Araştırma Makalesi
BibTex RIS Kaynak Göster

Sol-jel Yöntemi ile Sentezlenen Bor ve/veya Azot Katkılı TiO2 Toz ve İnce Filmlerin Görünür ve Mor Ötesi Işık Altında Fotokatalitik Aktivitelerinin İncelenmesi

Yıl 2017, Cilt: 17 Sayı: 1, 227 - 238, 24.04.2017

Öz

Bu çalışmada, farklı oranlarda B, N, B/N katkılı ve katkısız TiO2 fotokatalistleri sol-jel yöntemi ile toz ve ince film formunda üretilmiştir. İnce filmler daldırmalı kaplama yöntemi ile kaplamasız ve SiO2 ara katman kaplamalı soda kireç cam altlıklar üzerine kaplanmıştır. SiO2 ara katman kaplamalar, TiO2’nin ısıl işlemi sırasında altlık malzeme olarak kullanılan soda-kireç camındaki alkali iyonların film içine difüze ederek TiO2’nin faz dönüşümünü engellemesini ve fotokatalitik aktivitesini düşürmesini önlemek amacıyla uygulanmıştır. Katkılı ve katkısız TiO2 esaslı çözeltilerden elde edilen jellerin ısıl karakterizasyonları termogravimetrik diferansiyel termal analiz (TG/DTA) yöntemi ile gerçekleştirilmiştir. Elde edilen TG/DTA sonuçları ışığında, TiO2’nin fotokatalitik aktivitesi en yüksek olan anataz fazının kristalizasyon sıcaklığı belirlenmiştir. Anataz fazının kristalizasyon sıcaklığı ve cam altlık malzemenin cam geçiş sıcaklığı göz önünde bulundurularak, fotokatalistler hava ortamında 500 °C’de 1 saat ısıl işleme tabi tutulmuş ve fırın içerisinde oda sıcaklığına soğutulmuştur. Toz haldeki fotokatalistlerin faz karakterizasyonları X-ışınları difraksiyonu (XRD) tekniği ile, ince filmlerin optik karakterizasyonları ise UV-Vis spektrofotometre yöntemi ile gerçekleştirilmiştir. TiO2 yapısında katkı olarak B ve N’nin ayrı ayrı ve eşzamanlı bulunmasının mor ötesi ve görünür ışık fotokatalitik aktivitesine etkisi, organik bir kirlilik olan metilen mavisinin bozunması ile tespit edilmiştir. Metilen mavisinin bozunmasıyla fotokatalitik aktivite kinetik açıdan incelenmiş ve fotokatalistlerin fotokatalitik aktivite hız sabitleri hesaplanmıştır.

