Nickel and Copper Removal from Aqueous Media using Polyaniline/Sugar Beet Pulp (PANI/SBP) Composite
Yıl 2020,
Cilt: 18 Sayı: 4, 357 - 366, 31.12.2020
Kevser Isık Yigit
Songul Sen Gursoy
Öz
In this study, polyaniline/sugar beet pulp (PANI/SBP) composites were synthesized, and the potential use of composites was determined for the removal of copper [Cu (II)] and nickel [Ni (II)] from wastewater. The structural and morphological properties of composites were determined by Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscope (SEM), respectively. The metal removal of composites from aqueous solutions was monitored by Ultraviolet Visible Absorption Spectrometer (UV-Vis). At this stage, some parameters, such as adsorbent dosage, stirring speed and contact time, the initial concentration of metal solutions and pH, were changed, and the most suitable condition was selected for metal removal. Metal removal from wastewater was determined by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) at optimum conditions. FTIR and SEM results supported the formation of PANI/SBP composites. Under optimum conditions, ICP-OES results for wastewater treated with PANI/SBP composite showed that this composite can be used for the removal of copper and nickel from wastewater.
Destekleyen Kurum
Burdur Mehmet Akif Ersoy University, Scientific Research Projects Commission for Scientific Research (Burdur, Turkey) & Scientific and Techological Research Council of Turkey (TÜBİTAK)
Proje Numarası
252YL14 &1649B021413182
Teşekkür
This research was financially supported by the Burdur Mehmet Akif Ersoy University, Scientific Research Projects Commission for Scientific Research (Burdur, Turkey) (Project Number: 252YL14) and Scientific and Techological Research Council of Turkey (Project number: 1649B021413182).
Kaynakça
- [1] Jamshaid, A., Hamid, A., Muhammad, N., Naseer, A., Ghauri, M., Iqbal, J., Rafiq, S., Shah, N.S. (2017). Cellulose-based materials for the removal of heavy metals from wastewater: An overview. ChemBioEng Reviews, 4(4), 1-18.
- [2] Parvin, S., Rahman, M.W., Saha, I., Alam, M.J., Khan, M.M.R. (2019). Coconut tree bark as a potential low-cost adsorbent for the removal of methylene blue from wastewater. Desalination and Water Treatment, 146, 385-392.
- [3] Mohsen, G., Hossein, E. (2013). Removal of COD, color, anions and heavy metals from cotton textile wastewater by using polyaniline and polypyrrole nanocomposites coated on rice husk ash. Composites: Part B, 45, 1-7.
- [4] Alhumaimess, M.S., Alsohaimi, I.H.,, Alqadami, A.A., Kamel, M.M., Naushad, M., Ahamad, T., Alshammari, H. (2019). Synthesis of phosphorylated raw sawdust for the removal of toxic metal ions from aqueous medium: Adsorption mechanism for clean approach. Journal of Sol-Gel Science and Technology, 89, 602-615.
- [5] Volesky, B. (2003). Sorption and Biosorption, BV-Sorbex, Inc., St. Lambert, Quebec.
- [6] Altundogan, H.S., Arslan, NE., & Tumen, F. (2007). Copper removal from aqueous solutions by sugar beet pulp treated by NaOH and citric acid. Journal of Hazardous Materials, 149(2), 432-439.
- [7] Mata, Y.N., Blázquez, M.L., Ballester, A., González, F., & Muñoz, J.A. (2009). Sugar-beet pulp pectin gels as biosorbent for heavy metals: Preparation and determination of biosorption and desorption characteristics. Chemical Engineering Journal, 150(2-3), 289-301.
- [8] Ozer, A., Tumen, F. (2005). Cu(II) adsorption from aqueous solutions on sugar beet pulp carbon. The European Journal of Mineral Processing and Environmental Protection, 5(1) 26-34.
