Araştırma Makalesi
BibTex RIS Kaynak Göster

Sol-jel yöntemiyle üretilen Cu katkılı CoOx/n-Si yapıların elektriksel özelliklerinin araştırılması

Yıl 2024, , 1053 - 1060, 01.10.2024
https://doi.org/10.35414/akufemubid.1398898

Öz

CoOx, Cu katkılı CoOx ve CuOx içeren ince filmlerin n-Si substratlar üzerine biriktirilmesi için sol-jel döndürerek kaplama tekniği kullanıldı. Daha sonra, elde edilen heteroeklem yapılarının elektriksel özelliklerinin kapsamlı bir incelemesi yapıldı. Sonuçlar açıkça Cu'nun katkılama yoluyla dahil edilmesinin CoOx/n-Si diyotun elektriksel özellikleri üzerinde belirgin bir etki yarattığını göstermektedir. Özellikle, tüm diyotlar, karanlık akım-voltaj (I-V) özelliklerinde fark edilebilir bir özellik olan doğrultucu davranış sergiledi. I-V verileri diyotların seri direnci (Rs), düzeltme oranını (RR), idealite faktörünü (n) ve bariyer yüksekliğini (ΦB) kapsayan önemli bağlantı parametrelerini belirlemek için kullanıldı. CoOx/n-Si, Cu katkılı CoOx/n-Si ve CuOx/n-Si için idealite faktörü değerleri sırasıyla 3,19, 1,99 ve 2,19 eV olarak elde edilmiştir. Ayrıca diyotların kapasitans-gerilim (C-V) özelliklerinin ölçümleri 10 kHz ila 1 MHz frekans aralığında gerçekleştirildi. Bu bulgular, bakır doping konsantrasyonunun uygun şekilde seçilmesinin, CoOx/n-Si diyotların elektriksel özelliklerini iyileştirmek için etkili bir yol olduğunu göstermektedir.