Kaynakça

  • Asahi R., Morikawa T., Ohwaki T., Aoki K. and Taga Y., 2001. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 293(5528), 269–271.
  • Burda, C., Lou, Y.B., Chen, X.B., Samia, A.C., Stout, J. and Gole, J.L., 2003. Enhanced Nitrogen Doping in TiO2 Nanoparticles, Nano Letters, 3, 1049-1051.
  • Di Valentin, C., Finazzi, E., Pacchioni, G., Selloni, A., Livraghi, S. and Paganini, M. C., 2007. N-doped TiO2: theory and experiment. Chemical Physics, 339, 44–56.
  • Ding, J.Q., Yuan, Y., Xu, J., Deng, J. and Guo, J., 2009. TiO2 nanopowder co-doped with iodine and boron to enhance visible-light photocatalytic activity. Journal of Biomedical Nanotechnology, 5, 521–527.
  • Dvoranová, D., Brezová, V., Mazúr, M. and Malati, M.A., 2002. Investigations of metal-doped titanium dioxide photocatalysts, Applied Catalysis., 37 (2), 91-105.
  • Fujishima, A. and Honda, K., 1972. Electrochemical photolysis of water at a semiconductor electrode. Nature, 238, 37–38.
  • Gombac, V., DeRogatis, L., Gasparotto, A., Vicario, G., Montinia, T., Barreca, D., Balducci, G., Fornasiero, P., Tondello, E. and Graziani, M., 2007. TiO2 nanopowders doped with boron and nitrogen for photocatalytic applications. Chemical Physics, 339, 111–113.
  • Hanaor, D.A.H., Sorrell, C.C., 2011. Review of the anatase to rutile phase transformation. Journal of Materials Science, 46, 855-874.
  • He, C., Yu, Y., Hu, X. and Larbot, A., 2002. Influence of silver doping on the photocatalytic activity of titania films, Applied Surface Science, 200 (1-4), 239-247.
  • Hirano, M., Nakahara, C., Ota, K., Tanaike, O. and Inagaki, M., 2003. Photoactivity and phase stability of ZrO2-doped anatase-type TiO2 directly formed as nanometer-sized particles by hydrolysis under hydrothermal conditions, Journal of Solid State Chemistry, 170 (1), 39-47.
  • Houas, A., Lachheb, H., Ksibi, M., Elaloui, E., Guillard, C. and Herrmann, J.M., 2001. Photocatalytic Degradation Pathway of Methylene Blue in Water. Applied Catalysis B: Environmental, 31, 145–157.
  • Irie H., Watanabe Y. and Hashimoto K., 2003. Nitrogen-Concentration Dependence on Photocatalytic Activity of TiO2-xNx Powders. The Journal of Physical Chemistry B, 107(23), 5483–5486.
  • Iwasaki, M., Hara, M., Kawada, H., Tada, H. and Ito, S., 2000. Cobalt ion-doped TiO2 photocatalyst response to visible light, Journal of Colloid and Interface Science, 224 (1), 202-204.
  • Karakitsou, K.E. and Verykios, X.E., 1993. Effects of altervalent cation doping of TiO2 on its performance as a photocatalyst for water cleavage, Journal of Physical Chemistry, 97 (6), 1184-1189.
  • Khan, S.U.M., Al-Shahry, M. and Ingler, W. B., 2002. Efficient photochemical water splitting by a chemically modified n-TiO2. Science, 297, 2243–2245.
  • Li, Y., Hwang, D., Lee, N.H. and Kim, S., 2005. Synthesis and characterization of carbon-doped titania as an artificial solar light sensitive photocatalyst, Chemical Physics Letters, 404, 25-29.
  • Liu, G., Zhao, Y., Sun, C., Li, F., Lu , G.Q and Cheng, H.M., 2008. Synergistic effects of B/N doping on the visible-light photocatalytic activity of mesoporous TiO2. Angewandte Chemie International Edition, 47, 4516–4520.
  • Lu, N., Quan, X., Li, J. Y., Chen, S., Yu, H. T. and Chen G. H., 2007. Fabrication of boron-doped TiO2 nanotube array electrode and investigation of its photoelectrochemical capability. The Journal of Physical Chemistry C, 111, 11836–11842.
  • Mills, A. and Le Hunte, S., 1997. An overview of semiconductor photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry. 108, 1–35.
  • Moon, S.C., Mametsuka, H., Tabata, S. and Suzuki, E., 2000. Photocatalytic production of hydrogen from water using TiO2 and B/TiO2. Catalysis Today, 58, 125–132.
  • Mrowetz M., Balcerski W., Colussi A.J. and Hoffmann M.R., 2004. Oxidative power of nitrogen-doped TiO2 photocatalysts under visible illumination. The Journal of Physical Chemistry B, 108(45), 17269–17273.
  • Nadeem, M.Y., Sadhana, T.B., Altaf, M., Chaudhry, M.A., 2004. Optical band gap in MnO-CdO-P2O5 glasses. Journal of Research (Science), 15, 245-251.
  • Nam, H. J., Amemiya T., Murabayashi M. and Itoh K., 2004. Photocatalytic Activity of Sol‐Gel TiO2 Thin Films on Various Kinds of Glass Substrates: The Effects of Na+ and Primary Particle Size. The Journal of Physical Chemistry B, 108(24), 8254–8259.
  • Pelaez, M., Nolan, N. T., Pillai S. C., Seery, M.K., Falaras, P., Kontos, A.G., Dunlop, P.S.M., Hamilton, J.W.J., Byrne, J.A., O'Shea, K., Entezari, M.H. and Dionysiou, D.D., 2012. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Applied Catalysis B: Environmental, 125, 331–349.