- [9] Hsini, A., Naciri, Y., Laabd, M., El Ouardi, M., Ajmal, Z., Lakhmiri, R., Boukherroub, R., Albourine A. (2020). Synthesis and characterization of arginine-doped polyaniline/walnut shell hybrid composite with superior clean-up ability for chromium (VI) from aqueous media: Equilibrium, reusability and process optimization. Journal of Molecular Liquids, 316, 113832-113845.
- [10] Chen, J., Wang, N., Liu, Y., Zhu, J., Feng, J., Yan, W. (2018). Synergetic effect in a self-doping polyaniline/TiO2 composite for selective adsorption of heavy metal ions. Synthetic Metals, 245, 32-41.
- [11] Ghorbani, M., Lashkenari, M.S., Eisazadeh, H. (2011). Application of polyaniline nanocomposite coated on rice husk ash for removal of Hg(II) from aqueous media. Synthetic Metals, 161, 1430-1433.
- [12] Qomi, M.H., Eisazadeh, H., Hosseini, M., Namaghi, H.A. (2014). Manganese removal from aqueous media using polyanilinenanocomposite coated on wood sawdust. Synthetic Metals, 194, 153-159.
- [13] Mansour, M.S., Ossman, M.E., Farag, H.A. (2011). Removal of Cd (II) ion from waste water by adsorption onto polyaniline coated on sawdust. Desalination, 272, 301-305.
- [14] Trchova, M., Sedenkova, I., Tobolkova, E., Stejskal, J. (2004). FTIR spectroscopic and conductivity study of the thermal degradation of polyaniline films. Polymer Degradation and Stability, 86, 179-185.
- [15] Chuapradit, C., Wannatong, L.R., Chotpattananont, D., Hiamtup, P., Sirivat, A., Schwank, J. (2005). Polyaniline/zeolite LTA composites and electrical conductivity response towards CO. Polymer, 46, 947-953.
- [16] Densakulprasert, N., Wannatong, L., Chotpattananont, D., Hiamtup, P., Sirivat, A., Schwank, J. (2005). Electrical conductivity of polyaniline/zeolite composites and synergetic interaction with CO. Materials Science and Engineering B, 117, 276-282.
- [17] Salaneck, W. R., Liedberg, B., Inganäs, O., Erlandsson, R., Lundström, I., Macdiarmid, A. G., Halpern, M., Somasiri, N.L.D. (1985). Physical characterization of some polyaniline, (øN)x. Molecular Crystals and Liquid Crystals, 121, 191-194.
- [18] Quillard, S., Louarn, G., Lefrant, S., Macdıarmıd, A.G. (1994). Vibrational analysis of polyaniline-A comparative study of leucoemeraldine, emeraldine, and pernigraniline bases. Physical Review B, 50(17), 12496-508.
- [19] Sun, X.F., Xu, F., Sun, R.C., Fowler, P., Baird, M.S. (2005). Characteristics of degraded cellulose obtained from steam-exploded wheat straw. Carbohydrate Research, 340, 97-106.
- [20] Moazezi, N., Moosavian, M.A. (2016). Removal of rubidium ions by polyaniline nanocomposites modified with cobalt-Prussian blue analogues. Journal of Environmental Chemical Engineering, 4, 2440-2449.
- [21] Abbès, B., Lacoste, C., Bliard, C., Maalouf, C., Simescu-Lazar, F., Bogard, F., Polidori, G., (2020). Novel extruded starch-beet pulp composites for packaging foams. Materials, 13, 1571-1585.
- [22] Eisazadeha, A., Eisazadeh, H., Kassim, K.A. (2013). Removal of Pb(II) using polyaniline composites and iron oxide coated natural sand and clay from aqueous solution. Synthetic Metals, 171, 56-61.
- [23] Hasani, T., Eisazadeh, H. (2013). Removal of Cd (II) by using polypyrrole and its nanocomposites. Synthetic Metals, 175, 15-20.
