BibTex RIS Kaynak Göster

Modeling Heat and Mass Transfer in Cakes and Other Bakery Products during Baking and Computational Fluid Dynamics CFD Applications

Yıl 2016, Cilt: 14 Sayı: 1, 61 - 66, 01.03.2016

Öz

The production of cake, a popular member of bakery industry, includes steps of mixing flour, sugar, fat, milk and egg at certain amounts and then baking this batter in a convectional oven. Baking process is a thermal process often used in bakery industry. Mathematical modeling of this process from the point of both heat and mass transfer is especially important for oven design, energy performance, optimization and product quality. In this paper, studies on heat and mass transfers and their modeling during cake baking in breads and biscuits and computational fluid dynamics CFD applications used in mathematical modeling are reviewed

Kaynakça

  • Süfer, Ö., 2012. Bazı Gıda Maddelerinin Pişirilmesinde Sıcaklık Dağılımının Nümerik ve Deneysel Olarak İncelenmesi. Yüksek Lisans Tezi, Ege Üniversitesi Fen Bilimleri Enstitüsü, Bornova, İzmir.
  • Manley, D., 1996. Technology of Biscuits, Crackers and Cookies. 2nd Edition, Woodhead Publishing Limited, Cambridge, 476p.
  • Sakin, M., 2005. Fırında Kek Pişirme İşleminin Eşzamanlı Isı Modellenmesi. Doktora Tezi, Ege Üniversitesi Fen Bilimleri Enstitüsü, Bornova, İzmir. Olarak
  • Benninon, E.B. and Bamford, G.S.T., 1973. The Technology of Cake Making, 5th Edition, Int. Textbook Comp. Lmt.
  • Thorvaldsson, K., Janestad, H., 1999. A model for simultaneous heat, water and vapor diffusion. Journal of Food Engineering 40: 167-172.
  • Zanoni, B., Peri, C., Pierucci, S., 1994. A study of the bread baking process II: Mathematical modeling. Journal of Food Engineering 23: 321-336.
  • Erdoğdu, F., 2011. Mathematical modeling approaches for thermal processing conditions. Novel Approaches in Food Industry, NAFI 2011, May 26-29, 2011, Çeşme, İzmir, Turkey, Book of Proceedings 238p.
  • Çengel, Y., Turner, R.H., 2005. Fundamentals of Thermal-Fluid Sciences, 2nd Edition, McGraw-Hill Companies, Inc., New York, 1206p.
  • Sun, D.-W., 2007. Computational Fluid Dynamics (CFD) in Food Processing. CRC Press, Taylor & Francis Group, 776p. Ö., [10] Süfer, Kumcuoğlu S., 2012. Gıda Mühendisliğinde Hesaplamalı Akışkanlar Dinamiği (Computational Fluid Dynamics) Uygulamaları. Türkiye 11. Gıda Kongresi, 10-12 Ekim 2012, Mustafa Kemal Üniversitesi, Hatay, Bildiri Kitabı Sayfa 273.
  • Dizlek, H., 2001. Kremalı kek (yaş pasta) yapımı. Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Gıda Mühendisliği Anabilim Dalı Yüksek Lisans Semineri, Adana, Türkiye.
  • Pyler, E.J., 1988. Baking Science and Technology. Sosland Publishing Company, U.S.A., 1345p.
  • Dizlek, H., Altan, A., 2013. Pişirme öncesinde hamurun kısa süre bekletilmesinin pandispanya nitelikleri üzerine etkisi. Gıda, 38 (1): 31-38.
  • Demirkol, E., Erdoğdu, F., Palazoğlu, T.K., 2006. A numerical approach with variable temperature boundary conditions to determine the effective heat transfer coefficient values during baking of cookies. Journal of Food Process Engineering 29: 478-497.
  • Carson, J.K., Willix, J., North, M.F., 2006. Measurements of heat transfer coefficients within convection ovens. Journal of Food Engineering 72(3): 293–301.
  • Baik, O-D., Sablani, S.S., Marcotte, M., Castaigne, F., 1999. Heat Transfer Coefficients on Cakes Baked in a Tunnel Type Industrial Oven. Journal of Food Science 64(4): 688-694.
