Araştırma Makalesi
BibTex RIS Kaynak Göster

Gaz ve Düşük Basınçlı Sementasyon Yapılmış Helisel Dişli Çarkların Yorulma Analizi

Yıl 2020, , 1124 - 1137, 31.12.2020
https://doi.org/10.35414/akufemubid.714964

Öz

Bu çalışmada AISI 8620 ve AISI 5115 çeliklerinden yapılan, modülü 1.5 ve 2 olan helisel dişli çarklara uygulanan gaz sementasyon ve düşük basınçlı sementasyon yüzey sertleştirme ısıl işlemlerinin dişli çarkların yorulma ömrü üzerindeki etkisi incelenmiştir. Yorulma analizi Solidworks Premium 2015 SP 2.0 CAD programı kullanılarak yapılmıştır. Helisel dişli çarkların ömür değerleri, yüzey sertleştirme işlemleri sonrasında oluşan sertlik dağılımına bağlı olarak belirlenmiştir. Düşük basınçlı sementasyon işleminin gaz sementasyon işlemine kıyasla, istenen yüzey sertlik ve efektif sert tabaka kalınlığını çok daha kısa işlem sürelerinde sağladığı belirlenmiştir. Dişlilerin ömür değerleri ve hasar yüzdeleri, malzemenin kimyasal içeriği, efektif sert tabaka kalınlığı ve yüzey sertlik değerlerinden etkilenmiştir.

Teşekkür

Yazarlar deney numunelerinin temini konusunda her türlü imkan ve desteği sağlayan Ege Redüktör Firmasına, numunelerin yüzey sertleştirme işlemlerinin yapılmasında destek veren Batı Isıl İşlem Firmasından Sayın Elif Kınalı NUMANOĞLU’ na ve Akademi Metalurji Firmasından Sayın Levent ALTUNTAŞ’ a teşekkür eder.

Kaynakça

  • Akkurt, M., 2005. Makine Elemanları. Cilt I, Birsen Yayınevi, 21.
  • ANSI/AGMA 2001-D04, 2004. American National Standard, Fundamental Rating Factors and Calculation Methods for Involute Spur and Helical Gear Teeth. American Gear Manufacturers Association, USA.
  • ASTM E92-17, 2017. Standard Test Methods for Vickers Hardness and Knoop Hardness of Metallic Materials. ASTM International, USA.
  • Collin, R., Gunnarson, S. and Thulin, D., 1972. Mathematical model for predicting carbon concentration profiles of gas-carburized steel. Journal of the Iron and Steel Institute, 210 (10), 785-789.
  • Davis, J. R., 2002. Surface Hardening of Steels: Understanding the Basics, ASM International, Materials Park, 91.
  • Dengo, C., Meneghetti G., Dabalà M., 2015. Experimental analysis of bending fatigue strength of plain and notched case-hardened gear steels. International Journal of Fatigue, 80, 145-161.
  • Errichello, R., Milburn, A., 2020. Optimum Carburized and Hardened Case Depth. Gear Technology, 58-65.
  • Fernandes, C.M.C.G., Marques P.M.T., Martins, R.C. and Seabra J. H.O., 2015a. Gearbox power loss. part II: friction losses in gears. Tribology International, 88, 309-316.
  • Fernandes, C.M.C.G., Battez A.H., González R., Monge R., Viesca J.L., Garcia A., Martins R.C. and Seabra J.H.O., 2015b. Torque loss and wear of fzg gears lubricated with wind turbine gear oils using an ionic liquid as additive. Tribology International, 90, 309-316.
  • Gawroński, Z., Malasiński, A. and Sawicki, J.,2010. Elimination of galvanic copper plating process used in hardening of conventionally carburized gear wheels. International Journal of Automotive Technology, 11, 127–131.
  • Gençoğlu, S., Yazıcı, A., 2020. Surface Characteristics and Distortion Analysis of the Case-Hardened Helical Gears: A Comparison of Different Case-Hardening Treatments. Transactions of The Indian Institute of Metals, 73 (1): 119-126.
  • Krauss, G., 1991. Metals Handbook. ASM International, Metals Park, OH, 363-375.
  • Mahakul, R., Thatoi, D. N., Choudhury, S., Patnaik, P., 2020. Design and numerical analysis of spur gear using SolidWorks simulation technique. Materials Today: Proceedings (Article in press, https://doi.org/10.1016/j.matpr.2020.09.554)
  • Pavlina, E.J. and Van Tyne C.J., 2008. Correlation of Yield Strength and Tensile Strength with Hardness for Steels. Journal of Materials Engineering and Performance, 17 (6), 888-893.
  • Poor, R.P., Barbee, W. and Brug, J.E., 2007. Furnace for vacuum carburizing with unsaturated aromatic hydrocarbons. US Patent No. 7,267,793 B2, United States Patent Application Publication, 1-14.
  • Ramasamy, R., Sivathanu, S., Neelakandan, V., Ganesan, T., Rao, P.C., 2019. Influence of Retained Austenite on Fatigue Performance of Carburized Gears. SAE Technical Paper 2019-28-0102.
  • Ryzhov, N.M., Fakhurtdinov, R.S. and Smirnov, A.E., 2010. Cyclic strength of steel 16Kh3NVFBM-Sh (VKS-5) after vacuum carburizing. Metal Science and Heat Treatment, 52, 61–66.
  • Savaria, V., Monajati H., Bridier F. and Bocher P., 2015. Measurement and correction of residual stress gradients in aeronautical gears after various induction surface hardening treatments. Journal of Materials Processing Technology, 220, 113–123.
  • Wang, H., Wang, B., Wang, Z., Tian, Y., Misra, R. D. K., 2019. Optimizing the low-pressure car-burizing process of 16Cr3NiWMoVNbE gear steel. Journal of Materials Science and Technology, 35(7):1218–1227.
  • Tobie, T., Hippenstiel F. and Mohrbacher H., 2017. Optimizing gear performance by alloy modification of carburizing steels. Metals, 7 (10),415-475.
  • Zarzoor, A.K., Almuramady, N. and Hussein E. S., 2018. Stress Analysis for Spur Gears Using Solid Works Simulation, International Journal of Mechanical Engineering and Technology (IJMET), 9 (11), 927-936.
  • 1- Chaush, Y., 2008. ANSYS Workbench ile Yorulma Analizi, Bitirme Tezi, Dokuz Eylül Üniversitesi Makine Mühendisliği Bölümü. http://ansys.deu.edu.tr/wp-content/uploads/cmdm/348/1450272307_Yorulma-WB.pdf, (13.12.2020)

