BibTex RIS Kaynak Göster

Acid Hydrolysis of Food Processing Wastes for Bioethanol Production

Yıl 2016, Cilt: 14 Sayı: 1, 15 - 20, 01.03.2016

Öz

In this study, the potential use of food processing sugar beet molasses and potatoes-corn wastes hydrolysates as carbon sources was investigated for the growth of ethanologenic E. coli strain FBR5. For this purpose, different hydrolysis methods were performed by using acid HCl or H2SO4 treatments with different ratios of these food processing wastes FPW . The final sugar concentrations obtained from the hydrolysates were dependent on the concentrations of acid, ratio of FPW or Ca OH 2 treatment for molasses hydrolysate . The highest levels of sugars glucose and fructose and the growth of FBR5 strain were obtained when 10% v/v concentration of molasses was hydrolyzed with H2SO4 and after Ca OH 2 treatment. For the potatoes-corn wastes, the highest sugar concentrations glucose and xylose and the highest growth were obtained by using the ratio of potato waste water to corn waste of 1:4 w/v and HCl treatment

Kaynakça

  • [1] Ghorbani, F., Younesi, H., Sari, A.E., Najafpour, G., 2011. Cane molasses fermentation for continuous ethanol production in an immobilized cells reactor by Saccharomyces cerevisiae. Renewable Energy 36: 503-509.
  • [2] Grassi, G., 2000. Bioethanol – Industrial world perspectives. Renewable Energy World.
  • [3] Chum, H.L., Zhang, Y., Hill, J., Tiffany, D.G., Morey, R.V., Goss Eng, A., Haq, Z., 2014. Understanding the evolution of environmental and energy performance of the U.S. corn ethanol ındustry: evaluation of selected metrics. Biofuels, Bioproducts and Biorefining 8(2): 224–240.
  • [4] RFA, Renewable Fuels Association. World Fuel Ethanol Production. Available online: http://ethanolrfa.org/pages/World-Fuel-EthanolProduction (accessed on 24 August 2015).
  • [5] Balat, M., Balat, H., Öz, C., 2008. Progress in bioethanol processing. Progress in Energy and Combustion Science 34: 551–573.
  • [6] Rosillo-Calle, F., Walter, A., 2006. A global market for Bioethanol: Historical trends and future prospects. Energy Sustainable Development 10(1): 20-32.
  • [7] Biofuels Platform. ENERS Energy Concept. Production of biofuels in the world; 2010. (available online bhttp://www.biofuelsplatform.ch/en/infos/production.php? id=bioethanolN).
  • [8] Mussatto, S.I., Dragone, G., Guimaraes, P.M.R., Silva, J.P.A., Carneiro, L.M., Roberto, I.C., Vicente, A., Domingues, L., Teixeira, J.A., 2010. Technological trends, global market, and challenges of bio-ethanol production. Biotechnology Advances 28(6): 1873-1899.
  • [9] Izmirlioglu, G., Demirci, A., 2015. Enhanced bioethanol production from industrial potato waste by statistical medium optimization. International Journal of Molecular Sciences 16: 24490-24505.
  • [10] Abanoz, K., Stark, B.C., Akbas, M.Y. 2012. Enhancement of ethanol production from potatoprocessing wastewater by engineering Escherichia coli using Vitreoscilla haemoglobin. Letters in Applied Microbiology 55:436–443.
  • [11] Akbas, M.Y., Sar, T., Ozcelik, B., 2014. Improved ethanol production from cheese whey, whey powder, and sugar beet molasses by Vitreoscilla hemoglobin expressing'. Escherichia coli. Bioscience Biotechnology and Biochemistry 78(4): 687-694.
  • [12] Razmovski, R., Vučurović, V., 2011. Ethanol production from sugar beet molasses by S. cerevisiae entrapped in an alginate-maize stem ground tissue matrix. Enzyme and Microbial Technology 48(4-5): 378–385.
  • [13] Radunz, A.E., Lardy, G.P., Bauer, M.L., Marchello, M.J., Loe, E.R., Berg, P.T., 2003. Influence of steam-peeled potato-processing waste inclusion level in beef finishing diets: effects on digestion, feedlot performance, and meat quality. Journal of Animal Sciences 81: 2675-2685.
  • [14] Demirbaş, A., 2009. Biofuels from agricultural biomass. Energy Sources, Part A, 31: 1573-1582.
  • [15] Moon, H.C., Jeong, H.R., Kim, D.H., 2012. Bioethanol production from acid-pretreated rice hull, Asia Pacific Journal of Chemical Engineering 7: 206-211.
  • [16] Stambuk, B.U., Eleutherio, E.C.A., Marina, L., Maria, F.A., Bon, E.P.S., 2008. Brazilian potential for biomass ethanol: Challenge of using hexose and pentose co-fermenting yeast strains. Journal of Scientific and Industrial Research 67:918–926.
  • [17] Ingram, L.O., Conway, T., Clark, D.P., Sewell, G. W., Preston, J.F., 1987. Genetic engineering of ethanol production in Escherichia coli. Applied and Environmental Microbiology 53: 2420–2425.
  • [18] Ingram, L.O. Conway, T. 1988. Expression of different levels of ethanologenic enzymes from Zymomonas mobilis in recombinant strains of Escherichia coli. Applied and Environmental Microbiology 54(2): 397-404.
  • [19] Dien, B.S., Nichols, N.N., O’Bryan, P.J., Rodney, B.J., 2000. Development of new ethanologenic Escherichia coli strains for fermentation of lignocellulosic biomass. Applied Biochemistry and Biotechnology 84-86:181-196.
  • [20] Karaalp, T., 2007. Bakteriyel selüloz üretiminde farklı karbon kaynaklarının değerlendirilmesi. Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi. [21] Guimarães, W.V., Dudey, G.L., Ingram, L.O., 1992.
  • Fermentation of sweet whey by ethanologenic Escherichia coli. Biotechnology and Bioengineering 40: 41-42.
  • [22] Mohagheghi, A., Ruth, M., Schell, D.J., 2006. Conditioning hemicellulose hydrolysates for fermentation: Effects of overliming pH on sugar and ethanol yields. Process Biochemistry 41(8): 1806– 1811.
  • [23] Davis, L., Rogers, P., Pearce, J., Peiris P., 2006. Evaluation of Zymomonas-based ethanol production from a hydrolyzed waste starch stream. Biomass and Bioenergy 30(8-9): 809-814.
  • [24] Khanam, J., Nanda, A., 1990. Batch acid hydrolysis of potato starch, Journal of Industrial Engineering 71: 5–8.
  • [25] Azhar, A., 1989. Alcohol fermentation of sweet potato. Acid hydrolysis and factors involved, Biotechnology and Bioengineering 23: 879–886.
  • [26] Tasic, M.B., Konstantinovic, B.V., Lazic, M.L., Veljkovic, V.B., 2009. The acid hydrolysis of potato tuber mash in bioethanol production. Biochemical Engineering Journal 43: 208–211.
  • [27] Konstantinovic, B.V., 2000. Ethanol production from potato tuber starch using Saccharomyces cerevisiae, M.Sc. Thesis, Faculty of Technology, Leskovac, University of Nis, Nis, Serbia.
  • [28] Leite, A.R., Guimarães, W.V., Araújo, E.F., Silva, D.O.2000 Fermentation of sweet whey by recombinant Escherichia coli KO11. Brazilian Journal of Microbiology 31(3): 212-215.
  • [29] Mosier, N., Wyman, C., Dale, B., Elander, R, Lee, Y.Y., Holtzapple, M., Ladisch, M.l., 2005. Features of promising technologies for pretreatment of lignocellulosic biomas. Bioresource Technology 96 (6): 673–686.
  • [30] Kumar R., Wyman C.E., 2009. Effects of cellulase and xylanase enzymes on the deconstruction of solids from pretreatment of poplar by leading technologies. Biotechnology Progress 25 (2): 302– 314.
  • [31] Zhang, Z,. Donaldson, A.A, Ma, X. 2012. Advancements and future directions in enzyme technology for biomass conversion, Biotechnology Advances 30 (4): 913–919.