  • Baik, O-D, Sablani, S.S., Marcotte, M., Castaigne, F., 1999. Modeling the thermal properties of a cup cake during baking. Journal of Food Science 64(2): 295-299.
  • Sakin, M., Kaymak-Ertekin, F., Ilıcalı, C., 2007. Simultaneous heat and mass transfer simulation applied to convective oven cup cake baking. Journal of Food Engineering 83(3): 463-474.
  • Lostie, M., Peczalski, R., Andrieu, J., Laurent, M., 2002a. Study of sponge cake batter baking process. Part I: Experimental data. Journal of Food Engineering 51: 131-137.
  • Lostie, M., Peczalski, R., Andrieu, J., Laurent, M., 2002b. Study of sponge cake batter baking process. II: Modeling and parameter estimation. Journal of Food Engineering 55(4): 349-357.
  • Lostie, M., Peczalski, R., Andrieu, J., 2004. Lumped model for sponge cake baking during the “crust and crumb” period. Journal of Food Engineering 65(2): 281-286.
  • Putranto, A., Chen, X.D., Zhou, W., 2011. Modeling of baking of thin layer of cake using the lumped reaction engineering approach (L-REA). Journal of Food Engineering 105: 306-311.
  • Li, A., Walker, C.E., 1996. Cake baking in conventional, impingement and hybrid ovens. Journal of Food Science 61(1): 188-191.
  • Thorvaldsson, K., Skjöldebrand, C., 1998. Water diffusion in bread during baking. Lebensmittel Wiss. u. Technol. 31: 658-663.
  • Thorvaldsson, K., Janestad, H., 1999. A model for simultaneous heat, water and vapor diffusion. Journal of Food Engineering 40: 167-172.
  • Zanoni, B., Peri, C., Pierucci, S., 1993. A study of the bread baking process I: A phenomenological model. Journal of Food Engineering 19: 389-398.
  • Purlis, E., Salvadori, V.O., 2009. Bread baking as a moving boundary problem. Part 1: Mathematical modelling. Journal of Food Engineering 91(3): 428- 433.
  • Purlis, E. 2011. Bread baking: Technological considerations based on process modelling and simulation. Journal of Food Engineering 103: 92- 102.
  • Hussein, M.A., Becker, T. 2010. An innovative micro-modelling of simultaneous heat and moisture transfer during bread baking using the Lattice Boltzmann Method. Food Biophysics 5: 161–176.
  • Sluimer, P., Krist-Spit C.E., 1987. Heat transport in dough during the baking of bread, ed. by I.D. Morton (Cereals in a European Context, New York, VCH), 355–363p.
  • Nicolas, V., Salagnac, P., Glouannec, P., Ploteau, J-P, Jury, V., Boillereaux, L. 2012. Modelling heat and mass transfer in bread baking with mechanical deformation. 6th European Thermal Sciences Conference (Eurotherm 2012), Journal of Physics: Conference Series 395, 012146.
  • Özilgen, M., Heil, J.R., 1994. Mathematical modeling of transient heat and mass transport in a baking biscuit. Journal of Food Processing and Preservation 18: 133-148.
  • Nitin, N., Karwe, M.V., 2001. Heat transfer coefficient for cookie shaped objects in a hot air jet impingement oven, Journal of Food Process Engineering 24: 51-69.
  • Ferrari, E., Marai, S.V., Guidetti, R., Piazza, L. 2012. Modelling of heat and moisture transfer phenomena during dry biscuit baking by using finite element method. International Journal of Food Engineering 8(3): 29-35.
  • Broyart, B., Trystram, G. 2003. Modelling of Heat and Mass Transfer Phenomena and Quality Changes During Continuous Biscuit Baking Using Both Deductive and Inductive (Neural Network) Modeling Principles. Institution of Chemical Engineers, Trans IChemE, Vol 81, Part C.
  • Broyart, B., Trystram, G. 2002. Modelling heat and mass transfer during the continuous baking of biscuits. Journal of Food Engineering, 51(1): 47-57.