Fatigue Analysis of Gas and Low-Pressure Carburized Helical Gears

Yıl 2020, , 1124 - 1137, 31.12.2020
https://doi.org/10.35414/akufemubid.714964

Öz

In this study, the effect of case hardening treatments such as gas carburizing and low-pressure carburizing on the fatigue life was investigated for helical toothed gears made of AISI 8620 and AISI 5115 steels with modules 1.5 and 2. Solidworks Premium 2015 SP 2.0 CAD program was used for the fatigue analysis of the gear wheels. The total life values of the helical gears were determined depending on the hardness distribution that occurs as the result of case hardening treatments. Compared to the gas carburizing, it was found that the low-pressure carburizing process provided the desired surface hardness and effective case depth values within shorter processing times. The total life values and damage percentages of gears were influenced by the chemical content of the material, effective case layer thickness, and surface hardness values. For 36 Nm torque and 1400 rpm operating values in AISI 5115 helical gear wheels, fatigue life cycle was determined as 366,240,718 turns in non-heat-treated gear, 790,471,887 turns in low-pressure carburizing, and 720,619,942 turns in gas carburizing. These values were determined as 167,327,793 and 614,293,058, and 629,203,913 turns for 132 Nm torque and 212 rpm operating values in AISI 8620 helical gears wheels, respectively.

