montesinos Y.E., 1997. Effect of the type of precipitation on the process to obtain sodium alginate: calcium alginate method and alginic acid method. Ciencias Marinas 23(2): 195–207.
  • Lukachyov, O.P., Pochkalov, V.K., 1965. Method to obtain alginate from brown algae. USSR Patent. 200-416.
  • Gamal-Eldeen, A., Ahmed, E., Abo-Zeid, M., 2009. In vitro cancer chemo preventive properties of polysaccharide extract from the brown alga, Sargassumlatifolium. Food Chemisty Toxicology 47: 1378–1384.
  • Meenakshi, S., Manicka, G.D., Tamilmozhi, S., 2009. Total flavanoid and in vitro antioxidant activity of two seaweeds of Rameshwaram Coast. Glob, Journal of Pharmacology 3: 59–62.
  • Park, P.J, Heo, S.J., Park, E.J., 2005, Reactive oxygen scavenging effect of enzymatic extracts from Sargassum thunbergii. Journal of Agricultural and Food Chemistry 53: 6666–72.
  • Hu-Xue, C., Fang, Y., Lin, H., 2001. Chemical characters and antioxidative properties of sulfated polysaccharides from Laminaria japonica. Journal of Applied Phycology 13:67–70.
  • Aruna, P., Mansuya, P., Sekaran, S., 2010. Pharmacognostical and antifungal activity of selected seaweeds from Gulf of Mannar region. Recent Research in Science and Technology 2:115–9.
  • Dar, A., Baig, H.S., Saifullah, S.M., 2007. Effect of seasonal variation on the anti-inflammatory activity of Sargassum wightii growing on the N. Arabian Sea coast of Pakistan. Journal of Experimental Marine Biology and Ecology 351: 1–9.
  • Anthony, J., Kalaiselvam, N., Ganapathy, A., Coothan, K. V., Sreenivasan, P., Palaninathan, V., 2008. Role of sulphated polysaccharides from S. wightii in cyclosporine A-induced oxidative liver injury in rats. BMC Pharmacology 8:1–9.
  • Lordan, S., Ross, R.P., Stanton, C., 2011. Marine bioactives as functional food ingredients: potential to reduce the incidence of chronic diseases. Marine Drugs 9(6): 1056-1100.
  • MacArtain, P., Gill, C.I.R., Brooks, M., Campbell, R., Rowland, I.R., 2007. Nutritional value of edible seaweeds. Nutrition Reviews 65: 535–543.
  • Rasmussen, R.S., Morrissey, M.T., 2007. Marine biotechnology for production of food ingredients. Advances in Food and Nutrition Research 52: 237– 292.
  • Albert, A., Salvador, A., Fiszman, S., 2012. A film of alginate plus salt as an edible susceptor in microwaveable food. Food Hydrocolloids 27(2): 421-426.
  • Song, Y., Liu, L., Shen, H., You, J., Luo, Y., 2011. Effect of sodium alginate-based edible coating containing different anti-oxidants on quality and shelf life of refrigerated bream (Megalobrama amblycephala). Food Control 22(3): 608-615.
  • Robles-Sánchez, R. M., Rojas-Graü, M. A., Odriozola-Serrano, I., González-Aguilar, G., Martin- Belloso, O., 2013. Influence of alginate-based edible coating as carrier of antibrowning agents on bioactive compounds and antioxidant activity in fresh-cut Kent mangoes. LWT-Food Science and Technology 50(1): 240-246.
  • Bird, C.J, Saunders, G.W.,McLachlan, J., 1991. Biology of Furcellaria lumbricalis (Hudson) Lamouroux commercial carrageenophyte.Journal of Applied Phycology 3:61–82. Gigartinales), a
  • Martin, G., Paalme, T., Kukk, H., 1996. Long-term dynamics of the commercially useable Furcellaria lumbricalis–Coccotylus truncatus community in Kassari Bay, West Estonian Archipelago, the Baltic Sea. In Proceedings of Polish–Swedish Symposium on Baltic coastal fisheries. Resources and Management. 2–3 April 1996, Gdynia, Poland, Gdynia: Sea Fisheries Institute: 121–129.
  • Barwell, C.J., 1989. Distribution of histamine in the thallus of Furcellaria lumbricalis. Journal of Applied Phycololgy 1: 341–344 [60] Knutsen, S.H.,Grasdalen, of
  • Characterization water extractable polysaccharides lumbricalis Rhodophyceae) by IR and NMR spectroscopy. Botanica Marine 30: 497–50. Furcellaria
  • (Gigartinales, (Huds.)
  • Tuvikene, R., Truus, K., Robal, M., Volobujeva, O., Mellikov, E., Pehk, T., Kollist, A., Kailas, T., Vaher, M., 2010. The extraction, structure, and gelling properties of hybrid galactan from the red alga Furcellaria lumbricalis (Baltic Sea, Estonia). Journal of Applied Phycology 22: 51–63.
  • Laos, K., Ring, S.G., 2005. Note: Characterisation of furcellaran samples from Estonian Furcellaria lumbricalis (Rhodophyta). Journal of Applied Phycology 17: 461– 464.
  • Pritchkina, N.M, Chalykh, A.Y., 1994. Sorption of water vapor by κ-furcellaran and Ca-furcellaran films. Food Hydrocolloid 8: 251–258.
  • Laos, K., Brownsey, G.J., Ring, S.G., 2007. Interactions between furcellaran and the globular proteins bovine serum albumin and β-lactoglobulin. Carbohydrate Polymers 67: 116–123.
  • Bender, D.A., 2005. Furcellaran. A Dictionary of Food and Nutrition. Oxford University Press, Oxford, UK.
  • Klesment, T., Stekolstsikova, J., Laos, K., 2014. Influence of guar gum/ furcellaran and guar gum/carrageenan stabilizer systems on the rheological and sensorial properties of ice cream during storage. Proceedings of the Estonian Academy of Sciences 63(2): 193-198.
  • Soultani, G.,Evageliou, V., Koutelidakis, A.E., Kapsokefalou, M., Komaitis, M., 2014. The effect of pectin and other constituents on the antioxidant activity of tea. Food Hydrocolloids 35: 727-732.