  • Fahloul, D., Trystram, G., Duquenoy, A., Barbotteau, I. 1994. Modelling Heat and Mass Transfer in Band Oven Biscuit Baking. Food Science and Technolog 27(2): 119-124.
  • Scott, G., Richardson, P., 1997. The application of computational fluid dynamics in the food industry. Trends in Food Science and Technology 8(4): 119- 124.
  • Xia, B., Sun, D.W., 2002. Applications of computational fluid dynamics (CFD) in the food industry: a review. Computers and Electronics in Agriculture 34: 5-24.
  • De Vries, U., Velthuis, H., Koster, K., 1995. Baking ovens and product quality – a computer model. Food Science and Tehcnology Today 9: 232-234.
  • Noel, J.Y., Ovenden, N.A., Pochini, I., 1998. Prediction of flow and temperature distribution in a domestic forced convection electric oven. In Proceedings of ACoFoP IV, Goteborg, Sweden, September 21-23, 491-496pp.
  • Therdthai, N., Zhou, W., Adamczak, T., 2003. two- dimensional CFD modeling and simulation of an industrial continuous bread baking oven. Journal of Food Engineering 60(2): 211-217.
  • Versteeg, H.K., Malalasekera, W., 1995. An Introduction to Computational Fluid Dynamics: The Finite Volume Method, Harlow, England: Longman, 57-62,74 pp.
  • Verboven, P., Scheerlinck, N., De Baerdemaeker, J., Nicolai, B.M., 1997. Performance of different turbulence models for the calculation of the surface heat transfer coefficient. In Z. Mayer and P. Nesvadba, Proceedings of the conference / workshop on modelling of thermal properties and behaviour of foods during production, storage and distribution, Prague: Food Research Institute, 242- 248 pp.
  • Verboven, P., Scheerlinck, N., De Baerdemaeker, J., Nicolai, B.M., 2000. Computational fluid dynamics modeling and validation of the temperature distribution in a forced convection oven. Journal of Food Engineering 43: 61-73.
  • Therdthai, N., Zhou, W., Adamczak, T., 2004. Three-dimensional CFD modeling and simulation of the temperature profiles and airflow patterns during a continuous industrial baking process. Journal of Food Engineering 65(4): 599-608.
  • Wong, S.-Y., Zhou, W., Hua, J., 2007b. CFD modeling of an industrial continuous bread baking process involving U-movement. Journal of Food Engineering 78(3): 888-896.
  • Boulet, M., Marcos, B., Dostie, M., Moresoli, C., 2010. CFD modeling of heat transfer and flow field in a bakery pilot oven. Journal of Food Engineering 97: 393-402.
  • Chhanwal, N., Anishaparvin, A., Indrani, D., Raghavarao, K.S.M.S., Anandharamakrishnan, C., 2010. Computational fluid dynamics (CFD) modeling of an electrical heating oven for bread baking process, Journal of Food Engineering 100: 452-460.
  • Anishaparvin, A., Channwall, N., Indrani, D., Raghavarao, K.S.M.S., Anandharamakrishnan, C., 2010. An investigation of bread baking process in a pilot-scale computational fluid dynamics. Journal of Food Science 75 (9): E605-E611. oven using
  • Chhanwal, N., Indrani, D., Raghavarao, K.S.M.S., Anandharamakrishnan, C., 2011. Computational fluid dynamics (CFD) modeling of bread baking process. Food Research International 44: 978-983.
  • Launder, B.E., 1988. On the computation of convective heat transfer in complex turbulent flows. Journal of Heat Transfer 110: 1112-1128.
  • Hsieh, W.D., Chang, K.C., 1996. Calculation of wall heat transfer in pipe-expansion turbulent flows. International Journal of Heat and Mass Transfer 39(18): 3813-3822.
  • Devres, Y.O., Pala, M., 1993. Gıda sanayiinde matematiksel modellemenin önemi ve uygulama alanları. Gıda 18(3): 173-181.

