BibTex RIS Kaynak Göster

A Chemiluminescence Based Optical Biosensor Coupled with Immunomagnetic Separation for the Detection of ββ-Glucuronidase from Escherichia coli βββ-Glucuronidase from βββ-Glucuronidase from

Yıl 2016, Cilt: 14 Sayı: 2, 75 - 84, 01.06.2016

Öz

A biosensor was developed using a magnetic focusing optical waveguide glass tubular probe for the detection of glucuronidase GUS from Escherichia coli based on immunomagnetic separation and chemiluminescent measurement. The magnetic focusing resulted in a lower chemiluminescent signal than that obtained without magnetic-focusing, mainly due to the diffusion of the chemiluminescent reaction products into the solution rather than concentrating around the GUS enzyme captured by the antibodies on the paramagnetic beads. A microwell format was also tested for the chemiluminescent assay. A linear relationship was observed between log-GUS concentration and log-chemiluminescent signal for the microwell and magnetic focusing formats with a limit of detection as low as 100 and 1000 pg GUS/mL, respectively. The microwell format had the potential to be improved for higher sensitivity. The procedure was simple and rapid, and the whole assay could be completed in 70 min

Kaynakça

  • Frampton, E.W, Restaino, L., 1993. Methods for Escherichia coli identification in food, water and clinical samples based on beta-glucuronidase detection. Journal of Applied Bacteriology 74: 223- 233.
  • Feng, P., Weagant, S.D., Grant, M.A., Burkhardt, W., 2013. Enumeration of Escherichia coli and the coliform bacteria. In Online Edition of BAM (FDA's Bacteriological Analytical Manual) Bacteriological Analytical Manual, Chapter 4, Edited by T. Hammack et al., AOAC International, Gaithersburg, MD, FoodScienceResearch/LaboratoryMethods/ucm06 4948.htm. Accessed June 1, 2016.
  • Jay, J.M., Loessner, M.J., Golden, D.A., 2005. Modern Food Microbiology, Springer, New York, USA.
  • Sawaminathan, B., Feng, P., 1994. Rapid detection of food-borne pathogenic bacteria. Annual Review of Microbiology 48: 401-426.
  • Law, J. W., Ab Mutalib, N.S., Chan, K.G., Lee, L.H. 2014. Rapid methods for the detection of foodborne applications, advantages and limitations. Frontiers in Microbiology 5: 770. pathogens: principles
  • Lafleur, J.P., Jönsson, A., Senkbeil, S., Kutter, J.P., 2016. Recent advances in lab-on chip for biosensing Bioelectronics 76: 213-233. Biosensors and
  • Gilmartin, N., O’Kennedy, R., 2012. Nanobiotecnologies for the detection and reduction of pathogens. Enzyme and Microbial Technology 50: 87-95.
  • Bahadır, E.B., Sezgintürk M.K., 2015. Application of commercial biosensors in clinical, food, environmental, and biothret/biowarfare analyses. Analytical Biochemistry 478: 107-120.
  • Yang, N., Chen, X., Ren, T., Zhang, P., Yang, D., 2015. Carbon Sensors and Actuator B: Chemical 207: 690-715.
  • Rotariu, L., Lagarde, F., Renault, J.N., Bala, C., based biosensors. 2016. Electrochemical biosensors for fast detection of food contaminants – trends and perspective. TrAC Trends in Analytical Chemistry 79: 80-87.
  • Wang, Y., Ye, Z., Ying, Y., 2012. New Trends in impedimetric biosensors for the detection of foodborne pathogenic bacteria sensors. Sensors 12: 3449-3471.
  • Rand, A.G., Ye, J. Brown, C.W., Letcher, S.V., 2002. Optical biosensors for food pathogen detection. Food Technology 56: 32-38.
  • Dudak, F.C., Boyacı, İ.H., 2007. Development of an immunosensor resonance for enumeration of Escherichia coli in water samples. Food Research International 40(7): 803–807. on surface plasmon
  • Babacan, S., Pivarnik, P., Letcher, S., Rand, A.G., 2002. Piezoelectric biosensor for the detection of Salmonella Typhimurium. Journal of Food Science 67: 314- 320. injection analysis
  • Kumaran Ramanathan, K., Danielsson, B., 2001. Principles and applications of thermal biosensors. Biosensors and Bioelectronics 16: 417-423.
  • Arora, P., Sindhu, A., Dilbaghi, N., Chaudhury, A., 2011. Biosensors as innovative tools for the detection of food borne pathogens. Biosensors and Bioelectronics 28: 1–12.
  • He, F., Geng, Q., Zhu, W., Nie, L., Yao, S., Meifeng, C., 1994. Rapid detection of Escherichia coli using a separated electrode piozoelectric crystal sensor. Analytica Chimicia Acta 289: 313- 319.
  • Bouvrette , P., Luong, J.H.T., 1995. Development of a flow injection analysis (FIA) immunosensor for the detection of Escherichia coli. International Journal of Food Microbiology 27: 129-137.
  • Pyun, J.C., Beutel, H., Meyer, J.U., Ruf, H.H., 1998. Development of a biosensor for E. coli based on a flexural plate wave (FPW) transducer. Biosensors and Bioelectronics 13: 839–845.
  • McEntegart, C.M., Penrose, W.R., Strathmann, S., Stetter, J.R., 2000. Detection and discrimination of coliform bacteria with gas sensor arrays. Sensors and Actuators B 70: 170-176.
