Araştırma Makalesi
BibTex RIS Kaynak Göster

Bütün ve Parça Meyvelerden Üretilen Kamkat Reçellerinin Fizikokimyasal ve Fitokimyasal Özellikleri

Yıl 2021, Cilt: 19 Sayı: 3, 267 - 274, 19.10.2021
https://doi.org/10.24323/akademik-gida.1011217

Öz

Bu çalışmada bütün meyve ve meyve parçalarından kamkat reçeli üretilmiştir. Reçel üretiminde “Nagami” çeşidine ait (Fortunella margarita Swingle) kamkat meyveleri kullanılmıştır. Reçel prosesinde geleneksel üretim tekniği kullanılmıştır. Reçeller toplam kuru madde, suda çözünür kuru madde, pH, titrasyon asitliği, su aktivitesi, renk özellikleri, toplam fenolik madde miktarı, toplam flavonoid miktarı, askorbik asit içerikleri, şeker, organik asit bileşenleri ve antioksidan aktivite [2,2-difenil-1-pikrilhidrazil (DPPH) radikali süpürme aktivitesi ve oksijen radikali absorbans kapasitesi (ORAC)] açısından incelenmiştir. Kamkat reçellerinin toplam kuru madde, suda çözünür kuru madde, su aktivitesi, pH ve titrasyon asitliği değerleri sırasıyla 75.36-76.35 g/100 g, 70.25-70.32°Bx, 0.803-0.809, 3.39-3.43 ve %0.40-0.55 olarak belirlenmiştir. Reçel örneklerinin glukoz, fruktoz, sakkaroz ve toplam şeker içerikleri sırasıyla 20.35-20.61 g/100 g, 28.54-28.56 g/100 g, 20.70-20.75 g/100 g ve 69.64-69.87 g/100 g aralığında değişim göstermiştir. Reçel örneklerinde majör organik asitlerin sitrik (0.15-0.19 g/100 g) ve okzalik (0.08-0.14 g/100 g) asit olduğu belirlenmiştir. Genel olarak en yüksek toplam fenolik madde (87.79 mg GAE/ 100 g), toplam flavonoid (37.71 mg CE/100 g), askorbik asit içeriği (108.33 mg/100 g) ile IC50 ( 630.44 mg/mg) ve ORAC (33.22 µmol TE/g) değerleri bütün meyveden üretilen kamkat reçeli örneğinde tespit edilmiştir.

Destekleyen Kurum

Tarımsal Araştırmalar ve Politikalar Genel Müdürlüğü (TAGEM)

Proje Numarası

TAGEM/HSGYAD/17/A03/P06/138

Teşekkür

Bu çalışma Tarımsal Araştırmalar ve Politikalar Genel Müdürlüğü (TAGEM) tarafından desteklenen TAGEM/HSGYAD/17/A03/P06/138 No’lu projenin bir bölümüdür. Projeye desteklerinden dolayı TAGEM’e teşekkür ederiz.