Biyoetanol Üretimi İçin Gıda İşleme Atıklarının Asit Hidrolizi

Yıl 2016, Cilt: 14 Sayı: 1, 15 - 20, 01.03.2016

Öz

Bu çalışmada, etanol üreticisi E. coli FBR5 suşunun üretilmesinde, gıda işleme atıklarının şeker pancarı melasının ve patates-mısır hidrolizatlarının karbon kaynakları olarak potansiyel kullanımları araştırılmıştır. Bu amaçla, bu gıda işleme atıkları farklı oranlarda asit uygulamaları ile HCl veya H2SO4 farklı metotlarla hidroliz edilmiştir. Elde edilen hidrolizatların şeker içeriklerinin, kullanılan asitin konsantrasyonuna, gıda işleme atıklarının oranına veya Ca OH 2uygulamasına melas hidrolizatı için bağlı olduğu bulunmuştur. Melas hidrolizatları arasında, en yüksek değerlerdeki şeker oranları ve FBR5 suşunun üremesi, kullanılan melasın %10 v/v konsantrasyonda sulandırılarak H2SO4 ile hidrolize edildiğinde ve Ca OH 2 uygulandığında elde edilmiştir. Patates-mısır işleme atığı ile ise en fazla şeker konsantrasyonları ve üreme değerleri, patates işleme atık suyu ile mısır işleme atığı karışımının 1:4 oranında kullanıldığında ve HCl ile hidrolize edildiğinde belirlenmiştir