Alglerden Elde Edilen Stabilize Edici Maddeler

Yıl 2016, Cilt: 14 Sayı: 3, 315 - 321, 01.09.2016

Öz

Stabilize edici maddeler bitki, deniz algleri ve mikrobiyal kaynaklardan ekstraksiyon yoluyla elde edilmekte olup, gıda endüstrisi başta olmak üzere çeşitli kullanım alanlarına sahiptir. Hidrokolloid yapıdaki maddeler, gıda endüstrisinde sıklıkla proses sırasında oluşan sorunların giderilmesi ve ürünün raf ömrünün arttırılmasının yanı sıra, antioksidan özellikleri ve çeşitli sağlık faydaları sağlamak için de kullanılmaktadır. Son zamanlarda önemi giderek artan deniz algleri sürdürülebilir bir kaynak olarak öne çıkmaktadır. Bölünerek çoğalmaları nedeniyle çok hızlı biyokütle artışı göstermekte ve bu sayede daha çok ürün elde edilebilmektedir. Bu çalışmada, deniz alglerinden elde edilen stabilize edici maddelerden agar, karragenan, alginik asit ve furseleranın ekstraksiyonu ve çeşitli kullanım alanları derlenmiştir

Kaynakça

  • Dickinson, E., 1988. The role of hydrocolloids in stabilising particulate dispersions and emulsions. In: Gums and Stabilisers for the Food Industry, Vol. 4. Phillips GO, Wedlock DJ, Williams PA (eds.). IRL Press, Oxford. 249-263.
  • Garti, N., Reichman, D., 1994. Surface properties and emulsification activity of galactomannans. Food Hydrocolloids 8(2): 155-173.
  • Dickinson, E., 2003. Hydrocolloids at interfaces and the influence on the properties of dispersed systems. Food Hydrocolloids 17(1): 25-39.
  • Chan, C.X., Ho, C.L., Phang, S.M., 2006. Trends in seaweed research. Trends in Plant Science 11(4): 165-166.
  • McHugh, D.J., 1991. Worldwide distribution of commercial sources of seaweeds including Gelidium. Hydrobiologia 221: 19–21.
  • Suganya, T., Varman, M., Masjuki, H.H., Renganathan, microalgae as a potential source for commercial applications along with biofuels production: A bio refinery approach. Renewable and Sustainable Energy Reviews 55: 909–941.
  • Armisen, R., Galatas, F., 1987. Production, properties and uses of agar. In: McHugh DJ, editor. Production and utilization of products from commercial sea- weeds. FAO fisheries technical paper nr 288. Food and Agriculture Organization of the United Nations, 1–57.
  • Bird, K.T., 1988. Agar production and quality from Gracilaria sp. strain G-16: effects of environmental factors. Botanica Marina 31: 33– 39.
  • Lahaye, M., Yaphe, W., 1988. Effects of seasons on the chemical structure and gel strength of Gracilaria pseudoverrucosa Rhodophyta). Carbohydrate Polymers 8: 285–301.
  • Freile-Pelegrin, Y., Murano, E., 2005. Agars from three species of Gracilaria (Rhodophyta) from Yucatan Peninsula. Bioresource Technology 96(3): 295-302.
  • Gargiulo, G.M., De Mais, F., Tripodi, G., 1992. Morphology, reproduction and taxonomy of the Mediterranean species of Gracilaria (Gracilariales, Rhodophyta). Phycologia 31: 53–80.
  • Gerbal, M.,Verlaque, M., 1995. Macrophytobentos de substratmeuble de letang de Thau (France, Mediterranee) etfacteursenvironnementauxassocies. Oceanologica Acta 18: 557–571.
  • Arvizu-Higuera, D. L., Rodríguez-Montesinos, Y. E., Murillo-Alvarez, J. I., Munoz-Ochoa, M., Hernandez- Carmona, G., 2008. Effect of alkali treatment time and extraction time on agar from Gracilaria vermiculophylla. Journal of Applied Phycology 20(5):515-519.
  • Yousefi, M. K., Islami, H. R., Filizadeh, Y., 2013. Effect of extraction process on agar properties of Gracilaria corticata (Rhodophyta) collected from the Persian Gulf. Phycologia 52(6): 481-487.
  • Freile-Pelegrin, Y., Robledo, D., 1997. Influence of alkali treatment on agar from Gracilaria cornea from Yucatan Mexico. Journal of Applied Phycology 9: 533–539.