Kaynakça

  • [1] Rababah, T.M., Al‐Mahasneh, M.A., Kilani, I., Yang, W., Alhamad, M.N., Ereifej, K., Al‐u'datt, M. (2011). Effect of jam processing and storage on total phenolics, antioxidant activity, and anthocyanins of different fruits. Journal of the Science of Food and Agriculture, 91(6), 1096-1102.
  • [2] Cemeroğlu, B., Karadeniz, F., Özkan M. (2003). Meyve ve sebze işleme teknolojisi. Gıda Teknolojisi Derneği Yayınları No:28, Ankara.
  • [3] Tokbaş, H. (2009). Karadut meyvesinin (morus nigra L.) reçel ile marmelata işlenmesi ve ürünlerin antioksidan özelliklerinin belirlenmesi. Yüksek lisans tezi, Gaziosmanpaşa Üniversitesi, Fen Bilimleri Enstitüsü, Tokat.
  • [4] Anonim, (2006). Türk Gıda Kodeksi (TGK) Reçel, jöle, marmelat ve tatlandırılmış kestane püresi tebliği (Teblig No: 2006/55).
  • [5] Renna, M., Pace, B., Cefola, M., Santamaria, P., Serio, F., Gonnella, M. (2013). Comparison of two jam making methods to preserve the quality of colored carrots. LWT-Food Science and Technology, 53(2), 547-554.
  • [6] Ding, S., Wang, R., Zhang, J., Li, G., Zhang, J., Ou, S., Shan, Y. (2017). Effect of drying temperature on the sugars, organic acids, limonoids, phenolics, and antioxidant capacities of lemon slices. Food Science and Biotechnology, 26(6), 1523-1533.
  • [7] Achir, N., Dhuique-Mayer, C., Hadjal, T., Madani, K., Pain, J.P., Dornier, M. (2016). Pasteurization of citrus juices with ohmic heating to preserve the carotenoid profile. Innovative Food Science and Emerging Technologies, 33, 397-404.
  • [8] Besbes, S., Drira, L., Blecker, C., Deroanne, C., Attia, H. (2009). Adding value to hard date (Phoenix dactylifera L.): compositional, functional and sensory characteristics of date jam. Food Chemistry, 112(2), 406-411.
  • [9] Kamiloglu, S., Paslı, A.A., Ozcelik, B., Van Camp, J., Çapanoglu, E. (2015). Influence of different processing and storage conditions on in vitro bioaccessibility of polyphenols in black carrot jams and marmalades. Food Chemistry, 186, 74-82.
  • [10] Basu, S., Shivhare, U.S., Singh, T.V. (2013). Effect of substitution of stevioside and sucralose on rheological, spectral, color and microstructural characteristics of mango jam. Journal of Food Engineering, 114(4), 465-476.
  • [11] Igual, M., Garcia-Martinez, E., Camacho, M. M., Martínez-Navarrete, N. (2013). Jam processing and storage effects on β-carotene and flavonoids content in grapefruit. Journal of Functional Foods, 5(2), 736-744.
  • [12] Shinwari, K.J., Rao, P.S. (2018). Stability of bioactive compounds in fruit jam and jelly during processing and storage: A review. Trends in Food Science and Technology, 75, 181-193.
  • [13] Djaoudene, O., Louaileche, H. (2016). Impact of storage conditions on the bioactive compounds and antioxidant capacity of commercial orange jam. Journal of Analytical, Bioanalytical and Separation Techniques, 1(1), 8-11.
  • [14] Morton, J. (1987). Kumquat. In: Fruits of Warm Climates. Creative Resource Systems, Miami, FL. USA, pp. 182-185.
  • [15] Schirra, M., Palma, A., D’Aquino, S., Angioni, A., Minello, E.V., Melis, M., Cabras, P. (2008). Influence of postharvest hot water treatment on nutritional and functional properties of kumquat (Fortunella japonica Lour. Swingle Cv. Ovale) fruit. Journal of Agricultural and Food Chemistry, 56(2), 455-460.
  • [16] Wang, Y.C., Chuang, Y.C., Ku, Y.H. (2007). Quantitation of bioactive compounds in citrus fruits cultivated in Taiwan. Food Chemistry. 102(4), 1163-1171.
  • [17] Lou, S.N., Lai, Y.C., Huang, J.D., Ho, C.T., Ferng, L.H.A., Chang, Y.C. (2015). Drying effect on flavonoid composition and antioxidant activity of immature kumquat. Food Chemistry, 171, 356-363.
  • [18] Nogata, Y., Sakamoto, K., Shiratsuchi, H., Ishii, T., Yano, M., Ohta, H. (2006). Flavonoid composition of fruit tissues of citrus species. Bioscience, Biotechnology, and Biochemistry, 70(1), 178-192.
  • [19] Agócs, A., Nagy, V., Szab, Z., Márk, L., Ohmacht, R. Deli, J. (2007). Comparative study on the carotenoid composition of the peel and the pulp of different citrus species. Innovative Food Science and Emerging Technologies, 8(3), 390-394.
  • [20] Lou, S.N., Lai, Y.C., Hsu, Y.S., Ho, C.T. (2016). Phenolic content, antioxidant activity and effective compounds of kumquat extracted by different solvents. Food Chemistry, 197, 1-6.
  • [21] Barreca, D., Bellocco, E., Caristi, C., Leuzzi, U., Gattuso, G. (2011). Kumquat (Fortunella japonica Swingle) juice: Flavonoid distribution and antioxidant properties. Food Research International, 44(7), 2190-2197.
  • [22] Jayaprakasha, G.K., Murthy, K.N.C., Demarais, R., Patil, B.S. (2012). Inhibition of prostate cancer (LNCaP) cell proliferation by volatile components from Nagami kumquats. Planta Medica, 78(10), 974-980.
  • [23] Wang, Y.W., Zeng, W.C., Xu, P.Y., Lan, Y.J., Zhu, R. X., Zhong, K., Huang, Y., Gao, H. (2012). Chemical composition and antimicrobial activity of the essential oil of kumquat (Fortunella crassifolia Swingle) peel. International Journal of Molecular Sciences, 13(3), 3382-3393.
  • [24] Tan, S., Li, M., Ding, X., Fan, S., Guo, L., Gu, M., Zhang, Y., Feng, L., Jiang, D., Li, Y., Xi, W. (2014). Effects of Fortunella margarita fruit extract on metabolic disorders in high-fat diet-induced obese C57BL/6 mice. PLoS One, 9(4), e93510.
  • [25] Nagahama, K., Eto, N., Shimojo, T., Kondoh, T., Nakahara, K., Sakakibara, Y., Fukui, K., Suiko, M. (2015). Effect of kumquat (Fortunella crassifolia) pericarp on natural killer cell activity in vitro and in vivo. Bioscience, Biotechnology, and Biochemistry, 79(8), 1327-1336.
  • [26] Yıldız Turgut, D., Gölükcü, M., Tokgöz, H. (2015). Kamkat (Fortunella margarita Swing.) meyvesi ve reçelinin bazı fiziksel ve kimyasal özellikleri. Derim, 32 (1), 71-80.