- [24] Javadian, H., Vahedian, P., Toosi, M. (2013). Adsorption characteristics of Ni(II) from aqueous solution and industrial wastewater onto Polyaniline/HMS nanocomposite powder. Applied Surface Science, 284, 13-22.
- [25] Igberase, E., Osifo, P., Ofomaja, A. (2014). The adsorption of copper (II) ions by polyaniline graft chitosan beads from aqueous solution: Equilibrium, kinetic and desorption studies. Journal of Environmental Chemical Engineering, 2, 362-369.
- [26] Garg, V.K., Gupta, R., Yadav, A.B. and Kumar, R. (2003). Dye removal from aqueous solution by adsorption on treated sawdust. Bioresource Technology, 89, 121-124.
- [27] Blinova, N.V., Stejskal, J., Trchova, M., Prokes, J., Omastova, M. (2007). Polyaniline and polypyrrole: A comparative study of the preparation. European Polymer Journal, 43, 2331-2341.
- [28] Javadian, H., Sorkhrodi, F.Z., Koutenaei, B.B. (2014). Experimental investigation on enhancing aqueous cadmium removal via nanostructure composite of modified hexagonal type mesoporous silica with polyaniline/polypyrrole nanoparticles. Journal of Industrial and Engineering Chemistry, 20, 3678-3688.
- [29] Kong, A., Ji, Y., Ma, H., Song, Y., He, B., Li, J. (2018). A novel route for the removal of Cu(II) and Ni(II) ions via homogeneous adsorption by chitosan solution, Journal of Cleaner Production, 192, 801-808.
- [30] Guan, J., Wang, J., Wang, Z., Zhuang, J., Dong, D., Luo, M., Lu, N., Yuan, X. (2019). Comparison of Pb(II), Cu(II), Cd(II), and Ni(II) adsorption onto surficial sediment components from aquatic environments in the Phaeozem zone of Northeast China. Journal of Geochemical Exploration, 197, 220-227.
Polianilin/Şeker Pancarı Posası (PANI/SBP) Kompoziti Kullanılarak Sulu Ortamdan Nikel ve Bakırın Uzaklaştırılması
Yıl 2020,
Cilt: 18 Sayı: 4, 357 - 366, 31.12.2020
Kevser Isık Yigit
Songul Sen Gursoy
Öz
Bu çalışmada polianilin/şeker pancarı posası (PANI/SBP) kompozitleri sentezlenmiş ve atık sudan bakır ve nikelin uzaklaştırılmasında kompozitlerin potansiyel kullanımı araştırılmıştır. Kompozitlerin yapısal ve morfolojik özellikleri sırasıyla Fourier Dönüşümü Kızılötesi Spektroskopisi (FTIR) ve Taramalı Elektron Mikroskobu (SEM) ile incelenmiştir. Sulu çözeltilerden metal uzaklaştırma çalışmaları Ultraviyole Görünür Absorpsiyon Spektrometresi (UV-Vis) ile izlenmiştir. Bu aşamada adsorban dozajı, karıştırma hızı ve karıştırma süresi, metal çözeltilerin başlangıç konsantrasyonu ve pH gibi bazı parametreler değiştirilerek metal uzaklaştırma için optimum koşullar belirlenmiştir. Atık sudan metal uzaklaştırma çalışmaları, Endüktif Olarak Eşleştirilmiş Plazma Optik Emisyon Spektrometresi (ICP-OES) ile optimum koşullarda gerçekleştirilmiştir. FTIR ve SEM sonuçları, PANI/SBP kompozitlerinin oluşumunu desteklemektedir. Optimum koşullarda, PANI/SBP kompoziti ile muamele edilmiş atık su için elde edilen ICP-OES sonuçları, kompozitin atık sudan bakır ve nikelin uzaklaştırılmasında kullanılabileceğini göstermiştir.
Proje Numarası
252YL14 &1649B021413182
Kaynakça
- [1] Jamshaid, A., Hamid, A., Muhammad, N., Naseer, A., Ghauri, M., Iqbal, J., Rafiq, S., Shah, N.S. (2017). Cellulose-based materials for the removal of heavy metals from wastewater: An overview. ChemBioEng Reviews, 4(4), 1-18.