  • Stanley, N., 1987. Production, properties and uses of carrageenan. In:McHugh DJ, editor. Production and utilization of products from commercial seaweeds. FAO fisheries technical paper nr 288. Food and Drug Administration of the United Nations .p.116–46.
  • van de Velde, F., Antipova, A. S., Rollema, H. S., Burova, T. V., Grinberg, N. V., Pereira, L., 2005. The structure of kappa/iota-hybrid carrageenans II. Coilhelix transition as a function of chain composition. Carbohydrate Research 340: 1113- 1129.
  • Hayashi, L., Oliveira, E. C., Bleicher-Lhonneur, G., Boulenguer, P., Pereira, R. T. L. von Seckendorff, R., 2007. The effect of selected cultivation conditions on the carrageenan characteristics of Kappaphycusal varezii (Rhodophyta, Solieriaceae) in Ubatuba Bay, Sao Paulo, Brazil. Journal of Applied Phycology 19: 505-511.
  • Hung, L. D., Hori, K., Nang, H. Q., Kha, T. Hoa, L. T., 2008. Seasonal changes in growth rate, carrageenan yield and lectin content in the red alga Kappaphycusal varezii cultivated in Camranh Bay, Vietnam. Journal of Applied Phycology 21: 265-272.
  • Mendoza, W. G., Ganzon-Fortes, E. T., Villanueva, R. D., Romero, J. B., Montano, M. N. E., 2006. Tissue age as a factor affecting carrageenan quantity and quality in farmed Kappaphycus striatum (Schmitz) Doty ex Silva. Botanica Marina 49: 57-64.
  • Mendoza, W. G., Montano, M. N. E., Ganzon- Fortes, E. T., Villanueva, R. D., 2002. Chemical and gelling profile of ice-ice infected carrageenan from Kappaphycus striatum (Schmitz) Doty “sacol” strain (Solieriaceae, Gigartinales, Rhodophyta). Journal of Applied Phycology 14: 409-418.
  • Hilliou, L., Larotonda, F. D. S., Abreu, P., Abreu, M. H., Sereno, A. M., Gonçalves, M. P., 2011. The impact of seaweed life phase and postharvest storage duration on the chemical and rheological properties of hybrid carrageenans isolated from Portuguese Mastocarpusstellatus. Carbohydrate Polymers 87: 2655-2663.
  • Hilliou, L., Larotonda, F. D. S., Sereno, A. M., Gonçalves, M. P., 2006. Thermal and viscoelastic properties of kappa/iota-hybrid carrageenan gels obtained Mastocarpus stellatus. Journal of Agricultural and Food Chemistry 54: 7870-7878. seaweed
  • Estevez, J. M., Ciancia, M., Cerezo, A.S., 2000. The system of low-molecular-weight carrageenans and agaroids from the room temperature-extracted fraction of Kappaphycusal varezii. Carbohydrate Research 325: 287–299.
  • Rodrigues, D., Freitas, A.C., Pereira, L., Rocha- Santos, T.A.P., Vasconcelos, M.W., Roriz, M., Rodríguez-Alcalá, L.M., Gomes, A.M.P., Duarte, A.C., 2015 Chemical composition of red, brown and green macroalgae from Buarcos bay in central west coast of Portugal. Food Chemistry 183: 197–207.
  • Toffanin, R., Knutsen, S.H., Bertocchi, C., Bertocchi, C., Rizzo, R., Murano, E., 1994. Detection of cellulose in the cell wall of some red algae by 13C NMR spectroscopy. Carbohydrate Research 262: 167–171.
  • Myslabodski, D.E., Stancioff, D., Heckert, R.A., 1996. Effect of acid hydrolysis on the molecular weight of kappa carrageenan by GPC-LS. Carbohydrate Polymers 31: 83–92.
  • Chen, H. M., Yan, X. J., Wang, F., Xu, W.F., Zhang, L., 2010. Assessment of the oxidative cellular toxicity of a κ-carrageenan oxidative degradation product towards caco-2 cells. Food Research International 43: 2390–2401.
  • Relleve, L., Nagasawa, N., Luan, L.Q., Yagi, T., Aranilla, C., Abad, L., Kume, T., Yoshii, F., dela Rosa, A., 2005. Degradation of carrageenan by radiation. Polymer Degradation and Stability 87: 403–410.
  • Zhou, G., Yao, W., Wang, C., 2006. Kinetics of microwave degradation of λ-carrageenan from Chondruso cellatus. Carbohydrate Polymers 64: 73–77.
  • Guibet, M., Kervarec, N., Génicot, S., Chevolot, Y., Helbert, W., 2006. Complete assignment of 1H and 13C NMR spectra of Gigartina skottsbergii λ- carrageenan using carrabiose oligosaccharides prepared by enzymatic hydrolysis. Carbohydrate Research 341: 1859–1869.