Kaynakça

  • Ahmed MA, Coetsee L, Meyer WE, Nel JM ,2019. Influence (Ce and Sm) co-doping ZnO nanorods on the structural, optical and electrical properties of the fabricated Schottky diode using chemical bath deposition. Journal of Alloys and Compounds 810:151929. https://doi.org/10.1016/j.jallcom.2019.151929
  • Asl HZ, Rozati SM ,2020. Spray Deposition of n-type Cobalt-Doped CuO Thin Films: Influence of Cobalt Doping on Structural, Morphological, Electrical, and Optical Properties. J Electron Mater 49:1534–1540. https://doi.org/10.1007/s11664-019-07858-4
  • Ay I, Tolunay H ,2007. The influence of ohmic back contacts on the properties of a-Si:H Schottky diodes. Solid-State Electronics 51:381–386. https://doi.org/10.1016/j.sse.2006.12.001
  • Aydin R, Şahi̇N B, Bayansal F, 2016. Sılar Yöntemi ile Üretilen CuO Filmlerin Yapısal, Morfolojik ve Optik Özelliklerine İkili Katkılamanın (Zn, Li) Etkisi. SAUFenBilDer 20:3, 481-487
  • Bayansal F, Taşköprü T, Şahin B, Çetinkara HA ,2014. Effect of Cobalt Doping on Nanostructured CuO Thin Films. Metall Mater Trans A 45:3670–3674. https://doi.org/10.1007/s11661-014-2306-1
  • Behzad H, Ghodsi FE, Peksu E, Karaagac H ,2018. The effect of Cu content on structural, optical and photo-electrical properties of sol-gel derived CuxCo3-xO4 thin films. Journal of Alloys and Compounds 744:470–480. https://doi.org/10.1016/j.jallcom.2018.02.114
  • Berenguer R, La Rosa-Toro A, Quijada C, Morallón E ,2017. Electrocatalytic oxidation of cyanide on copper-doped cobalt oxide electrodes. Applied Catalysis B: Environmental 207:286–296. https://doi.org/10.1016/j.apcatb.2017.01.078
  • Buyuk GI, Ilican S ,2020. Electrical and photovoltaic properties of p-n heterojunctions obtained using sol gel derived nanostructured ZnO:La films onto p-Si. Superlattices and Microstructures 145:106605. https://doi.org/10.1016/j.spmi.2020.106605
  • Caglar Y, Görgün K, Ilican S, et al ,2016. Magnesium-doped zinc oxide nanorod–nanotube semiconductor/p-silicon heterojunction diodes. Appl Phys A 122:733. https://doi.org/10.1007/s00339-016-0251-0
  • Casella IG ,2002. Electrodeposition of cobalt oxide films from carbonate solutions containing Co(II)–tartrate complexes. Journal of Electroanalytical Chemistry 520:119–125. https://doi.org/10.1016/S0022-0728(02)00642-3
  • Çavdar Ş, Tuğluoğlu N, Akgül KB, Koralay H ,2016. Laterally Inhomogeneous Barrier Analysis Using Capacitance–Voltage Characteristics of Identically Fabricated Schottky Diodes. J Electron Mater 45:3908–3913. https://doi.org/10.1007/s11664-016-4546-x
  • Cifci OS, Bakir M, Meyer JL, Kocyigit A ,2018. Morphological and electrical properties of ATSP/p-Si photodiode. Materials Science in Semiconductor Processing 74:175–182. https://doi.org/10.1016/j.mssp.2017.10.039
  • Dhanabalan K, Ravichandran AT, Ravichandran K, et al ,2017. Effect of Co doped material on the structural, optical and magnetic properties of Cu2O thin films by SILAR technique. J Mater Sci: Mater Electron 28:4431–4439. https://doi.org/10.1007/s10854-016-6072-2
  • Estrada W, Fantini MCA, de Castro SC, et al ,1993. Radio frequency sputtered cobalt oxide coating: Structural, optical, and electrochemical characterization. Journal of Applied Physics 74:5835–5841. https://doi.org/10.1063/1.354203
  • Kamaruddin SA, Chan K-Y, Yow H-K, et al ,2011. Zinc oxide films prepared by sol–gel spin coating technique. Appl Phys A 104:263–268. https://doi.org/10.1007/s00339-010-6121-2
  • Karataş Ş, Aydin MG, Özerli H ,2016. Illumination impact on electrical properties of Ag/0.6 wt% nanographene oxide doped poly(vinyl alcohol) nanocomposite/p-Si heterojunction. Journal of Alloys and Compounds 689:1068–1075. https://doi.org/10.1016/j.jallcom.2016.08.083
  • Ke Q, Yi D, Jin Y, et al ,2020. Manganese Doping in Cobalt Oxide Nanorods Promotes Catalytic Dehydrogenation. ACS Sustainable Chem Eng 8:5734–5741. https://doi.org/10.1021/acssuschemeng.0c00842 Khusayfan NM ,2016. Electrical and photoresponse properties of Al/graphene oxide doped NiO nanocomposite/p-Si/Al photodiodes. Journal of Alloys and Compounds 666:501–506. https://doi.org/10.1016/j.jallcom.2016.01.102
  • Lei P, Wang J, Zhang P, et al ,2021. Growth of a porous NiCoO2 nanowire network for transparent-to-brownish grey electrochromic smart windows with wide-band optical modulation. J Mater Chem C 9:14378–14387. https://doi.org/10.1039/D1TC03805B
  • Li X, Wei J, Li Q, et al ,2018. Nitrogen-Doped Cobalt Oxide Nanostructures Derived from Cobalt–Alanine Complexes for High-Performance Oxygen Evolution Reactions. Advanced Functional Materials 28:1800886. https://doi.org/10.1002/adfm.201800886
  • Liu F, Su H, Jin L, et al ,2017. Facile synthesis of ultrafine cobalt oxide nanoparticles for high-performance supercapacitors. Journal of Colloid and Interface Science 505:796–804. https://doi.org/10.1016/j.jcis.2017.06.058
  • Maduraiveeran G, Sasidharan M, Jin W ,2019. Earth-abundant transition metal and metal oxide nanomaterials: Synthesis and electrochemical applications. Progress in Materials Science 106:100574 https://doi.org/10.1016/j.pmatsci.2019.100574
  • Mönch W ,1994. Metal-semiconductor contacts: electronic properties. Surface Science 299–300:928–944 https://doi.org/10.1016/0039-6028(94)90707-2
  • Nam H-J, Sasaki T, Koshizaki N ,2006. Optical CO Gas Sensor Using a Cobalt Oxide Thin Film Prepared by Pulsed Laser Deposition under Various Argon Pressures. J Phys Chem B 110:23081–23084. https://doi.org/10.1021/jp063484f
  • Namkoong G, Kong J, Samson M, et al ,2013. Active layer thickness effect on the recombination process of PCDTBT:PC71BM organic solar cells. Organic Electronics 14:74–79. https://doi.org/10.1016/j.orgel.2012.10.025
  • Norde H ,1979. A modified forward I‐V plot for Schottky diodes with high series resistance. Journal of Applied Physics 50:5052–5053. https://doi.org/10.1063/1.325607
  • Pür FZ, Tataroğlu A ,2012. Analysis of the series resistance and interface states of Au/Si3N4/n-Si (metal–insulator–semiconductor) Schottky diodes using I–V characteristics in a wide temperature range. Phys Scr 86:035802 https://doi.org/10.1088/0031-8949/86/03/035802
  • Qiu H-J, Liu L, Mu Y-P, et al ,2015. Designed synthesis of cobalt-oxide-based nanomaterials for superior electrochemical energy storage devices. Nano Res 8:321–339. https://doi.org/10.1007/s12274-014-0589-6
  • Rakotonarivo EF, Abouloula CN, Narjis A, et al ,2021. Optimization of the electrodeposition of the pure and cobalt doped copper oxide for solar cells and other applications. Physica B: Condensed Matter 609:412783. https://doi.org/10.1016/j.physb.2020.412783
  • Salavati-Niasari M, Khansari A, Davar F ,2009. Synthesis and characterization of cobalt oxide nanoparticles by thermal treatment process. Inorganica Chimica Acta 362:4937–4942. https://doi.org/10.1016/j.ica.2009.07.023
  • Shalan AE, Oshikiri T, Narra S, et al ,2016. Cobalt Oxide (CoOx) as an Efficient Hole-Extracting Layer for High-Performance Inverted Planar Perovskite Solar Cells. ACS Appl Mater Interfaces 8:33592–33600. https://doi.org/10.1021/acsami.6b10803
  • Sharma SK, Singh SP, Kim DY ,2018. Fabrication of the heterojunction diode from Y-doped ZnO thin films on p-Si substrates by sol-gel method. Solid State Communications 270:124–129. https://doi.org/10.1016/j.ssc.2017.12.010
  • Shinde VR, Mahadik SB, Gujar TP, Lokhande CD ,2006. Supercapacitive cobalt oxide (Co3O4) thin films by spray pyrolysis. Applied Surface Science 252:7487–7492. https://doi.org/10.1016/j.apsusc.2005.09.004
  • Sze SM, Ng KK 2006. Physics of Semiconductor Devices, 3rd edition. Wiley-Interscience, Hoboken, N.J
  • Tawfik WZ, Khalifa ZS, Abdel-wahab MSh, Hammad AH (2019) Sputtered cobalt doped CuO nano-structured thin films for photoconductive sensors. J Mater Sci: Mater Electron 30:1275–1281. https://doi.org/10.1007/s10854-018-0395-0
  • Valanarasu S, Dhanasekaran V, Karunakaran M, et al ,2014. Role of solution pH on the microstructural properties of spin coated cobalt oxide thin films. J Nanosci Nanotechnol 14:4286–4291. https://doi.org/10.1166/jnn.2014.8284
  • Zhang Q, Wei ZD, Liu C, et al ,2012. Copper-doped cobalt oxide electrodes for oxygen evolution reaction prepared by magnetron sputtering. International Journal of Hydrogen Energy 37:822–830. https://doi.org/10.1016/j.ijhydene.2011.04.051