  • Ranjit, K.T. and Viswanathan, B., 1997. Photocatalytic reduction of nitrite and nitrate ions over doped TiO2 catalysts, Journal of Photochemistry and Photobiology A, 107 (1-3), 215-220.
  • Reddy, K. M., Baruwati, B., Jayalakshmi, M., Rao, M. M. and Manorama, S.V., 2005. S-, N- and C-doped titanium dioxide nanoparticles: synthesis, characterization and redox charge transfer study. Journal of Solid State Chemistry, 178, 3352–3358.
  • Ren, W., Ai, Z., Jia, F., Zhang, L., Fan, X. and Zou, Z., 2007. Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2 Applied Catalysis B: Environmental, 69, 138-144.
  • Sakthivel, S. and Kisch, H., 2003. Daylight Photocatalysis by Carbon-Modified Titanium Dioxide, Angewandte Chemie International Edition, 42, 4908-4911.
  • Serpone, N., 2006. Is the band gap of pristine TiO2 narrowed by anion-and cation-doping of titanium dioxide in second-generation photocatalysts. The Journal of Physical Chemistry B, 110, 24287–24293.
  • Serpone, N., Lawless, D., Disdier, J. and Herrmann, J-M., 1994. Spectroscopic, photoconductivity, and photocatalytic studies of TiO2 colloids: naked and with the lattice doped with Cr3+, Fe3+, and V5+ cations, Langmuir, 10 (3), 643-652.
  • Shen, M., Wu, Z., Huang, H., Du, Y., Zou, Z. and Yang, P., 2006. Carbon-doped anatase TiO2 obtained from TiC for photocatalysis under visible light irradiation, Materials Letters, 60, 693-697.
  • Su, Y.L., Zhang, X., Han, S., Chen, X. and Lei, L., 2007. F–B-codoping of anodized TiO2 nanotubes using chemical vapor deposition. Electrochemistry Communications, 9, 2291–2298.
  • Subramanian, V., Wolf, E.E. and Kamat, P.V., 2004. Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration, Journal of the American Chemical Society, 126 (15), 4943-4950.
  • Tripathi, A.K., Singh, M.K., Mathpal, M.C., Mishra, S.K., Agarwal, A., 2013. Study of structural transformation in TiO2 nanoparticles and its optical properties, Journal of Alloys and Compounds, 549, 114–120.
  • Tryk, D. A., Fujishima, A. and Honda, K., 2000. Recent topics in photoelectrochemistry: achievements and future prospects. Electrochimica Acta, 45, 2363– 2376.
  • Uddin, N., Shibly, S. U. A., Ovali, R., Islam, S., Mazumder, M.R., Islam, S., Uddin, M.J., Gulseren, O. and Bengu, E., 2013. An experimental and first-principles study of the effect of B/N doping in TiO2 thin films for visible light photo-catalysis. Journal of Photochemistry and Photobiology A: Chemistry, 254, 25–34.
  • Valentin, C. D., Pacchioni, G. and Selloni, A., 2004. Origin of the different photoactivity of N-doped anatase and rutile TiO2. Physical Review B, 70, 085116(1–4).
  • Wang, H. and Lewis, J.P., 2005. Effects of dopant states on photoactivity in carbon-doped TiO2, Journal of Physics: Condensed Matter, 17, L209-L213.
  • Wang, H. and Lewis, J. P., 2006. Second-generation photocatalytic materials: anion-doped TiO2. Journal of Physics: Condensed Matter, 18, 421–434.
  • Xu, J. H., Li, J., Dai, W. L., Cao, Y., Li, H. and Fan, K., 2008. Simple fabrication of twist-like helix N, S-codoped titania photocatalyst with visible-light response. Applied Catalysis B: Environmental, 79, 72–80.
  • Yang, X. X., Cao, C., Erickson, L., Hohn, K., Maghirang, R. and Klabunde, K., 2006. Synthesis of visible-light-active TiO2 based photocatalysts by carbon and nitrogen doping. Journal of Catalysis, 260, 128–133.
  • Yu, J.G., Yu, J.C., Cheng, B. and Zhao, X., 2002. Photocatalytic activity and characterization of the sol-gel derived Pb-doped TiO2 thin films, Journal of Sol-Gel Science and Technology, 24 (1), 39-48.
  • Zaleska, A., Sobczak, J. W., Grabowska, E. And Hupka, J., 2008. Preparation and photocatalytic activity of boron-modified TiO2 under UV and visible light. Applied Catalysis B: Environmental, 78, 92–100.
  • Zhao, W., Ma, W. H., Chen, C., Zhao, J. and Shuai, Z., 2004. Efficient degradation of toxic organic pollutants with Ni2O3/TiO2-XBX under visible irradiation. Journal of the American Chemical Society, 126, 4782–4783.
  • Zhang, H.Z., Banfield, J.F., 1998. Thermodynamic analysis of phase stability of nanocrystalline titania, Journal of Materials Chemistry, 8, 2073-2076.
  • Zhang, X., Zhang, F. and Chan, K.Y., 2006. The synthesis of Pt-modified titanium dioxide thin films by microemulsion templating, their characterization and visible-light photocatalytic properties, Materials Chemistry and Physics, 97 (2-3), 384-389.
Yıl 2017, Cilt: 17 Sayı: 1, 227 - 238, 24.04.2017