Kek ve Diğer Unlu Mamüllerin Fırında Pişirilmesi Sırasında Isı ve Kütle Transferinin Modellenmesi ve Hesaplamalı Akışkanlar Dinamiği HAD Uygulaması

Yıl 2016, Cilt: 14 Sayı: 1, 61 - 66, 01.03.2016

Öz

Unlu mamüller endüstrisinin popüler bir üyesi olan kekin üretimi, belirli oranlarda un, şeker, yağ, süt ve yumurtanın karıştırılması ve oluşan bu hamur karışımının fırında pişirilmesi esasına dayanır. Fırında pişirme, unlu mamüller sektöründe oldukça sık kullanılan bir ısıl işlemdir. Bu prosesin, gerek ısı gerekse de kütle transferi yönünden matematiksel olarak modellenmesi, fırın tasarımı, enerji verimliliği, optimizasyon ve ürün kalitesi açısından önem taşımaktadır. Bu çalışmada, başta kek olmak üzere ekmek ve bisküvi gibi ürünlerin fırında pişirilmesi sırasında ısı ve kütle transferini inceleyen ve modelleyen araştırmalar ile matematiksel modelleme çalışmalarında kullanılan hesaplamalı akışkanlar dinamiği HAD uygulamalar derlenmektedir

Kaynakça

  • Süfer, Ö., 2012. Bazı Gıda Maddelerinin Pişirilmesinde Sıcaklık Dağılımının Nümerik ve Deneysel Olarak İncelenmesi. Yüksek Lisans Tezi, Ege Üniversitesi Fen Bilimleri Enstitüsü, Bornova, İzmir.
  • Manley, D., 1996. Technology of Biscuits, Crackers and Cookies. 2nd Edition, Woodhead Publishing Limited, Cambridge, 476p.
  • Sakin, M., 2005. Fırında Kek Pişirme İşleminin Eşzamanlı Isı Modellenmesi. Doktora Tezi, Ege Üniversitesi Fen Bilimleri Enstitüsü, Bornova, İzmir. Olarak
  • Benninon, E.B. and Bamford, G.S.T., 1973. The Technology of Cake Making, 5th Edition, Int. Textbook Comp. Lmt.
  • Thorvaldsson, K., Janestad, H., 1999. A model for simultaneous heat, water and vapor diffusion. Journal of Food Engineering 40: 167-172.
  • Zanoni, B., Peri, C., Pierucci, S., 1994. A study of the bread baking process II: Mathematical modeling. Journal of Food Engineering 23: 321-336.
  • Erdoğdu, F., 2011. Mathematical modeling approaches for thermal processing conditions. Novel Approaches in Food Industry, NAFI 2011, May 26-29, 2011, Çeşme, İzmir, Turkey, Book of Proceedings 238p.
  • Çengel, Y., Turner, R.H., 2005. Fundamentals of Thermal-Fluid Sciences, 2nd Edition, McGraw-Hill Companies, Inc., New York, 1206p.
  • Sun, D.-W., 2007. Computational Fluid Dynamics (CFD) in Food Processing. CRC Press, Taylor & Francis Group, 776p. Ö., [10] Süfer, Kumcuoğlu S., 2012. Gıda Mühendisliğinde Hesaplamalı Akışkanlar Dinamiği (Computational Fluid Dynamics) Uygulamaları. Türkiye 11. Gıda Kongresi, 10-12 Ekim 2012, Mustafa Kemal Üniversitesi, Hatay, Bildiri Kitabı Sayfa 273.
  • Dizlek, H., 2001. Kremalı kek (yaş pasta) yapımı. Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Gıda Mühendisliği Anabilim Dalı Yüksek Lisans Semineri, Adana, Türkiye.
  • Pyler, E.J., 1988. Baking Science and Technology. Sosland Publishing Company, U.S.A., 1345p.
  • Dizlek, H., Altan, A., 2013. Pişirme öncesinde hamurun kısa süre bekletilmesinin pandispanya nitelikleri üzerine etkisi. Gıda, 38 (1): 31-38.
  • Demirkol, E., Erdoğdu, F., Palazoğlu, T.K., 2006. A numerical approach with variable temperature boundary conditions to determine the effective heat transfer coefficient values during baking of cookies. Journal of Food Process Engineering 29: 478-497.
  • Carson, J.K., Willix, J., North, M.F., 2006. Measurements of heat transfer coefficients within convection ovens. Journal of Food Engineering 72(3): 293–301.
  • Baik, O-D., Sablani, S.S., Marcotte, M., Castaigne, F., 1999. Heat Transfer Coefficients on Cakes Baked in a Tunnel Type Industrial Oven. Journal of Food Science 64(4): 688-694.