  • Gau, J., Lan, E.H., Dunn, B., Ho, C.M., Woo, J.C., 2001. A MEMS based amperometric detector for E. coli bacteria using self-assembled monolayers. Biosensors and Bioelectronics 16: 745–755.
  • Gfeller, K.Y., Nugaeva, N., Hegner, M., 2005. Micromechanical oscillators as rapid biosensor for the detection of active growth of Escherichia coli. Biosensors and Bioelectronics 21: 528–533.
  • Ertl, P., Wagner, M., Corton, E., Mikkelsen. S.R., 2003. Rapid identification of viable Escherichia coli subspecies with an electrochemical screen-printed biosensor array. Biosensors and Bioelectronics 18: 907–916.
  • Ercole, C., Del Gallo, M., Mosiello, L., Baccella, S., Lepidi, A., 2003. Escherichia coli detection in vegetable food by a potentiometric biosensor. Sensors and Actuators B: Chemical 91: 163–168.
  • Zhang, X., Geng, P., Liu, H., Teng, Y., Liu, Y., Wang, Q., Zhang, W., Jin, L., Jiang, L., 2009. Development of an electrochemical immunoassay for rapid detection of E. coli using anodic stripping voltammetry based on Cu@Au nanoparticles as antibody labels. Biosensors and Bioelectronics 24: 2155-2159.
  • Safarik, I., Safarikova, M., Forsythe, S.J., 1995. The application of magnetic separations in applied microbiology. Journal of Applied Bacteriology 78: 575-585.
  • Xiong, Q., Cui X., Saini, J.K., Liu, D., Shan, S., Jin,Y., Lai, W., 2014. Development of an immunomagnetic separation method for efficient enrichment of Escherichia coli O157:H7. Food Control 37: 41-45.
  • Mao, Y., Huang, X., Xiong, S., Xu, H., Aguilar,Z.P., Xiong, Y., 2016. Large-volume immunomagnetic separation combined with multiplex PCR assay for simultaneous detection of Listeria monocytogenes and Listeria ivanovii in lettuce. Food Control 59: 601-608.
  • Gehring, A.G., Albin, D.M., Irwin, P.L., Reed, S.A., Tu, S.I., 2006. Comparison of enzyme-linked immunomagnetic chemiluminescence with U.S. Food and Drug Administration's Bacteriological Analytical Manual method for the detection of Escherichia Microbiological Methods 67: 527–533. Journal of [30] Weeks, I., 1992. In immunoassay. Comprehensive Analytical Chemistry, vol. 29, Edited by G. Svehla, Elsevier, New York, USA, 293 p. & Wilson’s
  • Bronstein, I., Fortin, J. Stanley, P.E., Stewart, S.A.B., Kricha, L.J., 1994. Chemiluminescent and bioluminescent reporter gene assays. Analytical Biochemistry 219: 169-181.
  • Tağı, Ş., Pivarnik, P.E., Rand, A.G., 2001. Development of a chemiluminescent enzyme capture immunoassay for the detection of Escherichia coli. Proceedings of SPIE 4206: 83-92.
  • Tağı, Ş., 2001. Application of the chemiluminescent enzyme capture immunoassay for detection of Escherichia coli in Foods. Manuscript III. PhD Dissertation. Department of Food Science and Nutrition. University of Rhode Island, Kingston, RI, USA.
  • Pivarnik, P., Cao,H., Letcher, S., Pierson, A., Rand, A.G., 1998. Magnetic focusing immunosensor for the detection of Salmonella typhimurium in foods. Proceedings of SPIE 3544: 41-49.
  • Cao, H. Pivarnik, Rand, A., Baqaen,H., Letcher, S., 1999. Tapered tubular optical waveguide probe for magnetic focusing immunosensors. Proceedings of SPIE 3860: 207-213.
  • Letcher, S. Cao, H., Baqaen, H., Rand, A.G., 2003. Tapered tubular optical waveguide probe for magnetic focusing immunosensors. U.S. Patent 6,645,77.
  • Ye, J., Liu, Y., Li, Y., 2002. A chemiluminescence fiber-optic biosensor coupled with immunomagnetic separation for rapid detection of E. coli O157:H7. Transactions of the ASAE 45: 473–478.
  • Gehring, A.G., Irwina, P.L., Reeda, S.A., Tua, S.I., Andreottib, P.E., Taftic H.A., Handley, R.S., 2004. Enzyme-linked immunomagnetic chemiluminescent detection of Escherichia coli O157:H7. Journal of Immunological Methods 293: 97-106.
  • Rochelet, M., Solanas, Chantemesse, B., Vienney, F., Hartmann, A., 2015. Rapid amperometric detection of Escherichia coli in wastewater by measuring β-D glucuronidase activity with disposable carbon sensors. Analytica Chimica Acta 892: 160-166. S., Betelli, L.
  • Zhu, P., Shelton, D.R., Li,S., Adams, D.L., Karns, J.S., Amstutz, P., Tang, C.M., 2011. Detection of E. coli O157:H7 by immunomagnetic separation coupled Biosensors and Bioelectronics 30(1): 337-41.
  • Stettler, M., Asrian, H., 2011. Deepwell plate immunoassay. system with lid. U.S. Patent 4735778, E.U. Patent EP2473283.
  • Boyacı, İ.H., Aguilar, Z.P., Hossain, M.H., Brian Halsall, H.B., Carl, J., Seliskar, C.J, William, R., Heineman, determination of live Escherichia coli using antibody-coated paramagnetic beads. Analytical and Bioanalytical Chemistry 382:1234-1241.
  • Anonymous, 2016. EO Edmung Optics, America, Optics and Optical Instruments Annual Catalog, 482 p. Web: www.edmundoptics.com, accessed June 2016.
  • Saunders, K.C., James, C.A., 2008. Automation of Sample Preparation. In Principles and Practice of Bioanalysis, Second Edition, Edited by Richard F. Venn, CRC Press, Tylor & Francis Group, London, England, 326p.