  • [27] Cemeroğlu, B. (2007). Gıda analizleri. Gıda Teknolojisi Derneği Yayınları, Ankara, 535 s.
  • [28] Singleton, V.L., Orthofer, R., Lamuela-Raventós, R.M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology, 299, 152-178.
  • [29] Zhishen, J., Mengcheng, T., Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555-559.
  • [30] Cemeroğlu, B. (2010). Gıda Analizleri. Genişletilmiş 2. Baskı. Gıda Teknolojisi Derneği Yayınları No: 34. Bizim Grup Basımevi. Ankara. 657 s.
  • [31] Ena, A., Pintucci, C., Carlozzi, P. (2012). The recovery of polyphenols from olive mill waste using two adsorbing vegetable matrices. Journal of Biotechnology, 157(4), 573-577.
  • [32] Sdiri, S., Bermejo, A., Aleza, P., Navarro, P., Salvador, A. (2012). Phenolic composition, organic acids, sugars, vitamin C and antioxidant activity in the juice of two new triploid late-season mandarins. Food Research International, 49(1), 462-468.
  • [33] Nour, V., Trandafir, M. E., Ionica, M.E. (2010). HPLC organic acid analysis in different citrus juices under reversed phase conditions. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 38(1), 44-48.
  • [34] Turhan, İ. (2014). Relationship between sugar profile and D-pinitol content of pods of wild and cultivated types of carob bean (Ceratonia siliqua L.). International Journal of Food Properties, 17(2), 363-370.
  • [35] Özay, G., Pala, M., Saygı, B. (1993). Bazı gıdaların su aktivitesi yönünden incelenmesi. Gıda Dergisi, 18(6), 377-383.
  • [36] Yıldız, O., Alpaslan, M. (2012). Properties of rose hip marmalades. Food Technology and Biotechnology, 50(1), 98-106.
  • [37] Fratianni, A., Cinquanta, L., Panfili, G. (2010). Degradation of carotenoids in orange juice during microwave heating. LWT-Food Science and Technology, 43(6), 867-871.
  • [38] Aksay, S., Tokbaş, H., Arslan, R., Çınar, F. (2018). Some physicochemical properties of the whole fruit mandarin jam. Turkish Journal of Agriculture-Food Science and Technology, 6(5), 632-635.
  • [39] Allam, M., Khedr, A.A., Beltagy, A. (2015). Kumquat As A Potent Natural Material To Improve Lipid Profile Of Hypercholestrolemic Rats. Biolife An International Quarterly Journal of Biology and Life Sciences, 3(1), 171-181.
  • [40] Lou, S.N., Ho, C.T. (2017). Phenolic compounds and biological activities of small-size citrus: Kumquat and calamondin. Journal of Food and Drug Analysis, 25(1),162-175.
  • [41] González-Molina, E., Domínguez-Perles, R., Moreno, D.A., García-Viguera, C. (2010). Natural bioactive compounds of Citrus limon for food and health. Journal of Pharmaceutical and Biomedical Analysis, 51(2), 327-345.
  • [42] Torregrosa, F., Esteve, M. J., Frígola, A., Cortés, C. (2006). Ascorbic acid stability during refrigerated storage of orange–carrot juice treated by high pulsed electric field and comparison with pasteurized juice. Journal of Food Engineering, 73(4), 339–345.
  • [43] Igual, M., García-Martínez, E., Camacho, M. M., Martínez-Navarrete, N. (2016). Stability of micronutrients and phytochemicals of grapefruit jam as affected by the obtention process. Food Science and Technology International, 22(3), 203-212.
  • [44] Naeem, M.M., Fairulnizal, M.M., Norhayati, M.K., Zaiton, A., Norliza, A.H., Syuriahti, W.W., Mohd Azerulazree, J., Aswir, A.R., Rusidah, S. (2017). The nutritional composition of fruit jams in the Malaysian market. Journal of the Saudi Society of Agricultural Sciences, 16(1), 89-96.
  • [45] Anuar, N.A., Salleh, R.M. (2019). Development of fruit jam from Averrhoa bilimbi L. Journal of Food Processing and Preservation, 43(4), e13904.
  • [46] Vinci, G., Botre, F. Mele, G. (1995). Ascorbic acid in exotic fruits: a liquid chromatographic investigation. Food Chemistry, 53, 211-214.
  • [47] Ramful, D., Tarnus, E., Aruoma, O.I., Bourdon, E. Bahorun, T. (2011). Polyphenol composition, vitamin C content and antioxidant capacity of Mauritian citrus fruit pulps. Food Research International, 44, 2088–2099.
  • [48] Kelebek, H. (2010). Sugars, organic acids, phenolic compositions and antioxidant activity of Grapefruit (Citrus paradisi) cultivars grown in Turkey. Industrial Crops and Products, 32(3), 269-274.
  • [49] Abeysinghe, D.C., Li, X., Sun, C., Zhang, W., Zhou, C., Chen, K. (2007). Bioactive compounds and antioxidant capacities in different edible tissues of citrus fruit of four species. Food Chemistry, 104(4), 1338-1344.
  • [50] Xu, G., Liu, D., Chen, J., Ye, X., Ma, Y., Shi, J. (2008). Juice components and antioxidant capacity of citrus varieties cultivated in China. Food chemistry, 106(2), 545-551.
  • [51] Silva, B.M., Andrade, P.B., Gonçalves, A.C., Seabra, R.M., Oliveira, M.B., Ferreira, M.A. (2004). Influence of jam processing upon the contents of phenolics, organic acids and free amino acids in quince fruit (Cydonia oblonga Miller). European Food Research and Technology, 218(4), 385-389.
  • [52] Karadeniz, F. (2004). Main organic acid distribution of authentic citrus juices in Turkey. Turkish Journal of Agriculture and Forestry, 28(4), 267-271.
  • [53] Kelebek, H., Selli, S. (2011). Determination of volatile, phenolic, organic acid and sugar components in a Turkish cv. Dortyol (Citrus sinensis L. Osbeck) orange juice. Journal of The Science of Food and Agriculture, 91(10), 1855-1862.
  • [54] Touati, N., Tarazona-Díaz, M. P., Aguayo, E., Louaileche, H. (2014). Effect of storage time and temperature on the physicochemical and sensory characteristics of commercial apricot jam. Food Chemistry, 145, 23-27.
  • [55] Özdogan F., (2006). Domates reçel ürünlerinin gelistirilmesi ve değerlendirilmesi. Yüksek Lisans Tezi, Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü, Çanakkale.
  • [56] Koç, E., Ömeroğlu, P.Y. (2019). Geleneksel anjelika (melek otu) reçelinin fizikokimyasal ve duyusal özellikleri. Akademik Gıda, 17(4), 485-496.