  • Baik, O-D, Sablani, S.S., Marcotte, M., Castaigne, F., 1999. Modeling the thermal properties of a cup cake during baking. Journal of Food Science 64(2): 295-299.
  • Sakin, M., Kaymak-Ertekin, F., Ilıcalı, C., 2007. Simultaneous heat and mass transfer simulation applied to convective oven cup cake baking. Journal of Food Engineering 83(3): 463-474.
  • Lostie, M., Peczalski, R., Andrieu, J., Laurent, M., 2002a. Study of sponge cake batter baking process. Part I: Experimental data. Journal of Food Engineering 51: 131-137.
  • Lostie, M., Peczalski, R., Andrieu, J., Laurent, M., 2002b. Study of sponge cake batter baking process. II: Modeling and parameter estimation. Journal of Food Engineering 55(4): 349-357.
  • Lostie, M., Peczalski, R., Andrieu, J., 2004. Lumped model for sponge cake baking during the “crust and crumb” period. Journal of Food Engineering 65(2): 281-286.
  • Putranto, A., Chen, X.D., Zhou, W., 2011. Modeling of baking of thin layer of cake using the lumped reaction engineering approach (L-REA). Journal of Food Engineering 105: 306-311.
  • Li, A., Walker, C.E., 1996. Cake baking in conventional, impingement and hybrid ovens. Journal of Food Science 61(1): 188-191.
  • Thorvaldsson, K., Skjöldebrand, C., 1998. Water diffusion in bread during baking. Lebensmittel Wiss. u. Technol. 31: 658-663.
  • Thorvaldsson, K., Janestad, H., 1999. A model for simultaneous heat, water and vapor diffusion. Journal of Food Engineering 40: 167-172.
  • Zanoni, B., Peri, C., Pierucci, S., 1993. A study of the bread baking process I: A phenomenological model. Journal of Food Engineering 19: 389-398.
  • Purlis, E., Salvadori, V.O., 2009. Bread baking as a moving boundary problem. Part 1: Mathematical modelling. Journal of Food Engineering 91(3): 428- 433.
  • Purlis, E. 2011. Bread baking: Technological considerations based on process modelling and simulation. Journal of Food Engineering 103: 92- 102.
  • Hussein, M.A., Becker, T. 2010. An innovative micro-modelling of simultaneous heat and moisture transfer during bread baking using the Lattice Boltzmann Method. Food Biophysics 5: 161–176.
  • Sluimer, P., Krist-Spit C.E., 1987. Heat transport in dough during the baking of bread, ed. by I.D. Morton (Cereals in a European Context, New York, VCH), 355–363p.
  • Nicolas, V., Salagnac, P., Glouannec, P., Ploteau, J-P, Jury, V., Boillereaux, L. 2012. Modelling heat and mass transfer in bread baking with mechanical deformation. 6th European Thermal Sciences Conference (Eurotherm 2012), Journal of Physics: Conference Series 395, 012146.
  • Özilgen, M., Heil, J.R., 1994. Mathematical modeling of transient heat and mass transport in a baking biscuit. Journal of Food Processing and Preservation 18: 133-148.
  • Nitin, N., Karwe, M.V., 2001. Heat transfer coefficient for cookie shaped objects in a hot air jet impingement oven, Journal of Food Process Engineering 24: 51-69.
  • Ferrari, E., Marai, S.V., Guidetti, R., Piazza, L. 2012. Modelling of heat and moisture transfer phenomena during dry biscuit baking by using finite element method. International Journal of Food Engineering 8(3): 29-35.
  • Broyart, B., Trystram, G. 2003. Modelling of Heat and Mass Transfer Phenomena and Quality Changes During Continuous Biscuit Baking Using Both Deductive and Inductive (Neural Network) Modeling Principles. Institution of Chemical Engineers, Trans IChemE, Vol 81, Part C.
  • Broyart, B., Trystram, G. 2002. Modelling heat and mass transfer during the continuous baking of biscuits. Journal of Food Engineering, 51(1): 47-57.