Kaynakça

  • [1] Ghorbani, F., Younesi, H., Sari, A.E., Najafpour, G., 2011. Cane molasses fermentation for continuous ethanol production in an immobilized cells reactor by Saccharomyces cerevisiae. Renewable Energy 36: 503-509.
  • [2] Grassi, G., 2000. Bioethanol – Industrial world perspectives. Renewable Energy World.
  • [3] Chum, H.L., Zhang, Y., Hill, J., Tiffany, D.G., Morey, R.V., Goss Eng, A., Haq, Z., 2014. Understanding the evolution of environmental and energy performance of the U.S. corn ethanol ındustry: evaluation of selected metrics. Biofuels, Bioproducts and Biorefining 8(2): 224–240.
  • [4] RFA, Renewable Fuels Association. World Fuel Ethanol Production. Available online: http://ethanolrfa.org/pages/World-Fuel-EthanolProduction (accessed on 24 August 2015).
  • [5] Balat, M., Balat, H., Öz, C., 2008. Progress in bioethanol processing. Progress in Energy and Combustion Science 34: 551–573.
  • [6] Rosillo-Calle, F., Walter, A., 2006. A global market for Bioethanol: Historical trends and future prospects. Energy Sustainable Development 10(1): 20-32.
  • [7] Biofuels Platform. ENERS Energy Concept. Production of biofuels in the world; 2010. (available online bhttp://www.biofuelsplatform.ch/en/infos/production.php? id=bioethanolN).
  • [8] Mussatto, S.I., Dragone, G., Guimaraes, P.M.R., Silva, J.P.A., Carneiro, L.M., Roberto, I.C., Vicente, A., Domingues, L., Teixeira, J.A., 2010. Technological trends, global market, and challenges of bio-ethanol production. Biotechnology Advances 28(6): 1873-1899.
  • [9] Izmirlioglu, G., Demirci, A., 2015. Enhanced bioethanol production from industrial potato waste by statistical medium optimization. International Journal of Molecular Sciences 16: 24490-24505.
  • [10] Abanoz, K., Stark, B.C., Akbas, M.Y. 2012. Enhancement of ethanol production from potatoprocessing wastewater by engineering Escherichia coli using Vitreoscilla haemoglobin. Letters in Applied Microbiology 55:436–443.
  • [11] Akbas, M.Y., Sar, T., Ozcelik, B., 2014. Improved ethanol production from cheese whey, whey powder, and sugar beet molasses by Vitreoscilla hemoglobin expressing'. Escherichia coli. Bioscience Biotechnology and Biochemistry 78(4): 687-694.
  • [12] Razmovski, R., Vučurović, V., 2011. Ethanol production from sugar beet molasses by S. cerevisiae entrapped in an alginate-maize stem ground tissue matrix. Enzyme and Microbial Technology 48(4-5): 378–385.
  • [13] Radunz, A.E., Lardy, G.P., Bauer, M.L., Marchello, M.J., Loe, E.R., Berg, P.T., 2003. Influence of steam-peeled potato-processing waste inclusion level in beef finishing diets: effects on digestion, feedlot performance, and meat quality. Journal of Animal Sciences 81: 2675-2685.
  • [14] Demirbaş, A., 2009. Biofuels from agricultural biomass. Energy Sources, Part A, 31: 1573-1582.
  • [15] Moon, H.C., Jeong, H.R., Kim, D.H., 2012. Bioethanol production from acid-pretreated rice hull, Asia Pacific Journal of Chemical Engineering 7: 206-211.
  • [16] Stambuk, B.U., Eleutherio, E.C.A., Marina, L., Maria, F.A., Bon, E.P.S., 2008. Brazilian potential for biomass ethanol: Challenge of using hexose and pentose co-fermenting yeast strains. Journal of Scientific and Industrial Research 67:918–926.
  • [17] Ingram, L.O., Conway, T., Clark, D.P., Sewell, G. W., Preston, J.F., 1987. Genetic engineering of ethanol production in Escherichia coli. Applied and Environmental Microbiology 53: 2420–2425.
  • [18] Ingram, L.O. Conway, T. 1988. Expression of different levels of ethanologenic enzymes from Zymomonas mobilis in recombinant strains of Escherichia coli. Applied and Environmental Microbiology 54(2): 397-404.
  • [19] Dien, B.S., Nichols, N.N., O’Bryan, P.J., Rodney, B.J., 2000. Development of new ethanologenic Escherichia coli strains for fermentation of lignocellulosic biomass. Applied Biochemistry and Biotechnology 84-86:181-196.
  • [20] Karaalp, T., 2007. Bakteriyel selüloz üretiminde farklı karbon kaynaklarının değerlendirilmesi. Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi. [21] Guimarães, W.V., Dudey, G.L., Ingram, L.O., 1992.
  • Fermentation of sweet whey by ethanologenic Escherichia coli. Biotechnology and Bioengineering 40: 41-42.
  • [22] Mohagheghi, A., Ruth, M., Schell, D.J., 2006. Conditioning hemicellulose hydrolysates for fermentation: Effects of overliming pH on sugar and ethanol yields. Process Biochemistry 41(8): 1806– 1811.
  • [23] Davis, L., Rogers, P., Pearce, J., Peiris P., 2006. Evaluation of Zymomonas-based ethanol production from a hydrolyzed waste starch stream. Biomass and Bioenergy 30(8-9): 809-814.
  • [24] Khanam, J., Nanda, A., 1990. Batch acid hydrolysis of potato starch, Journal of Industrial Engineering 71: 5–8.
  • [25] Azhar, A., 1989. Alcohol fermentation of sweet potato. Acid hydrolysis and factors involved, Biotechnology and Bioengineering 23: 879–886.
  • [26] Tasic, M.B., Konstantinovic, B.V., Lazic, M.L., Veljkovic, V.B., 2009. The acid hydrolysis of potato tuber mash in bioethanol production. Biochemical Engineering Journal 43: 208–211.
  • [27] Konstantinovic, B.V., 2000. Ethanol production from potato tuber starch using Saccharomyces cerevisiae, M.Sc. Thesis, Faculty of Technology, Leskovac, University of Nis, Nis, Serbia.
  • [28] Leite, A.R., Guimarães, W.V., Araújo, E.F., Silva, D.O.2000 Fermentation of sweet whey by recombinant Escherichia coli KO11. Brazilian Journal of Microbiology 31(3): 212-215.
  • [29] Mosier, N., Wyman, C., Dale, B., Elander, R, Lee, Y.Y., Holtzapple, M., Ladisch, M.l., 2005. Features of promising technologies for pretreatment of lignocellulosic biomas. Bioresource Technology 96 (6): 673–686.
  • [30] Kumar R., Wyman C.E., 2009. Effects of cellulase and xylanase enzymes on the deconstruction of solids from pretreatment of poplar by leading technologies. Biotechnology Progress 25 (2): 302– 314.
  • [31] Zhang, Z,. Donaldson, A.A, Ma, X. 2012. Advancements and future directions in enzyme technology for biomass conversion, Biotechnology Advances 30 (4): 913–919.
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Research Article
Yazarlar