  • Abd-Rahim, F., Wasoh, H., Zakaria, M.R., Ariff A., Kapri R., Ramli N., Siew-Ling, L., 2014. Production of high yield sugars from Kappaphycusal varezii using combined methods of chemical and enzymatic hydrolysis. Food Hydrocolloids 42: 309– 315.
  • Bylaite, E., Ilgunaite, Z., Meyer, A. S., Adler-Nissen, J., 2004. Influence of λ-carrageenan on the release of systematic series of volatile flavor compounds from viscous food model systems. Journal of Agricultural and Food Chemistry 52: 3542–3549.
  • Cáceres, P.J., Carlucci, M.J., Damonte, E.B., Matsuhiro, B., Zuñiga, E.A., 2000. Carrageenans from Chilean samples of Stenogramme interrupta (phyllophoraceae): structural analysis and biological activity. Phytochemistry 53: 81–86.
  • Hiroishi, S., Sugie, K., Yoshida, T., Morimoto, J., Taniguchi, Y., Imai, S., Kurebayashi, J., 2001. Antitumor effects of Marginisporum crassissimum (Rhodophyceae), a marine red alga, Cancer Letters 167: 145–150.
  • Alban, S., Schauerte, A. Franz, G., 2002. Anticoagulant sulfated polysaccharides: Part I. Synthesis and structure–activity relationships of new pullulan sulfates. Carbohydrate Polymers 47: 267–276.
  • Haghighimanesh, S., Farahnaky, A., 2011. Ice cream powder production and investigation of its rheological International Journal of Food Engineering 7(4) DOI: 10.2202/1556-3758.2200. properties.
  • Bixler, H.J., Johndro, K., Falshaw, R., 2001. Kappa- 2 carrageenan: structure and performance of commercial extracts: II. Performance in two simulated dairy applications. Food Hydrocolloids 15(4): 619-630.
  • Shon, J., Yun, Y., Shin, M., Chin, K.B., Eun, J.B., 2009. Effects of milk proteins and gums on quality of bread made from frozen dough. Journal of the Science of Food and Agriculture 89(8): 1407-1415.
  • Seol, K.H., Lim, D.G., Jang, A., Jo, C., Lee, M., 2009. Antimicrobial effect of κ- carrageenan-based edible film containing ovotransferrin in fresh chicken breast stored at 5°C. Meat Science 83(3): 479-483.
  • Volesky, B., Holan, Z.R., 1995. Biosorption of heavy metals. Biotechnol. Prog. 11: 235-250
  • Arvizu-Higuera, D.L., Hernández-Carmona, G., Rodríguez-Montesinos Y.E., 1997. Effect of the type of precipitation on the process to obtain sodium alginate: calcium alginate method and alginic acid method. Ciencias Marinas 23(2): 195–207.
  • Lukachyov, O.P., Pochkalov, V.K., 1965. Method to obtain alginate from brown algae. USSR Patent. 200-416.
  • Gamal-Eldeen, A., Ahmed, E., Abo-Zeid, M., 2009. In vitro cancer chemo preventive properties of polysaccharide extract from the brown alga, Sargassumlatifolium. Food Chemisty Toxicology 47: 1378–1384.
  • Meenakshi, S., Manicka, G.D., Tamilmozhi, S., 2009. Total flavanoid and in vitro antioxidant activity of two seaweeds of Rameshwaram Coast. Glob, Journal of Pharmacology 3: 59–62.
  • Park, P.J, Heo, S.J., Park, E.J., 2005, Reactive oxygen scavenging effect of enzymatic extracts from Sargassum thunbergii. Journal of Agricultural and Food Chemistry 53: 6666–72.
  • Hu-Xue, C., Fang, Y., Lin, H., 2001. Chemical characters and antioxidative properties of sulfated polysaccharides from Laminaria japonica. Journal of Applied Phycology 13:67–70.
  • Aruna, P., Mansuya, P., Sekaran, S., 2010. Pharmacognostical and antifungal activity of selected seaweeds from Gulf of Mannar region. Recent Research in Science and Technology 2:115–9.
  • Dar, A., Baig, H.S., Saifullah, S.M., 2007. Effect of seasonal variation on the anti-inflammatory activity of Sargassum wightii growing on the N. Arabian Sea coast of Pakistan. Journal of Experimental Marine Biology and Ecology 351: 1–9.