Physicochemical and Phytochemical Properties Kumquat Jams Produced with Whole Fruits and Small Pieces of Fruits

Yıl 2021, Cilt: 19 Sayı: 3, 267 - 274, 19.10.2021
https://doi.org/10.24323/akademik-gida.1011217

Öz

In this study, kumquat jams were produced from whole fruits and small pieces of fruits. Kumquat fruits of the “Nagami” variety (Fortunella margarita Swingle) were used in jam production. The traditional method was used in the jam processing. Jams were analyzed for total dry matter, total soluble solids, pH, titration acidity, water activity, color properties, total phenolic matter content, total flavonoid content, ascorbic acid content, organic acids, sugars and antioxidant activity [2,2-diphenyl-1picrylhydrazyl (DPPH) radical scavenging activity and oxygen radical absorbance capacity (ORAC)]. The ranges for the total dry matter, water soluble dry matter, water activity, pH and titratable acidity values of kumquat jams were determined as 75.36-76.35 g/100 g, 70.25-70.32°Bx, 0.803-0.809, 3.39-3.43 and 0.40-0.55%, respectively. The ranges for glucose, fructose, sucrose and total sugar contents of the jam samples were 20.35-20.61 g/100 g, 28.54-28.56 g/100 g, 20.70-20.75 g/100 g and 69.64-69.87 g/100 g, respectively. Citric (0.15-0.19 g/100 g) and oxalic (0.08-0.14 g/100 g) acids were the major organic acids in jam samples. In general, the highest total phenolic matter (87.79 mg GAE/ 100 g), total flavonoid (37.71 mg CE/100 g), ascorbic acid contents (108.33 mg/100 g), IC50 (630.44 mg/mg) and ORAC (33.22 µmol TE/g) values were determined in kumquat jam samples produced with whole fruits.