Investigation of the Electrical Properties of Cu-doped CoOx/n-Si Structures Fabricated by the Sol-Gel Method

Yıl 2024, , 1053 - 1060, 01.10.2024
https://doi.org/10.35414/akufemubid.1398898

Öz

The sol-gel spin coating technique was employed for the deposition of thin films comprising CoOx, Cu-doped CoOx, and CuOx onto n-Si substrates. Subsequently, an exhaustive examination of the electrical properties of the resultant heterojunction structures was conducted. The outcomes unequivocally indicate that the incorporation of Cu through doping exerts a pronounced influence on the electrical attributes of the CoOx/n-Si diode. Notably, all diodes exhibit rectifying behavior, a discernible feature in their dark current-voltage (I-V) characteristics. The I-V data was further utilized to ascertain pivotal junction parameters, encompassing series resistance (Rs), rectification ratio (RR), ideality factor (n), and barrier height (ΦB). The values of the ideality factor for CoOx/n-Si, Cu doped CoOx/n-Si and CuOx/n-Si are obtained to be 3.19, 1.99 and 2.19 eV, respectively. Furthermore, the capacitance-voltage (C-V) characteristics of diodes were performed within the frequency range of 10 kHz to 1 MHz. These findings underscore that judicious manipulation of the copper doping concentration can serve as an effective means to modulate the electrical properties of CoOx/n-Si diodes.