Escherichia coli β-Glukuronidaz Enziminin Saptanmasında İmmunomanyetik Ayırmayla Birleştirilmiş Kemiluminesans Temelli Optik Biyosensör

Yıl 2016, Cilt: 14 Sayı: 2, 75 - 84, 01.06.2016

Öz

Bu araştırmada Escherichia coli glukorunidaz GUS enziminin saptanması amacıyla immunomanyetik ayırma ve kemiluminesans yöntemlerini esas alan biyosensör geliştirilmiştir. Biyosensörde, ucunda odaklayıcı bir mıknatıs bulunan ve tüp biçiminde camdan yapılmış ışık dalga iletim kılavuzu kullanılmıştır. Kemiluminesans tepkime ürünleri paramanyetik kürecikler üzerinde antikorlar tarafından yakalanan GUS enziminin çevresine yoğunlaşmak yerine reaksiyon çözeltisine dağılmıştır. Bu nedenle manyetik odaklama yöntemiyle saptanan kemiluminesans sinyali manyetik odaklama olmadan saptanan sinyale göre daha düşük olmuştur. Ayrıca mikrokuyucuk içerisinde de kemiluminesans yöntemi uygulanmıştır. Logaritmik GUS konsantrasyonu ile logaritmik kemiluminesans ölçüm değerleri arasında doğrusal bir ilişki olduğu görülmüş, mikrokuyucuk ve manyetik odaklama yöntemlerinin duyarlılığı sırasıyla 100 ve 1000 pg GUS/mL olarak saptanmıştır. Mikrokuyucuk yönteminin daha fazla geliştirilme potansiyeli olduğu anlaşılmaktadır. Yöntem basit ve hızlı olup tüm işlemler 70 dakika sürmektedir