  • Fahloul, D., Trystram, G., Duquenoy, A., Barbotteau, I. 1994. Modelling Heat and Mass Transfer in Band Oven Biscuit Baking. Food Science and Technolog 27(2): 119-124.
  • Scott, G., Richardson, P., 1997. The application of computational fluid dynamics in the food industry. Trends in Food Science and Technology 8(4): 119- 124.
  • Xia, B., Sun, D.W., 2002. Applications of computational fluid dynamics (CFD) in the food industry: a review. Computers and Electronics in Agriculture 34: 5-24.
  • De Vries, U., Velthuis, H., Koster, K., 1995. Baking ovens and product quality – a computer model. Food Science and Tehcnology Today 9: 232-234.
  • Noel, J.Y., Ovenden, N.A., Pochini, I., 1998. Prediction of flow and temperature distribution in a domestic forced convection electric oven. In Proceedings of ACoFoP IV, Goteborg, Sweden, September 21-23, 491-496pp.
  • Therdthai, N., Zhou, W., Adamczak, T., 2003. two- dimensional CFD modeling and simulation of an industrial continuous bread baking oven. Journal of Food Engineering 60(2): 211-217.
  • Versteeg, H.K., Malalasekera, W., 1995. An Introduction to Computational Fluid Dynamics: The Finite Volume Method, Harlow, England: Longman, 57-62,74 pp.
  • Verboven, P., Scheerlinck, N., De Baerdemaeker, J., Nicolai, B.M., 1997. Performance of different turbulence models for the calculation of the surface heat transfer coefficient. In Z. Mayer and P. Nesvadba, Proceedings of the conference / workshop on modelling of thermal properties and behaviour of foods during production, storage and distribution, Prague: Food Research Institute, 242- 248 pp.
  • Verboven, P., Scheerlinck, N., De Baerdemaeker, J., Nicolai, B.M., 2000. Computational fluid dynamics modeling and validation of the temperature distribution in a forced convection oven. Journal of Food Engineering 43: 61-73.
  • Therdthai, N., Zhou, W., Adamczak, T., 2004. Three-dimensional CFD modeling and simulation of the temperature profiles and airflow patterns during a continuous industrial baking process. Journal of Food Engineering 65(4): 599-608.
  • Wong, S.-Y., Zhou, W., Hua, J., 2007b. CFD modeling of an industrial continuous bread baking process involving U-movement. Journal of Food Engineering 78(3): 888-896.
  • Boulet, M., Marcos, B., Dostie, M., Moresoli, C., 2010. CFD modeling of heat transfer and flow field in a bakery pilot oven. Journal of Food Engineering 97: 393-402.
  • Chhanwal, N., Anishaparvin, A., Indrani, D., Raghavarao, K.S.M.S., Anandharamakrishnan, C., 2010. Computational fluid dynamics (CFD) modeling of an electrical heating oven for bread baking process, Journal of Food Engineering 100: 452-460.
  • Anishaparvin, A., Channwall, N., Indrani, D., Raghavarao, K.S.M.S., Anandharamakrishnan, C., 2010. An investigation of bread baking process in a pilot-scale computational fluid dynamics. Journal of Food Science 75 (9): E605-E611. oven using
  • Chhanwal, N., Indrani, D., Raghavarao, K.S.M.S., Anandharamakrishnan, C., 2011. Computational fluid dynamics (CFD) modeling of bread baking process. Food Research International 44: 978-983.
  • Launder, B.E., 1988. On the computation of convective heat transfer in complex turbulent flows. Journal of Heat Transfer 110: 1112-1128.
  • Hsieh, W.D., Chang, K.C., 1996. Calculation of wall heat transfer in pipe-expansion turbulent flows. International Journal of Heat and Mass Transfer 39(18): 3813-3822.
  • Devres, Y.O., Pala, M., 1993. Gıda sanayiinde matematiksel modellemenin önemi ve uygulama alanları. Gıda 18(3): 173-181.
Toplam 53 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Research Article
Yazarlar