  • Anthony, J., Kalaiselvam, N., Ganapathy, A., Coothan, K. V., Sreenivasan, P., Palaninathan, V., 2008. Role of sulphated polysaccharides from S. wightii in cyclosporine A-induced oxidative liver injury in rats. BMC Pharmacology 8:1–9.
  • Lordan, S., Ross, R.P., Stanton, C., 2011. Marine bioactives as functional food ingredients: potential to reduce the incidence of chronic diseases. Marine Drugs 9(6): 1056-1100.
  • MacArtain, P., Gill, C.I.R., Brooks, M., Campbell, R., Rowland, I.R., 2007. Nutritional value of edible seaweeds. Nutrition Reviews 65: 535–543.
  • Rasmussen, R.S., Morrissey, M.T., 2007. Marine biotechnology for production of food ingredients. Advances in Food and Nutrition Research 52: 237– 292.
  • Albert, A., Salvador, A., Fiszman, S., 2012. A film of alginate plus salt as an edible susceptor in microwaveable food. Food Hydrocolloids 27(2): 421-426.
  • Song, Y., Liu, L., Shen, H., You, J., Luo, Y., 2011. Effect of sodium alginate-based edible coating containing different anti-oxidants on quality and shelf life of refrigerated bream (Megalobrama amblycephala). Food Control 22(3): 608-615.
  • Robles-Sánchez, R. M., Rojas-Graü, M. A., Odriozola-Serrano, I., González-Aguilar, G., Martin- Belloso, O., 2013. Influence of alginate-based edible coating as carrier of antibrowning agents on bioactive compounds and antioxidant activity in fresh-cut Kent mangoes. LWT-Food Science and Technology 50(1): 240-246.
  • Bird, C.J, Saunders, G.W.,McLachlan, J., 1991. Biology of Furcellaria lumbricalis (Hudson) Lamouroux commercial carrageenophyte.Journal of Applied Phycology 3:61–82. Gigartinales), a
  • Martin, G., Paalme, T., Kukk, H., 1996. Long-term dynamics of the commercially useable Furcellaria lumbricalis–Coccotylus truncatus community in Kassari Bay, West Estonian Archipelago, the Baltic Sea. In Proceedings of Polish–Swedish Symposium on Baltic coastal fisheries. Resources and Management. 2–3 April 1996, Gdynia, Poland, Gdynia: Sea Fisheries Institute: 121–129.
  • Barwell, C.J., 1989. Distribution of histamine in the thallus of Furcellaria lumbricalis. Journal of Applied Phycololgy 1: 341–344 [60] Knutsen, S.H.,Grasdalen, of
  • Characterization water extractable polysaccharides lumbricalis Rhodophyceae) by IR and NMR spectroscopy. Botanica Marine 30: 497–50. Furcellaria
  • (Gigartinales, (Huds.)
  • Tuvikene, R., Truus, K., Robal, M., Volobujeva, O., Mellikov, E., Pehk, T., Kollist, A., Kailas, T., Vaher, M., 2010. The extraction, structure, and gelling properties of hybrid galactan from the red alga Furcellaria lumbricalis (Baltic Sea, Estonia). Journal of Applied Phycology 22: 51–63.
  • Laos, K., Ring, S.G., 2005. Note: Characterisation of furcellaran samples from Estonian Furcellaria lumbricalis (Rhodophyta). Journal of Applied Phycology 17: 461– 464.
  • Pritchkina, N.M, Chalykh, A.Y., 1994. Sorption of water vapor by κ-furcellaran and Ca-furcellaran films. Food Hydrocolloid 8: 251–258.
  • Laos, K., Brownsey, G.J., Ring, S.G., 2007. Interactions between furcellaran and the globular proteins bovine serum albumin and β-lactoglobulin. Carbohydrate Polymers 67: 116–123.
  • Bender, D.A., 2005. Furcellaran. A Dictionary of Food and Nutrition. Oxford University Press, Oxford, UK.
  • Klesment, T., Stekolstsikova, J., Laos, K., 2014. Influence of guar gum/ furcellaran and guar gum/carrageenan stabilizer systems on the rheological and sensorial properties of ice cream during storage. Proceedings of the Estonian Academy of Sciences 63(2): 193-198.
  • Soultani, G.,Evageliou, V., Koutelidakis, A.E., Kapsokefalou, M., Komaitis, M., 2014. The effect of pectin and other constituents on the antioxidant activity of tea. Food Hydrocolloids 35: 727-732.
Toplam 68 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Collection
Yazarlar