Kaynakça

  • Frampton, E.W, Restaino, L., 1993. Methods for Escherichia coli identification in food, water and clinical samples based on beta-glucuronidase detection. Journal of Applied Bacteriology 74: 223- 233.
  • Feng, P., Weagant, S.D., Grant, M.A., Burkhardt, W., 2013. Enumeration of Escherichia coli and the coliform bacteria. In Online Edition of BAM (FDA's Bacteriological Analytical Manual) Bacteriological Analytical Manual, Chapter 4, Edited by T. Hammack et al., AOAC International, Gaithersburg, MD, FoodScienceResearch/LaboratoryMethods/ucm06 4948.htm. Accessed June 1, 2016.
  • Jay, J.M., Loessner, M.J., Golden, D.A., 2005. Modern Food Microbiology, Springer, New York, USA.
  • Sawaminathan, B., Feng, P., 1994. Rapid detection of food-borne pathogenic bacteria. Annual Review of Microbiology 48: 401-426.
  • Law, J. W., Ab Mutalib, N.S., Chan, K.G., Lee, L.H. 2014. Rapid methods for the detection of foodborne applications, advantages and limitations. Frontiers in Microbiology 5: 770. pathogens: principles
  • Lafleur, J.P., Jönsson, A., Senkbeil, S., Kutter, J.P., 2016. Recent advances in lab-on chip for biosensing Bioelectronics 76: 213-233. Biosensors and
  • Gilmartin, N., O’Kennedy, R., 2012. Nanobiotecnologies for the detection and reduction of pathogens. Enzyme and Microbial Technology 50: 87-95.
  • Bahadır, E.B., Sezgintürk M.K., 2015. Application of commercial biosensors in clinical, food, environmental, and biothret/biowarfare analyses. Analytical Biochemistry 478: 107-120.
  • Yang, N., Chen, X., Ren, T., Zhang, P., Yang, D., 2015. Carbon Sensors and Actuator B: Chemical 207: 690-715.
  • Rotariu, L., Lagarde, F., Renault, J.N., Bala, C., based biosensors. 2016. Electrochemical biosensors for fast detection of food contaminants – trends and perspective. TrAC Trends in Analytical Chemistry 79: 80-87.
  • Wang, Y., Ye, Z., Ying, Y., 2012. New Trends in impedimetric biosensors for the detection of foodborne pathogenic bacteria sensors. Sensors 12: 3449-3471.
  • Rand, A.G., Ye, J. Brown, C.W., Letcher, S.V., 2002. Optical biosensors for food pathogen detection. Food Technology 56: 32-38.
  • Dudak, F.C., Boyacı, İ.H., 2007. Development of an immunosensor resonance for enumeration of Escherichia coli in water samples. Food Research International 40(7): 803–807. on surface plasmon
  • Babacan, S., Pivarnik, P., Letcher, S., Rand, A.G., 2002. Piezoelectric biosensor for the detection of Salmonella Typhimurium. Journal of Food Science 67: 314- 320. injection analysis
  • Kumaran Ramanathan, K., Danielsson, B., 2001. Principles and applications of thermal biosensors. Biosensors and Bioelectronics 16: 417-423.
  • Arora, P., Sindhu, A., Dilbaghi, N., Chaudhury, A., 2011. Biosensors as innovative tools for the detection of food borne pathogens. Biosensors and Bioelectronics 28: 1–12.
  • He, F., Geng, Q., Zhu, W., Nie, L., Yao, S., Meifeng, C., 1994. Rapid detection of Escherichia coli using a separated electrode piozoelectric crystal sensor. Analytica Chimicia Acta 289: 313- 319.
  • Bouvrette , P., Luong, J.H.T., 1995. Development of a flow injection analysis (FIA) immunosensor for the detection of Escherichia coli. International Journal of Food Microbiology 27: 129-137.
  • Pyun, J.C., Beutel, H., Meyer, J.U., Ruf, H.H., 1998. Development of a biosensor for E. coli based on a flexural plate wave (FPW) transducer. Biosensors and Bioelectronics 13: 839–845.
  • McEntegart, C.M., Penrose, W.R., Strathmann, S., Stetter, J.R., 2000. Detection and discrimination of coliform bacteria with gas sensor arrays. Sensors and Actuators B 70: 170-176.
  • Gau, J., Lan, E.H., Dunn, B., Ho, C.M., Woo, J.C., 2001. A MEMS based amperometric detector for E. coli bacteria using self-assembled monolayers. Biosensors and Bioelectronics 16: 745–755.
  • Gfeller, K.Y., Nugaeva, N., Hegner, M., 2005. Micromechanical oscillators as rapid biosensor for the detection of active growth of Escherichia coli. Biosensors and Bioelectronics 21: 528–533.
  • Ertl, P., Wagner, M., Corton, E., Mikkelsen. S.R., 2003. Rapid identification of viable Escherichia coli subspecies with an electrochemical screen-printed biosensor array. Biosensors and Bioelectronics 18: 907–916.
  • Ercole, C., Del Gallo, M., Mosiello, L., Baccella, S., Lepidi, A., 2003. Escherichia coli detection in vegetable food by a potentiometric biosensor. Sensors and Actuators B: Chemical 91: 163–168.