Özge Süfer Bu kişi benim

Seher Kumcuoğlu Bu kişi benim

Şebnem Tavman Bu kişi benim

Yayımlanma Tarihi 1 Mart 2016
Yayımlandığı Sayı Yıl 2016 Cilt: 14 Sayı: 1

Kaynak Göster

APA Süfer, Ö., Kumcuoğlu, S., & Tavman, Ş. (2016). Kek ve Diğer Unlu Mamüllerin Fırında Pişirilmesi Sırasında Isı ve Kütle Transferinin Modellenmesi ve Hesaplamalı Akışkanlar Dinamiği HAD Uygulaması. Akademik Gıda, 14(1), 61-66.
AMA Süfer Ö, Kumcuoğlu S, Tavman Ş. Kek ve Diğer Unlu Mamüllerin Fırında Pişirilmesi Sırasında Isı ve Kütle Transferinin Modellenmesi ve Hesaplamalı Akışkanlar Dinamiği HAD Uygulaması. Akademik Gıda. Mart 2016;14(1):61-66.
Chicago Süfer, Özge, Seher Kumcuoğlu, ve Şebnem Tavman. “Kek Ve Diğer Unlu Mamüllerin Fırında Pişirilmesi Sırasında Isı Ve Kütle Transferinin Modellenmesi Ve Hesaplamalı Akışkanlar Dinamiği HAD Uygulaması”. Akademik Gıda 14, sy. 1 (Mart 2016): 61-66.
EndNote Süfer Ö, Kumcuoğlu S, Tavman Ş (01 Mart 2016) Kek ve Diğer Unlu Mamüllerin Fırında Pişirilmesi Sırasında Isı ve Kütle Transferinin Modellenmesi ve Hesaplamalı Akışkanlar Dinamiği HAD Uygulaması. Akademik Gıda 14 1 61–66.
IEEE Ö. Süfer, S. Kumcuoğlu, ve Ş. Tavman, “Kek ve Diğer Unlu Mamüllerin Fırında Pişirilmesi Sırasında Isı ve Kütle Transferinin Modellenmesi ve Hesaplamalı Akışkanlar Dinamiği HAD Uygulaması”, Akademik Gıda, c. 14, sy. 1, ss. 61–66, 2016.
ISNAD Süfer, Özge vd. “Kek Ve Diğer Unlu Mamüllerin Fırında Pişirilmesi Sırasında Isı Ve Kütle Transferinin Modellenmesi Ve Hesaplamalı Akışkanlar Dinamiği HAD Uygulaması”. Akademik Gıda 14/1 (Mart 2016), 61-66.
JAMA Süfer Ö, Kumcuoğlu S, Tavman Ş. Kek ve Diğer Unlu Mamüllerin Fırında Pişirilmesi Sırasında Isı ve Kütle Transferinin Modellenmesi ve Hesaplamalı Akışkanlar Dinamiği HAD Uygulaması. Akademik Gıda. 2016;14:61–66.
MLA Süfer, Özge vd. “Kek Ve Diğer Unlu Mamüllerin Fırında Pişirilmesi Sırasında Isı Ve Kütle Transferinin Modellenmesi Ve Hesaplamalı Akışkanlar Dinamiği HAD Uygulaması”. Akademik Gıda, c. 14, sy. 1, 2016, ss. 61-66.
Vancouver Süfer Ö, Kumcuoğlu S, Tavman Ş. Kek ve Diğer Unlu Mamüllerin Fırında Pişirilmesi Sırasında Isı ve Kütle Transferinin Modellenmesi ve Hesaplamalı Akışkanlar Dinamiği HAD Uygulaması. Akademik Gıda. 2016;14(1):61-6.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).