- [2] Parvin, S., Rahman, M.W., Saha, I., Alam, M.J., Khan, M.M.R. (2019). Coconut tree bark as a potential low-cost adsorbent for the removal of methylene blue from wastewater. Desalination and Water Treatment, 146, 385-392.
- [3] Mohsen, G., Hossein, E. (2013). Removal of COD, color, anions and heavy metals from cotton textile wastewater by using polyaniline and polypyrrole nanocomposites coated on rice husk ash. Composites: Part B, 45, 1-7.
- [4] Alhumaimess, M.S., Alsohaimi, I.H.,, Alqadami, A.A., Kamel, M.M., Naushad, M., Ahamad, T., Alshammari, H. (2019). Synthesis of phosphorylated raw sawdust for the removal of toxic metal ions from aqueous medium: Adsorption mechanism for clean approach. Journal of Sol-Gel Science and Technology, 89, 602-615.
- [5] Volesky, B. (2003). Sorption and Biosorption, BV-Sorbex, Inc., St. Lambert, Quebec.
- [6] Altundogan, H.S., Arslan, NE., & Tumen, F. (2007). Copper removal from aqueous solutions by sugar beet pulp treated by NaOH and citric acid. Journal of Hazardous Materials, 149(2), 432-439.
- [7] Mata, Y.N., Blázquez, M.L., Ballester, A., González, F., & Muñoz, J.A. (2009). Sugar-beet pulp pectin gels as biosorbent for heavy metals: Preparation and determination of biosorption and desorption characteristics. Chemical Engineering Journal, 150(2-3), 289-301.
- [8] Ozer, A., Tumen, F. (2005). Cu(II) adsorption from aqueous solutions on sugar beet pulp carbon. The European Journal of Mineral Processing and Environmental Protection, 5(1) 26-34.
- [9] Hsini, A., Naciri, Y., Laabd, M., El Ouardi, M., Ajmal, Z., Lakhmiri, R., Boukherroub, R., Albourine A. (2020). Synthesis and characterization of arginine-doped polyaniline/walnut shell hybrid composite with superior clean-up ability for chromium (VI) from aqueous media: Equilibrium, reusability and process optimization. Journal of Molecular Liquids, 316, 113832-113845.
- [10] Chen, J., Wang, N., Liu, Y., Zhu, J., Feng, J., Yan, W. (2018). Synergetic effect in a self-doping polyaniline/TiO2 composite for selective adsorption of heavy metal ions. Synthetic Metals, 245, 32-41.
- [11] Ghorbani, M., Lashkenari, M.S., Eisazadeh, H. (2011). Application of polyaniline nanocomposite coated on rice husk ash for removal of Hg(II) from aqueous media. Synthetic Metals, 161, 1430-1433.
- [12] Qomi, M.H., Eisazadeh, H., Hosseini, M., Namaghi, H.A. (2014). Manganese removal from aqueous media using polyanilinenanocomposite coated on wood sawdust. Synthetic Metals, 194, 153-159.
- [13] Mansour, M.S., Ossman, M.E., Farag, H.A. (2011). Removal of Cd (II) ion from waste water by adsorption onto polyaniline coated on sawdust. Desalination, 272, 301-305.
- [14] Trchova, M., Sedenkova, I., Tobolkova, E., Stejskal, J. (2004). FTIR spectroscopic and conductivity study of the thermal degradation of polyaniline films. Polymer Degradation and Stability, 86, 179-185.
- [15] Chuapradit, C., Wannatong, L.R., Chotpattananont, D., Hiamtup, P., Sirivat, A., Schwank, J. (2005). Polyaniline/zeolite LTA composites and electrical conductivity response towards CO. Polymer, 46, 947-953.