Kaynakça

  • Ahmed MA, Coetsee L, Meyer WE, Nel JM ,2019. Influence (Ce and Sm) co-doping ZnO nanorods on the structural, optical and electrical properties of the fabricated Schottky diode using chemical bath deposition. Journal of Alloys and Compounds 810:151929. https://doi.org/10.1016/j.jallcom.2019.151929
  • Asl HZ, Rozati SM ,2020. Spray Deposition of n-type Cobalt-Doped CuO Thin Films: Influence of Cobalt Doping on Structural, Morphological, Electrical, and Optical Properties. J Electron Mater 49:1534–1540. https://doi.org/10.1007/s11664-019-07858-4
  • Ay I, Tolunay H ,2007. The influence of ohmic back contacts on the properties of a-Si:H Schottky diodes. Solid-State Electronics 51:381–386. https://doi.org/10.1016/j.sse.2006.12.001
  • Aydin R, Şahi̇N B, Bayansal F, 2016. Sılar Yöntemi ile Üretilen CuO Filmlerin Yapısal, Morfolojik ve Optik Özelliklerine İkili Katkılamanın (Zn, Li) Etkisi. SAUFenBilDer 20:3, 481-487
  • Bayansal F, Taşköprü T, Şahin B, Çetinkara HA ,2014. Effect of Cobalt Doping on Nanostructured CuO Thin Films. Metall Mater Trans A 45:3670–3674. https://doi.org/10.1007/s11661-014-2306-1
  • Behzad H, Ghodsi FE, Peksu E, Karaagac H ,2018. The effect of Cu content on structural, optical and photo-electrical properties of sol-gel derived CuxCo3-xO4 thin films. Journal of Alloys and Compounds 744:470–480. https://doi.org/10.1016/j.jallcom.2018.02.114
  • Berenguer R, La Rosa-Toro A, Quijada C, Morallón E ,2017. Electrocatalytic oxidation of cyanide on copper-doped cobalt oxide electrodes. Applied Catalysis B: Environmental 207:286–296. https://doi.org/10.1016/j.apcatb.2017.01.078
  • Buyuk GI, Ilican S ,2020. Electrical and photovoltaic properties of p-n heterojunctions obtained using sol gel derived nanostructured ZnO:La films onto p-Si. Superlattices and Microstructures 145:106605. https://doi.org/10.1016/j.spmi.2020.106605
  • Caglar Y, Görgün K, Ilican S, et al ,2016. Magnesium-doped zinc oxide nanorod–nanotube semiconductor/p-silicon heterojunction diodes. Appl Phys A 122:733. https://doi.org/10.1007/s00339-016-0251-0
  • Casella IG ,2002. Electrodeposition of cobalt oxide films from carbonate solutions containing Co(II)–tartrate complexes. Journal of Electroanalytical Chemistry 520:119–125. https://doi.org/10.1016/S0022-0728(02)00642-3
  • Çavdar Ş, Tuğluoğlu N, Akgül KB, Koralay H ,2016. Laterally Inhomogeneous Barrier Analysis Using Capacitance–Voltage Characteristics of Identically Fabricated Schottky Diodes. J Electron Mater 45:3908–3913. https://doi.org/10.1007/s11664-016-4546-x
  • Cifci OS, Bakir M, Meyer JL, Kocyigit A ,2018. Morphological and electrical properties of ATSP/p-Si photodiode. Materials Science in Semiconductor Processing 74:175–182. https://doi.org/10.1016/j.mssp.2017.10.039
  • Dhanabalan K, Ravichandran AT, Ravichandran K, et al ,2017. Effect of Co doped material on the structural, optical and magnetic properties of Cu2O thin films by SILAR technique. J Mater Sci: Mater Electron 28:4431–4439. https://doi.org/10.1007/s10854-016-6072-2
  • Estrada W, Fantini MCA, de Castro SC, et al ,1993. Radio frequency sputtered cobalt oxide coating: Structural, optical, and electrochemical characterization. Journal of Applied Physics 74:5835–5841. https://doi.org/10.1063/1.354203
  • Kamaruddin SA, Chan K-Y, Yow H-K, et al ,2011. Zinc oxide films prepared by sol–gel spin coating technique. Appl Phys A 104:263–268. https://doi.org/10.1007/s00339-010-6121-2
  • Karataş Ş, Aydin MG, Özerli H ,2016. Illumination impact on electrical properties of Ag/0.6 wt% nanographene oxide doped poly(vinyl alcohol) nanocomposite/p-Si heterojunction. Journal of Alloys and Compounds 689:1068–1075. https://doi.org/10.1016/j.jallcom.2016.08.083
  • Ke Q, Yi D, Jin Y, et al ,2020. Manganese Doping in Cobalt Oxide Nanorods Promotes Catalytic Dehydrogenation. ACS Sustainable Chem Eng 8:5734–5741. https://doi.org/10.1021/acssuschemeng.0c00842 Khusayfan NM ,2016. Electrical and photoresponse properties of Al/graphene oxide doped NiO nanocomposite/p-Si/Al photodiodes. Journal of Alloys and Compounds 666:501–506. https://doi.org/10.1016/j.jallcom.2016.01.102