  • Zhang, X., Geng, P., Liu, H., Teng, Y., Liu, Y., Wang, Q., Zhang, W., Jin, L., Jiang, L., 2009. Development of an electrochemical immunoassay for rapid detection of E. coli using anodic stripping voltammetry based on Cu@Au nanoparticles as antibody labels. Biosensors and Bioelectronics 24: 2155-2159.
  • Safarik, I., Safarikova, M., Forsythe, S.J., 1995. The application of magnetic separations in applied microbiology. Journal of Applied Bacteriology 78: 575-585.
  • Xiong, Q., Cui X., Saini, J.K., Liu, D., Shan, S., Jin,Y., Lai, W., 2014. Development of an immunomagnetic separation method for efficient enrichment of Escherichia coli O157:H7. Food Control 37: 41-45.
  • Mao, Y., Huang, X., Xiong, S., Xu, H., Aguilar,Z.P., Xiong, Y., 2016. Large-volume immunomagnetic separation combined with multiplex PCR assay for simultaneous detection of Listeria monocytogenes and Listeria ivanovii in lettuce. Food Control 59: 601-608.
  • Gehring, A.G., Albin, D.M., Irwin, P.L., Reed, S.A., Tu, S.I., 2006. Comparison of enzyme-linked immunomagnetic chemiluminescence with U.S. Food and Drug Administration's Bacteriological Analytical Manual method for the detection of Escherichia Microbiological Methods 67: 527–533. Journal of [30] Weeks, I., 1992. In immunoassay. Comprehensive Analytical Chemistry, vol. 29, Edited by G. Svehla, Elsevier, New York, USA, 293 p. & Wilson’s
  • Bronstein, I., Fortin, J. Stanley, P.E., Stewart, S.A.B., Kricha, L.J., 1994. Chemiluminescent and bioluminescent reporter gene assays. Analytical Biochemistry 219: 169-181.
  • Tağı, Ş., Pivarnik, P.E., Rand, A.G., 2001. Development of a chemiluminescent enzyme capture immunoassay for the detection of Escherichia coli. Proceedings of SPIE 4206: 83-92.
  • Tağı, Ş., 2001. Application of the chemiluminescent enzyme capture immunoassay for detection of Escherichia coli in Foods. Manuscript III. PhD Dissertation. Department of Food Science and Nutrition. University of Rhode Island, Kingston, RI, USA.
  • Pivarnik, P., Cao,H., Letcher, S., Pierson, A., Rand, A.G., 1998. Magnetic focusing immunosensor for the detection of Salmonella typhimurium in foods. Proceedings of SPIE 3544: 41-49.
  • Cao, H. Pivarnik, Rand, A., Baqaen,H., Letcher, S., 1999. Tapered tubular optical waveguide probe for magnetic focusing immunosensors. Proceedings of SPIE 3860: 207-213.
  • Letcher, S. Cao, H., Baqaen, H., Rand, A.G., 2003. Tapered tubular optical waveguide probe for magnetic focusing immunosensors. U.S. Patent 6,645,77.
  • Ye, J., Liu, Y., Li, Y., 2002. A chemiluminescence fiber-optic biosensor coupled with immunomagnetic separation for rapid detection of E. coli O157:H7. Transactions of the ASAE 45: 473–478.
  • Gehring, A.G., Irwina, P.L., Reeda, S.A., Tua, S.I., Andreottib, P.E., Taftic H.A., Handley, R.S., 2004. Enzyme-linked immunomagnetic chemiluminescent detection of Escherichia coli O157:H7. Journal of Immunological Methods 293: 97-106.
  • Rochelet, M., Solanas, Chantemesse, B., Vienney, F., Hartmann, A., 2015. Rapid amperometric detection of Escherichia coli in wastewater by measuring β-D glucuronidase activity with disposable carbon sensors. Analytica Chimica Acta 892: 160-166. S., Betelli, L.
  • Zhu, P., Shelton, D.R., Li,S., Adams, D.L., Karns, J.S., Amstutz, P., Tang, C.M., 2011. Detection of E. coli O157:H7 by immunomagnetic separation coupled Biosensors and Bioelectronics 30(1): 337-41.
  • Stettler, M., Asrian, H., 2011. Deepwell plate immunoassay. system with lid. U.S. Patent 4735778, E.U. Patent EP2473283.
  • Boyacı, İ.H., Aguilar, Z.P., Hossain, M.H., Brian Halsall, H.B., Carl, J., Seliskar, C.J, William, R., Heineman, determination of live Escherichia coli using antibody-coated paramagnetic beads. Analytical and Bioanalytical Chemistry 382:1234-1241.
  • Anonymous, 2016. EO Edmung Optics, America, Optics and Optical Instruments Annual Catalog, 482 p. Web: www.edmundoptics.com, accessed June 2016.
  • Saunders, K.C., James, C.A., 2008. Automation of Sample Preparation. In Principles and Practice of Bioanalysis, Second Edition, Edited by Richard F. Venn, CRC Press, Tylor & Francis Group, London, England, 326p.
Toplam 43 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Research Article
Yazarlar