- [16] Densakulprasert, N., Wannatong, L., Chotpattananont, D., Hiamtup, P., Sirivat, A., Schwank, J. (2005). Electrical conductivity of polyaniline/zeolite composites and synergetic interaction with CO. Materials Science and Engineering B, 117, 276-282.
- [17] Salaneck, W. R., Liedberg, B., Inganäs, O., Erlandsson, R., Lundström, I., Macdiarmid, A. G., Halpern, M., Somasiri, N.L.D. (1985). Physical characterization of some polyaniline, (øN)x. Molecular Crystals and Liquid Crystals, 121, 191-194.
- [18] Quillard, S., Louarn, G., Lefrant, S., Macdıarmıd, A.G. (1994). Vibrational analysis of polyaniline-A comparative study of leucoemeraldine, emeraldine, and pernigraniline bases. Physical Review B, 50(17), 12496-508.
- [19] Sun, X.F., Xu, F., Sun, R.C., Fowler, P., Baird, M.S. (2005). Characteristics of degraded cellulose obtained from steam-exploded wheat straw. Carbohydrate Research, 340, 97-106.
- [20] Moazezi, N., Moosavian, M.A. (2016). Removal of rubidium ions by polyaniline nanocomposites modified with cobalt-Prussian blue analogues. Journal of Environmental Chemical Engineering, 4, 2440-2449.
- [21] Abbès, B., Lacoste, C., Bliard, C., Maalouf, C., Simescu-Lazar, F., Bogard, F., Polidori, G., (2020). Novel extruded starch-beet pulp composites for packaging foams. Materials, 13, 1571-1585.
- [22] Eisazadeha, A., Eisazadeh, H., Kassim, K.A. (2013). Removal of Pb(II) using polyaniline composites and iron oxide coated natural sand and clay from aqueous solution. Synthetic Metals, 171, 56-61.
- [23] Hasani, T., Eisazadeh, H. (2013). Removal of Cd (II) by using polypyrrole and its nanocomposites. Synthetic Metals, 175, 15-20.
- [24] Javadian, H., Vahedian, P., Toosi, M. (2013). Adsorption characteristics of Ni(II) from aqueous solution and industrial wastewater onto Polyaniline/HMS nanocomposite powder. Applied Surface Science, 284, 13-22.
- [25] Igberase, E., Osifo, P., Ofomaja, A. (2014). The adsorption of copper (II) ions by polyaniline graft chitosan beads from aqueous solution: Equilibrium, kinetic and desorption studies. Journal of Environmental Chemical Engineering, 2, 362-369.
- [26] Garg, V.K., Gupta, R., Yadav, A.B. and Kumar, R. (2003). Dye removal from aqueous solution by adsorption on treated sawdust. Bioresource Technology, 89, 121-124.
- [27] Blinova, N.V., Stejskal, J., Trchova, M., Prokes, J., Omastova, M. (2007). Polyaniline and polypyrrole: A comparative study of the preparation. European Polymer Journal, 43, 2331-2341.
- [28] Javadian, H., Sorkhrodi, F.Z., Koutenaei, B.B. (2014). Experimental investigation on enhancing aqueous cadmium removal via nanostructure composite of modified hexagonal type mesoporous silica with polyaniline/polypyrrole nanoparticles. Journal of Industrial and Engineering Chemistry, 20, 3678-3688.
- [29] Kong, A., Ji, Y., Ma, H., Song, Y., He, B., Li, J. (2018). A novel route for the removal of Cu(II) and Ni(II) ions via homogeneous adsorption by chitosan solution, Journal of Cleaner Production, 192, 801-808.
- [30] Guan, J., Wang, J., Wang, Z., Zhuang, J., Dong, D., Luo, M., Lu, N., Yuan, X. (2019). Comparison of Pb(II), Cu(II), Cd(II), and Ni(II) adsorption onto surficial sediment components from aquatic environments in the Phaeozem zone of Northeast China. Journal of Geochemical Exploration, 197, 220-227.