  • Lei P, Wang J, Zhang P, et al ,2021. Growth of a porous NiCoO2 nanowire network for transparent-to-brownish grey electrochromic smart windows with wide-band optical modulation. J Mater Chem C 9:14378–14387. https://doi.org/10.1039/D1TC03805B
  • Li X, Wei J, Li Q, et al ,2018. Nitrogen-Doped Cobalt Oxide Nanostructures Derived from Cobalt–Alanine Complexes for High-Performance Oxygen Evolution Reactions. Advanced Functional Materials 28:1800886. https://doi.org/10.1002/adfm.201800886
  • Liu F, Su H, Jin L, et al ,2017. Facile synthesis of ultrafine cobalt oxide nanoparticles for high-performance supercapacitors. Journal of Colloid and Interface Science 505:796–804. https://doi.org/10.1016/j.jcis.2017.06.058
  • Maduraiveeran G, Sasidharan M, Jin W ,2019. Earth-abundant transition metal and metal oxide nanomaterials: Synthesis and electrochemical applications. Progress in Materials Science 106:100574 https://doi.org/10.1016/j.pmatsci.2019.100574
  • Mönch W ,1994. Metal-semiconductor contacts: electronic properties. Surface Science 299–300:928–944 https://doi.org/10.1016/0039-6028(94)90707-2
  • Nam H-J, Sasaki T, Koshizaki N ,2006. Optical CO Gas Sensor Using a Cobalt Oxide Thin Film Prepared by Pulsed Laser Deposition under Various Argon Pressures. J Phys Chem B 110:23081–23084. https://doi.org/10.1021/jp063484f
  • Namkoong G, Kong J, Samson M, et al ,2013. Active layer thickness effect on the recombination process of PCDTBT:PC71BM organic solar cells. Organic Electronics 14:74–79. https://doi.org/10.1016/j.orgel.2012.10.025
  • Norde H ,1979. A modified forward I‐V plot for Schottky diodes with high series resistance. Journal of Applied Physics 50:5052–5053. https://doi.org/10.1063/1.325607
  • Pür FZ, Tataroğlu A ,2012. Analysis of the series resistance and interface states of Au/Si3N4/n-Si (metal–insulator–semiconductor) Schottky diodes using I–V characteristics in a wide temperature range. Phys Scr 86:035802 https://doi.org/10.1088/0031-8949/86/03/035802
  • Qiu H-J, Liu L, Mu Y-P, et al ,2015. Designed synthesis of cobalt-oxide-based nanomaterials for superior electrochemical energy storage devices. Nano Res 8:321–339. https://doi.org/10.1007/s12274-014-0589-6
  • Rakotonarivo EF, Abouloula CN, Narjis A, et al ,2021. Optimization of the electrodeposition of the pure and cobalt doped copper oxide for solar cells and other applications. Physica B: Condensed Matter 609:412783. https://doi.org/10.1016/j.physb.2020.412783
  • Salavati-Niasari M, Khansari A, Davar F ,2009. Synthesis and characterization of cobalt oxide nanoparticles by thermal treatment process. Inorganica Chimica Acta 362:4937–4942. https://doi.org/10.1016/j.ica.2009.07.023
  • Shalan AE, Oshikiri T, Narra S, et al ,2016. Cobalt Oxide (CoOx) as an Efficient Hole-Extracting Layer for High-Performance Inverted Planar Perovskite Solar Cells. ACS Appl Mater Interfaces 8:33592–33600. https://doi.org/10.1021/acsami.6b10803
  • Sharma SK, Singh SP, Kim DY ,2018. Fabrication of the heterojunction diode from Y-doped ZnO thin films on p-Si substrates by sol-gel method. Solid State Communications 270:124–129. https://doi.org/10.1016/j.ssc.2017.12.010
  • Shinde VR, Mahadik SB, Gujar TP, Lokhande CD ,2006. Supercapacitive cobalt oxide (Co3O4) thin films by spray pyrolysis. Applied Surface Science 252:7487–7492. https://doi.org/10.1016/j.apsusc.2005.09.004
  • Sze SM, Ng KK 2006. Physics of Semiconductor Devices, 3rd edition. Wiley-Interscience, Hoboken, N.J
  • Tawfik WZ, Khalifa ZS, Abdel-wahab MSh, Hammad AH (2019) Sputtered cobalt doped CuO nano-structured thin films for photoconductive sensors. J Mater Sci: Mater Electron 30:1275–1281. https://doi.org/10.1007/s10854-018-0395-0
  • Valanarasu S, Dhanasekaran V, Karunakaran M, et al ,2014. Role of solution pH on the microstructural properties of spin coated cobalt oxide thin films. J Nanosci Nanotechnol 14:4286–4291. https://doi.org/10.1166/jnn.2014.8284
  • Zhang Q, Wei ZD, Liu C, et al ,2012. Copper-doped cobalt oxide electrodes for oxygen evolution reaction prepared by magnetron sputtering. International Journal of Hydrogen Energy 37:822–830. https://doi.org/10.1016/j.ijhydene.2011.04.051
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Fotonik, Optoelektronik ve Optik İletişim, Kaplama Teknolojisi, Kompozit ve Hibrit Malzemeler, Malzeme Karekterizasyonu
Bölüm Makaleler
Yazarlar