Şeref Tağı Bu kişi benim

Arthur G Rand Bu kişi benim

Yayımlanma Tarihi 1 Haziran 2016
Yayımlandığı Sayı Yıl 2016 Cilt: 14 Sayı: 2

Kaynak Göster

APA Tağı, Ş., & Rand, A. G. (2016). A Chemiluminescence Based Optical Biosensor Coupled with Immunomagnetic Separation for the Detection of ββ-Glucuronidase from Escherichia coli βββ-Glucuronidase from βββ-Glucuronidase from. Akademik Gıda, 14(2), 75-84.
AMA Tağı Ş, Rand AG. A Chemiluminescence Based Optical Biosensor Coupled with Immunomagnetic Separation for the Detection of ββ-Glucuronidase from Escherichia coli βββ-Glucuronidase from βββ-Glucuronidase from. Akademik Gıda. Haziran 2016;14(2):75-84.
Chicago Tağı, Şeref, ve Arthur G Rand. “A Chemiluminescence Based Optical Biosensor Coupled With Immunomagnetic Separation for the Detection of ββ-Glucuronidase from Escherichia Coli βββ-Glucuronidase from βββ-Glucuronidase from”. Akademik Gıda 14, sy. 2 (Haziran 2016): 75-84.
EndNote Tağı Ş, Rand AG (01 Haziran 2016) A Chemiluminescence Based Optical Biosensor Coupled with Immunomagnetic Separation for the Detection of ββ-Glucuronidase from Escherichia coli βββ-Glucuronidase from βββ-Glucuronidase from. Akademik Gıda 14 2 75–84.
IEEE Ş. Tağı ve A. G. Rand, “A Chemiluminescence Based Optical Biosensor Coupled with Immunomagnetic Separation for the Detection of ββ-Glucuronidase from Escherichia coli βββ-Glucuronidase from βββ-Glucuronidase from”, Akademik Gıda, c. 14, sy. 2, ss. 75–84, 2016.
ISNAD Tağı, Şeref - Rand, Arthur G. “A Chemiluminescence Based Optical Biosensor Coupled With Immunomagnetic Separation for the Detection of ββ-Glucuronidase from Escherichia Coli βββ-Glucuronidase from βββ-Glucuronidase from”. Akademik Gıda 14/2 (Haziran 2016), 75-84.
JAMA Tağı Ş, Rand AG. A Chemiluminescence Based Optical Biosensor Coupled with Immunomagnetic Separation for the Detection of ββ-Glucuronidase from Escherichia coli βββ-Glucuronidase from βββ-Glucuronidase from. Akademik Gıda. 2016;14:75–84.
MLA Tağı, Şeref ve Arthur G Rand. “A Chemiluminescence Based Optical Biosensor Coupled With Immunomagnetic Separation for the Detection of ββ-Glucuronidase from Escherichia Coli βββ-Glucuronidase from βββ-Glucuronidase from”. Akademik Gıda, c. 14, sy. 2, 2016, ss. 75-84.
Vancouver Tağı Ş, Rand AG. A Chemiluminescence Based Optical Biosensor Coupled with Immunomagnetic Separation for the Detection of ββ-Glucuronidase from Escherichia coli βββ-Glucuronidase from βββ-Glucuronidase from. Akademik Gıda. 2016;14(2):75-84.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).