Proje Numarası

TAGEM/HSGYAD/17/A03/P06/138

Kaynakça

  • [1] Rababah, T.M., Al‐Mahasneh, M.A., Kilani, I., Yang, W., Alhamad, M.N., Ereifej, K., Al‐u'datt, M. (2011). Effect of jam processing and storage on total phenolics, antioxidant activity, and anthocyanins of different fruits. Journal of the Science of Food and Agriculture, 91(6), 1096-1102.
  • [2] Cemeroğlu, B., Karadeniz, F., Özkan M. (2003). Meyve ve sebze işleme teknolojisi. Gıda Teknolojisi Derneği Yayınları No:28, Ankara.
  • [3] Tokbaş, H. (2009). Karadut meyvesinin (morus nigra L.) reçel ile marmelata işlenmesi ve ürünlerin antioksidan özelliklerinin belirlenmesi. Yüksek lisans tezi, Gaziosmanpaşa Üniversitesi, Fen Bilimleri Enstitüsü, Tokat.
  • [4] Anonim, (2006). Türk Gıda Kodeksi (TGK) Reçel, jöle, marmelat ve tatlandırılmış kestane püresi tebliği (Teblig No: 2006/55).
  • [5] Renna, M., Pace, B., Cefola, M., Santamaria, P., Serio, F., Gonnella, M. (2013). Comparison of two jam making methods to preserve the quality of colored carrots. LWT-Food Science and Technology, 53(2), 547-554.
  • [6] Ding, S., Wang, R., Zhang, J., Li, G., Zhang, J., Ou, S., Shan, Y. (2017). Effect of drying temperature on the sugars, organic acids, limonoids, phenolics, and antioxidant capacities of lemon slices. Food Science and Biotechnology, 26(6), 1523-1533.
  • [7] Achir, N., Dhuique-Mayer, C., Hadjal, T., Madani, K., Pain, J.P., Dornier, M. (2016). Pasteurization of citrus juices with ohmic heating to preserve the carotenoid profile. Innovative Food Science and Emerging Technologies, 33, 397-404.
  • [8] Besbes, S., Drira, L., Blecker, C., Deroanne, C., Attia, H. (2009). Adding value to hard date (Phoenix dactylifera L.): compositional, functional and sensory characteristics of date jam. Food Chemistry, 112(2), 406-411.
  • [9] Kamiloglu, S., Paslı, A.A., Ozcelik, B., Van Camp, J., Çapanoglu, E. (2015). Influence of different processing and storage conditions on in vitro bioaccessibility of polyphenols in black carrot jams and marmalades. Food Chemistry, 186, 74-82.
  • [10] Basu, S., Shivhare, U.S., Singh, T.V. (2013). Effect of substitution of stevioside and sucralose on rheological, spectral, color and microstructural characteristics of mango jam. Journal of Food Engineering, 114(4), 465-476.
  • [11] Igual, M., Garcia-Martinez, E., Camacho, M. M., Martínez-Navarrete, N. (2013). Jam processing and storage effects on β-carotene and flavonoids content in grapefruit. Journal of Functional Foods, 5(2), 736-744.
  • [12] Shinwari, K.J., Rao, P.S. (2018). Stability of bioactive compounds in fruit jam and jelly during processing and storage: A review. Trends in Food Science and Technology, 75, 181-193.
  • [13] Djaoudene, O., Louaileche, H. (2016). Impact of storage conditions on the bioactive compounds and antioxidant capacity of commercial orange jam. Journal of Analytical, Bioanalytical and Separation Techniques, 1(1), 8-11.
  • [14] Morton, J. (1987). Kumquat. In: Fruits of Warm Climates. Creative Resource Systems, Miami, FL. USA, pp. 182-185.
  • [15] Schirra, M., Palma, A., D’Aquino, S., Angioni, A., Minello, E.V., Melis, M., Cabras, P. (2008). Influence of postharvest hot water treatment on nutritional and functional properties of kumquat (Fortunella japonica Lour. Swingle Cv. Ovale) fruit. Journal of Agricultural and Food Chemistry, 56(2), 455-460.
  • [16] Wang, Y.C., Chuang, Y.C., Ku, Y.H. (2007). Quantitation of bioactive compounds in citrus fruits cultivated in Taiwan. Food Chemistry. 102(4), 1163-1171.
  • [17] Lou, S.N., Lai, Y.C., Huang, J.D., Ho, C.T., Ferng, L.H.A., Chang, Y.C. (2015). Drying effect on flavonoid composition and antioxidant activity of immature kumquat. Food Chemistry, 171, 356-363.
  • [18] Nogata, Y., Sakamoto, K., Shiratsuchi, H., Ishii, T., Yano, M., Ohta, H. (2006). Flavonoid composition of fruit tissues of citrus species. Bioscience, Biotechnology, and Biochemistry, 70(1), 178-192.