Işıl İlter Bu kişi benim

Saniye Akyıl Bu kişi benim

Mehmet Koç Bu kişi benim

Figen Kaymak-ertekin Bu kişi benim

Yayımlanma Tarihi 1 Eylül 2016
Yayımlandığı Sayı Yıl 2016 Cilt: 14 Sayı: 3

Kaynak Göster

APA İlter, I., Akyıl, S., Koç, M., Kaymak-ertekin, F. (2016). Alglerden Elde Edilen Stabilize Edici Maddeler. Akademik Gıda, 14(3), 315-321.
AMA İlter I, Akyıl S, Koç M, Kaymak-ertekin F. Alglerden Elde Edilen Stabilize Edici Maddeler. Akademik Gıda. Eylül 2016;14(3):315-321.
Chicago İlter, Işıl, Saniye Akyıl, Mehmet Koç, ve Figen Kaymak-ertekin. “Alglerden Elde Edilen Stabilize Edici Maddeler”. Akademik Gıda 14, sy. 3 (Eylül 2016): 315-21.
EndNote İlter I, Akyıl S, Koç M, Kaymak-ertekin F (01 Eylül 2016) Alglerden Elde Edilen Stabilize Edici Maddeler. Akademik Gıda 14 3 315–321.
IEEE I. İlter, S. Akyıl, M. Koç, ve F. Kaymak-ertekin, “Alglerden Elde Edilen Stabilize Edici Maddeler”, Akademik Gıda, c. 14, sy. 3, ss. 315–321, 2016.
ISNAD İlter, Işıl vd. “Alglerden Elde Edilen Stabilize Edici Maddeler”. Akademik Gıda 14/3 (Eylül 2016), 315-321.
JAMA İlter I, Akyıl S, Koç M, Kaymak-ertekin F. Alglerden Elde Edilen Stabilize Edici Maddeler. Akademik Gıda. 2016;14:315–321.
MLA İlter, Işıl vd. “Alglerden Elde Edilen Stabilize Edici Maddeler”. Akademik Gıda, c. 14, sy. 3, 2016, ss. 315-21.
Vancouver İlter I, Akyıl S, Koç M, Kaymak-ertekin F. Alglerden Elde Edilen Stabilize Edici Maddeler. Akademik Gıda. 2016;14(3):315-21.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).