Kaynakça

  • Akkurt, M., 2005. Makine Elemanları. Cilt I, Birsen Yayınevi, 21.
  • ANSI/AGMA 2001-D04, 2004. American National Standard, Fundamental Rating Factors and Calculation Methods for Involute Spur and Helical Gear Teeth. American Gear Manufacturers Association, USA.
  • ASTM E92-17, 2017. Standard Test Methods for Vickers Hardness and Knoop Hardness of Metallic Materials. ASTM International, USA.
  • Collin, R., Gunnarson, S. and Thulin, D., 1972. Mathematical model for predicting carbon concentration profiles of gas-carburized steel. Journal of the Iron and Steel Institute, 210 (10), 785-789.
  • Davis, J. R., 2002. Surface Hardening of Steels: Understanding the Basics, ASM International, Materials Park, 91.
  • Dengo, C., Meneghetti G., Dabalà M., 2015. Experimental analysis of bending fatigue strength of plain and notched case-hardened gear steels. International Journal of Fatigue, 80, 145-161.
  • Errichello, R., Milburn, A., 2020. Optimum Carburized and Hardened Case Depth. Gear Technology, 58-65.
  • Fernandes, C.M.C.G., Marques P.M.T., Martins, R.C. and Seabra J. H.O., 2015a. Gearbox power loss. part II: friction losses in gears. Tribology International, 88, 309-316.
  • Fernandes, C.M.C.G., Battez A.H., González R., Monge R., Viesca J.L., Garcia A., Martins R.C. and Seabra J.H.O., 2015b. Torque loss and wear of fzg gears lubricated with wind turbine gear oils using an ionic liquid as additive. Tribology International, 90, 309-316.
  • Gawroński, Z., Malasiński, A. and Sawicki, J.,2010. Elimination of galvanic copper plating process used in hardening of conventionally carburized gear wheels. International Journal of Automotive Technology, 11, 127–131.
  • Gençoğlu, S., Yazıcı, A., 2020. Surface Characteristics and Distortion Analysis of the Case-Hardened Helical Gears: A Comparison of Different Case-Hardening Treatments. Transactions of The Indian Institute of Metals, 73 (1): 119-126.
  • Krauss, G., 1991. Metals Handbook. ASM International, Metals Park, OH, 363-375.
  • Mahakul, R., Thatoi, D. N., Choudhury, S., Patnaik, P., 2020. Design and numerical analysis of spur gear using SolidWorks simulation technique. Materials Today: Proceedings (Article in press, https://doi.org/10.1016/j.matpr.2020.09.554)
  • Pavlina, E.J. and Van Tyne C.J., 2008. Correlation of Yield Strength and Tensile Strength with Hardness for Steels. Journal of Materials Engineering and Performance, 17 (6), 888-893.
  • Poor, R.P., Barbee, W. and Brug, J.E., 2007. Furnace for vacuum carburizing with unsaturated aromatic hydrocarbons. US Patent No. 7,267,793 B2, United States Patent Application Publication, 1-14.
  • Ramasamy, R., Sivathanu, S., Neelakandan, V., Ganesan, T., Rao, P.C., 2019. Influence of Retained Austenite on Fatigue Performance of Carburized Gears. SAE Technical Paper 2019-28-0102.
  • Ryzhov, N.M., Fakhurtdinov, R.S. and Smirnov, A.E., 2010. Cyclic strength of steel 16Kh3NVFBM-Sh (VKS-5) after vacuum carburizing. Metal Science and Heat Treatment, 52, 61–66.
  • Savaria, V., Monajati H., Bridier F. and Bocher P., 2015. Measurement and correction of residual stress gradients in aeronautical gears after various induction surface hardening treatments. Journal of Materials Processing Technology, 220, 113–123.
  • Wang, H., Wang, B., Wang, Z., Tian, Y., Misra, R. D. K., 2019. Optimizing the low-pressure car-burizing process of 16Cr3NiWMoVNbE gear steel. Journal of Materials Science and Technology, 35(7):1218–1227.
  • Tobie, T., Hippenstiel F. and Mohrbacher H., 2017. Optimizing gear performance by alloy modification of carburizing steels. Metals, 7 (10),415-475.
  • Zarzoor, A.K., Almuramady, N. and Hussein E. S., 2018. Stress Analysis for Spur Gears Using Solid Works Simulation, International Journal of Mechanical Engineering and Technology (IJMET), 9 (11), 927-936.
  • 1- Chaush, Y., 2008. ANSYS Workbench ile Yorulma Analizi, Bitirme Tezi, Dokuz Eylül Üniversitesi Makine Mühendisliği Bölümü. http://ansys.deu.edu.tr/wp-content/uploads/cmdm/348/1450272307_Yorulma-WB.pdf, (13.12.2020)
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Serhan Gençoğlu 0000-0001-5213-536X

Aysel Yazıcı 0000-0003-1290-7104

Yayımlanma Tarihi 31 Aralık 2020
Gönderilme Tarihi 5 Nisan 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Gençoğlu, S., & Yazıcı, A. (2020). Gaz ve Düşük Basınçlı Sementasyon Yapılmış Helisel Dişli Çarkların Yorulma Analizi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 20(6), 1124-1137. https://doi.org/10.35414/akufemubid.714964
AMA Gençoğlu S, Yazıcı A. Gaz ve Düşük Basınçlı Sementasyon Yapılmış Helisel Dişli Çarkların Yorulma Analizi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. Aralık 2020;20(6):1124-1137. doi:10.35414/akufemubid.714964
Chicago Gençoğlu, Serhan, ve Aysel Yazıcı. “Gaz Ve Düşük Basınçlı Sementasyon Yapılmış Helisel Dişli Çarkların Yorulma Analizi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 20, sy. 6 (Aralık 2020): 1124-37. https://doi.org/10.35414/akufemubid.714964.
EndNote Gençoğlu S, Yazıcı A (01 Aralık 2020) Gaz ve Düşük Basınçlı Sementasyon Yapılmış Helisel Dişli Çarkların Yorulma Analizi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 20 6 1124–1137.
IEEE S. Gençoğlu ve A. Yazıcı, “Gaz ve Düşük Basınçlı Sementasyon Yapılmış Helisel Dişli Çarkların Yorulma Analizi”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 20, sy. 6, ss. 1124–1137, 2020, doi: 10.35414/akufemubid.714964.
ISNAD Gençoğlu, Serhan - Yazıcı, Aysel. “Gaz Ve Düşük Basınçlı Sementasyon Yapılmış Helisel Dişli Çarkların Yorulma Analizi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 20/6 (Aralık 2020), 1124-1137. https://doi.org/10.35414/akufemubid.714964.
JAMA Gençoğlu S, Yazıcı A. Gaz ve Düşük Basınçlı Sementasyon Yapılmış Helisel Dişli Çarkların Yorulma Analizi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2020;20:1124–1137.
MLA Gençoğlu, Serhan ve Aysel Yazıcı. “Gaz Ve Düşük Basınçlı Sementasyon Yapılmış Helisel Dişli Çarkların Yorulma Analizi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 20, sy. 6, 2020, ss. 1124-37, doi:10.35414/akufemubid.714964.
Vancouver Gençoğlu S, Yazıcı A. Gaz ve Düşük Basınçlı Sementasyon Yapılmış Helisel Dişli Çarkların Yorulma Analizi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2020;20(6):1124-37.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.