  • [19] Agócs, A., Nagy, V., Szab, Z., Márk, L., Ohmacht, R. Deli, J. (2007). Comparative study on the carotenoid composition of the peel and the pulp of different citrus species. Innovative Food Science and Emerging Technologies, 8(3), 390-394.
  • [20] Lou, S.N., Lai, Y.C., Hsu, Y.S., Ho, C.T. (2016). Phenolic content, antioxidant activity and effective compounds of kumquat extracted by different solvents. Food Chemistry, 197, 1-6.
  • [21] Barreca, D., Bellocco, E., Caristi, C., Leuzzi, U., Gattuso, G. (2011). Kumquat (Fortunella japonica Swingle) juice: Flavonoid distribution and antioxidant properties. Food Research International, 44(7), 2190-2197.
  • [22] Jayaprakasha, G.K., Murthy, K.N.C., Demarais, R., Patil, B.S. (2012). Inhibition of prostate cancer (LNCaP) cell proliferation by volatile components from Nagami kumquats. Planta Medica, 78(10), 974-980.
  • [23] Wang, Y.W., Zeng, W.C., Xu, P.Y., Lan, Y.J., Zhu, R. X., Zhong, K., Huang, Y., Gao, H. (2012). Chemical composition and antimicrobial activity of the essential oil of kumquat (Fortunella crassifolia Swingle) peel. International Journal of Molecular Sciences, 13(3), 3382-3393.
  • [24] Tan, S., Li, M., Ding, X., Fan, S., Guo, L., Gu, M., Zhang, Y., Feng, L., Jiang, D., Li, Y., Xi, W. (2014). Effects of Fortunella margarita fruit extract on metabolic disorders in high-fat diet-induced obese C57BL/6 mice. PLoS One, 9(4), e93510.
  • [25] Nagahama, K., Eto, N., Shimojo, T., Kondoh, T., Nakahara, K., Sakakibara, Y., Fukui, K., Suiko, M. (2015). Effect of kumquat (Fortunella crassifolia) pericarp on natural killer cell activity in vitro and in vivo. Bioscience, Biotechnology, and Biochemistry, 79(8), 1327-1336.
  • [26] Yıldız Turgut, D., Gölükcü, M., Tokgöz, H. (2015). Kamkat (Fortunella margarita Swing.) meyvesi ve reçelinin bazı fiziksel ve kimyasal özellikleri. Derim, 32 (1), 71-80.
  • [27] Cemeroğlu, B. (2007). Gıda analizleri. Gıda Teknolojisi Derneği Yayınları, Ankara, 535 s.
  • [28] Singleton, V.L., Orthofer, R., Lamuela-Raventós, R.M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology, 299, 152-178.
  • [29] Zhishen, J., Mengcheng, T., Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555-559.
  • [30] Cemeroğlu, B. (2010). Gıda Analizleri. Genişletilmiş 2. Baskı. Gıda Teknolojisi Derneği Yayınları No: 34. Bizim Grup Basımevi. Ankara. 657 s.
  • [31] Ena, A., Pintucci, C., Carlozzi, P. (2012). The recovery of polyphenols from olive mill waste using two adsorbing vegetable matrices. Journal of Biotechnology, 157(4), 573-577.
  • [32] Sdiri, S., Bermejo, A., Aleza, P., Navarro, P., Salvador, A. (2012). Phenolic composition, organic acids, sugars, vitamin C and antioxidant activity in the juice of two new triploid late-season mandarins. Food Research International, 49(1), 462-468.
  • [33] Nour, V., Trandafir, M. E., Ionica, M.E. (2010). HPLC organic acid analysis in different citrus juices under reversed phase conditions. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 38(1), 44-48.
  • [34] Turhan, İ. (2014). Relationship between sugar profile and D-pinitol content of pods of wild and cultivated types of carob bean (Ceratonia siliqua L.). International Journal of Food Properties, 17(2), 363-370.
  • [35] Özay, G., Pala, M., Saygı, B. (1993). Bazı gıdaların su aktivitesi yönünden incelenmesi. Gıda Dergisi, 18(6), 377-383.
  • [36] Yıldız, O., Alpaslan, M. (2012). Properties of rose hip marmalades. Food Technology and Biotechnology, 50(1), 98-106.
  • [37] Fratianni, A., Cinquanta, L., Panfili, G. (2010). Degradation of carotenoids in orange juice during microwave heating. LWT-Food Science and Technology, 43(6), 867-871.
  • [38] Aksay, S., Tokbaş, H., Arslan, R., Çınar, F. (2018). Some physicochemical properties of the whole fruit mandarin jam. Turkish Journal of Agriculture-Food Science and Technology, 6(5), 632-635.