Yusuf Yıldız 0000-0002-7070-6012

Şerif Rüzgar 0000-0002-4964-2202

Erken Görünüm Tarihi 10 Eylül 2024
Yayımlanma Tarihi 1 Ekim 2024
Gönderilme Tarihi 1 Aralık 2023
Kabul Tarihi 30 Temmuz 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Yıldız, Y., & Rüzgar, Ş. (2024). Investigation of the Electrical Properties of Cu-doped CoOx/n-Si Structures Fabricated by the Sol-Gel Method. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 24(5), 1053-1060. https://doi.org/10.35414/akufemubid.1398898
AMA Yıldız Y, Rüzgar Ş. Investigation of the Electrical Properties of Cu-doped CoOx/n-Si Structures Fabricated by the Sol-Gel Method. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. Ekim 2024;24(5):1053-1060. doi:10.35414/akufemubid.1398898
Chicago Yıldız, Yusuf, ve Şerif Rüzgar. “Investigation of the Electrical Properties of Cu-Doped CoOx/N-Si Structures Fabricated by the Sol-Gel Method”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24, sy. 5 (Ekim 2024): 1053-60. https://doi.org/10.35414/akufemubid.1398898.
EndNote Yıldız Y, Rüzgar Ş (01 Ekim 2024) Investigation of the Electrical Properties of Cu-doped CoOx/n-Si Structures Fabricated by the Sol-Gel Method. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24 5 1053–1060.
IEEE Y. Yıldız ve Ş. Rüzgar, “Investigation of the Electrical Properties of Cu-doped CoOx/n-Si Structures Fabricated by the Sol-Gel Method”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 24, sy. 5, ss. 1053–1060, 2024, doi: 10.35414/akufemubid.1398898.
ISNAD Yıldız, Yusuf - Rüzgar, Şerif. “Investigation of the Electrical Properties of Cu-Doped CoOx/N-Si Structures Fabricated by the Sol-Gel Method”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24/5 (Ekim 2024), 1053-1060. https://doi.org/10.35414/akufemubid.1398898.
JAMA Yıldız Y, Rüzgar Ş. Investigation of the Electrical Properties of Cu-doped CoOx/n-Si Structures Fabricated by the Sol-Gel Method. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2024;24:1053–1060.
MLA Yıldız, Yusuf ve Şerif Rüzgar. “Investigation of the Electrical Properties of Cu-Doped CoOx/N-Si Structures Fabricated by the Sol-Gel Method”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 24, sy. 5, 2024, ss. 1053-60, doi:10.35414/akufemubid.1398898.
Vancouver Yıldız Y, Rüzgar Ş. Investigation of the Electrical Properties of Cu-doped CoOx/n-Si Structures Fabricated by the Sol-Gel Method. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2024;24(5):1053-60.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.