Taner Şar Bu kişi benim

Meltem Yeşilçimen Akbaş Bu kişi benim

Yayımlanma Tarihi 1 Mart 2016
Yayımlandığı Sayı Yıl 2016 Cilt: 14 Sayı: 1

Kaynak Göster

APA Şar, T., & Yeşilçimen Akbaş, M. (2016). Biyoetanol Üretimi İçin Gıda İşleme Atıklarının Asit Hidrolizi. Akademik Gıda, 14(1), 15-20.
AMA Şar T, Yeşilçimen Akbaş M. Biyoetanol Üretimi İçin Gıda İşleme Atıklarının Asit Hidrolizi. Akademik Gıda. Mart 2016;14(1):15-20.
Chicago Şar, Taner, ve Meltem Yeşilçimen Akbaş. “Biyoetanol Üretimi İçin Gıda İşleme Atıklarının Asit Hidrolizi”. Akademik Gıda 14, sy. 1 (Mart 2016): 15-20.
EndNote Şar T, Yeşilçimen Akbaş M (01 Mart 2016) Biyoetanol Üretimi İçin Gıda İşleme Atıklarının Asit Hidrolizi. Akademik Gıda 14 1 15–20.
IEEE T. Şar ve M. Yeşilçimen Akbaş, “Biyoetanol Üretimi İçin Gıda İşleme Atıklarının Asit Hidrolizi”, Akademik Gıda, c. 14, sy. 1, ss. 15–20, 2016.
ISNAD Şar, Taner - Yeşilçimen Akbaş, Meltem. “Biyoetanol Üretimi İçin Gıda İşleme Atıklarının Asit Hidrolizi”. Akademik Gıda 14/1 (Mart 2016), 15-20.
JAMA Şar T, Yeşilçimen Akbaş M. Biyoetanol Üretimi İçin Gıda İşleme Atıklarının Asit Hidrolizi. Akademik Gıda. 2016;14:15–20.
MLA Şar, Taner ve Meltem Yeşilçimen Akbaş. “Biyoetanol Üretimi İçin Gıda İşleme Atıklarının Asit Hidrolizi”. Akademik Gıda, c. 14, sy. 1, 2016, ss. 15-20.
Vancouver Şar T, Yeşilçimen Akbaş M. Biyoetanol Üretimi İçin Gıda İşleme Atıklarının Asit Hidrolizi. Akademik Gıda. 2016;14(1):15-20.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).