  • [39] Allam, M., Khedr, A.A., Beltagy, A. (2015). Kumquat As A Potent Natural Material To Improve Lipid Profile Of Hypercholestrolemic Rats. Biolife An International Quarterly Journal of Biology and Life Sciences, 3(1), 171-181.
  • [40] Lou, S.N., Ho, C.T. (2017). Phenolic compounds and biological activities of small-size citrus: Kumquat and calamondin. Journal of Food and Drug Analysis, 25(1),162-175.
  • [41] González-Molina, E., Domínguez-Perles, R., Moreno, D.A., García-Viguera, C. (2010). Natural bioactive compounds of Citrus limon for food and health. Journal of Pharmaceutical and Biomedical Analysis, 51(2), 327-345.
  • [42] Torregrosa, F., Esteve, M. J., Frígola, A., Cortés, C. (2006). Ascorbic acid stability during refrigerated storage of orange–carrot juice treated by high pulsed electric field and comparison with pasteurized juice. Journal of Food Engineering, 73(4), 339–345.
  • [43] Igual, M., García-Martínez, E., Camacho, M. M., Martínez-Navarrete, N. (2016). Stability of micronutrients and phytochemicals of grapefruit jam as affected by the obtention process. Food Science and Technology International, 22(3), 203-212.
  • [44] Naeem, M.M., Fairulnizal, M.M., Norhayati, M.K., Zaiton, A., Norliza, A.H., Syuriahti, W.W., Mohd Azerulazree, J., Aswir, A.R., Rusidah, S. (2017). The nutritional composition of fruit jams in the Malaysian market. Journal of the Saudi Society of Agricultural Sciences, 16(1), 89-96.
  • [45] Anuar, N.A., Salleh, R.M. (2019). Development of fruit jam from Averrhoa bilimbi L. Journal of Food Processing and Preservation, 43(4), e13904.
  • [46] Vinci, G., Botre, F. Mele, G. (1995). Ascorbic acid in exotic fruits: a liquid chromatographic investigation. Food Chemistry, 53, 211-214.
  • [47] Ramful, D., Tarnus, E., Aruoma, O.I., Bourdon, E. Bahorun, T. (2011). Polyphenol composition, vitamin C content and antioxidant capacity of Mauritian citrus fruit pulps. Food Research International, 44, 2088–2099.
  • [48] Kelebek, H. (2010). Sugars, organic acids, phenolic compositions and antioxidant activity of Grapefruit (Citrus paradisi) cultivars grown in Turkey. Industrial Crops and Products, 32(3), 269-274.
  • [49] Abeysinghe, D.C., Li, X., Sun, C., Zhang, W., Zhou, C., Chen, K. (2007). Bioactive compounds and antioxidant capacities in different edible tissues of citrus fruit of four species. Food Chemistry, 104(4), 1338-1344.
  • [50] Xu, G., Liu, D., Chen, J., Ye, X., Ma, Y., Shi, J. (2008). Juice components and antioxidant capacity of citrus varieties cultivated in China. Food chemistry, 106(2), 545-551.
  • [51] Silva, B.M., Andrade, P.B., Gonçalves, A.C., Seabra, R.M., Oliveira, M.B., Ferreira, M.A. (2004). Influence of jam processing upon the contents of phenolics, organic acids and free amino acids in quince fruit (Cydonia oblonga Miller). European Food Research and Technology, 218(4), 385-389.
  • [52] Karadeniz, F. (2004). Main organic acid distribution of authentic citrus juices in Turkey. Turkish Journal of Agriculture and Forestry, 28(4), 267-271.
  • [53] Kelebek, H., Selli, S. (2011). Determination of volatile, phenolic, organic acid and sugar components in a Turkish cv. Dortyol (Citrus sinensis L. Osbeck) orange juice. Journal of The Science of Food and Agriculture, 91(10), 1855-1862.
  • [54] Touati, N., Tarazona-Díaz, M. P., Aguayo, E., Louaileche, H. (2014). Effect of storage time and temperature on the physicochemical and sensory characteristics of commercial apricot jam. Food Chemistry, 145, 23-27.
  • [55] Özdogan F., (2006). Domates reçel ürünlerinin gelistirilmesi ve değerlendirilmesi. Yüksek Lisans Tezi, Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü, Çanakkale.
  • [56] Koç, E., Ömeroğlu, P.Y. (2019). Geleneksel anjelika (melek otu) reçelinin fizikokimyasal ve duyusal özellikleri. Akademik Gıda, 17(4), 485-496.
Toplam 56 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Gıda Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Demet Yıldız Turgut 0000-0002-7486-3701

Haluk Tokgöz Bu kişi benim 0000-0002-9956-0045

Muharrem Gölükcü Bu kişi benim 0000-0003-1646-5876

Proje Numarası TAGEM/HSGYAD/17/A03/P06/138
Yayımlanma Tarihi 19 Ekim 2021
Gönderilme Tarihi 21 Ağustos 2020
Yayımlandığı Sayı Yıl 2021 Cilt: 19 Sayı: 3

Kaynak Göster

APA Yıldız Turgut, D., Tokgöz, H., & Gölükcü, M. (2021). Bütün ve Parça Meyvelerden Üretilen Kamkat Reçellerinin Fizikokimyasal ve Fitokimyasal Özellikleri. Akademik Gıda, 19(3), 267-274. https://doi.org/10.24323/akademik-gida.1011217
AMA Yıldız Turgut D, Tokgöz H, Gölükcü M. Bütün ve Parça Meyvelerden Üretilen Kamkat Reçellerinin Fizikokimyasal ve Fitokimyasal Özellikleri. Akademik Gıda. Ekim 2021;19(3):267-274. doi:10.24323/akademik-gida.1011217
Chicago Yıldız Turgut, Demet, Haluk Tokgöz, ve Muharrem Gölükcü. “Bütün Ve Parça Meyvelerden Üretilen Kamkat Reçellerinin Fizikokimyasal Ve Fitokimyasal Özellikleri”. Akademik Gıda 19, sy. 3 (Ekim 2021): 267-74. https://doi.org/10.24323/akademik-gida.1011217.
EndNote Yıldız Turgut D, Tokgöz H, Gölükcü M (01 Ekim 2021) Bütün ve Parça Meyvelerden Üretilen Kamkat Reçellerinin Fizikokimyasal ve Fitokimyasal Özellikleri. Akademik Gıda 19 3 267–274.
IEEE D. Yıldız Turgut, H. Tokgöz, ve M. Gölükcü, “Bütün ve Parça Meyvelerden Üretilen Kamkat Reçellerinin Fizikokimyasal ve Fitokimyasal Özellikleri”, Akademik Gıda, c. 19, sy. 3, ss. 267–274, 2021, doi: 10.24323/akademik-gida.1011217.
ISNAD Yıldız Turgut, Demet vd. “Bütün Ve Parça Meyvelerden Üretilen Kamkat Reçellerinin Fizikokimyasal Ve Fitokimyasal Özellikleri”. Akademik Gıda 19/3 (Ekim 2021), 267-274. https://doi.org/10.24323/akademik-gida.1011217.
JAMA Yıldız Turgut D, Tokgöz H, Gölükcü M. Bütün ve Parça Meyvelerden Üretilen Kamkat Reçellerinin Fizikokimyasal ve Fitokimyasal Özellikleri. Akademik Gıda. 2021;19:267–274.
MLA Yıldız Turgut, Demet vd. “Bütün Ve Parça Meyvelerden Üretilen Kamkat Reçellerinin Fizikokimyasal Ve Fitokimyasal Özellikleri”. Akademik Gıda, c. 19, sy. 3, 2021, ss. 267-74, doi:10.24323/akademik-gida.1011217.
Vancouver Yıldız Turgut D, Tokgöz H, Gölükcü M. Bütün ve Parça Meyvelerden Üretilen Kamkat Reçellerinin Fizikokimyasal ve Fitokimyasal Özellikleri. Akademik Gıda. 2021;19(3):267-74.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).