Öz

Kaynakça

  • Asahi R., Morikawa T., Ohwaki T., Aoki K. and Taga Y., 2001. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 293(5528), 269–271.
  • Burda, C., Lou, Y.B., Chen, X.B., Samia, A.C., Stout, J. and Gole, J.L., 2003. Enhanced Nitrogen Doping in TiO2 Nanoparticles, Nano Letters, 3, 1049-1051.
  • Di Valentin, C., Finazzi, E., Pacchioni, G., Selloni, A., Livraghi, S. and Paganini, M. C., 2007. N-doped TiO2: theory and experiment. Chemical Physics, 339, 44–56.
  • Ding, J.Q., Yuan, Y., Xu, J., Deng, J. and Guo, J., 2009. TiO2 nanopowder co-doped with iodine and boron to enhance visible-light photocatalytic activity. Journal of Biomedical Nanotechnology, 5, 521–527.
  • Dvoranová, D., Brezová, V., Mazúr, M. and Malati, M.A., 2002. Investigations of metal-doped titanium dioxide photocatalysts, Applied Catalysis., 37 (2), 91-105.
  • Fujishima, A. and Honda, K., 1972. Electrochemical photolysis of water at a semiconductor electrode. Nature, 238, 37–38.
  • Gombac, V., DeRogatis, L., Gasparotto, A., Vicario, G., Montinia, T., Barreca, D., Balducci, G., Fornasiero, P., Tondello, E. and Graziani, M., 2007. TiO2 nanopowders doped with boron and nitrogen for photocatalytic applications. Chemical Physics, 339, 111–113.
  • Hanaor, D.A.H., Sorrell, C.C., 2011. Review of the anatase to rutile phase transformation. Journal of Materials Science, 46, 855-874.
  • He, C., Yu, Y., Hu, X. and Larbot, A., 2002. Influence of silver doping on the photocatalytic activity of titania films, Applied Surface Science, 200 (1-4), 239-247.
  • Hirano, M., Nakahara, C., Ota, K., Tanaike, O. and Inagaki, M., 2003. Photoactivity and phase stability of ZrO2-doped anatase-type TiO2 directly formed as nanometer-sized particles by hydrolysis under hydrothermal conditions, Journal of Solid State Chemistry, 170 (1), 39-47.
  • Houas, A., Lachheb, H., Ksibi, M., Elaloui, E., Guillard, C. and Herrmann, J.M., 2001. Photocatalytic Degradation Pathway of Methylene Blue in Water. Applied Catalysis B: Environmental, 31, 145–157.
  • Irie H., Watanabe Y. and Hashimoto K., 2003. Nitrogen-Concentration Dependence on Photocatalytic Activity of TiO2-xNx Powders. The Journal of Physical Chemistry B, 107(23), 5483–5486.
  • Iwasaki, M., Hara, M., Kawada, H., Tada, H. and Ito, S., 2000. Cobalt ion-doped TiO2 photocatalyst response to visible light, Journal of Colloid and Interface Science, 224 (1), 202-204.
  • Karakitsou, K.E. and Verykios, X.E., 1993. Effects of altervalent cation doping of TiO2 on its performance as a photocatalyst for water cleavage, Journal of Physical Chemistry, 97 (6), 1184-1189.
  • Khan, S.U.M., Al-Shahry, M. and Ingler, W. B., 2002. Efficient photochemical water splitting by a chemically modified n-TiO2. Science, 297, 2243–2245.
  • Li, Y., Hwang, D., Lee, N.H. and Kim, S., 2005. Synthesis and characterization of carbon-doped titania as an artificial solar light sensitive photocatalyst, Chemical Physics Letters, 404, 25-29.
  • Liu, G., Zhao, Y., Sun, C., Li, F., Lu , G.Q and Cheng, H.M., 2008. Synergistic effects of B/N doping on the visible-light photocatalytic activity of mesoporous TiO2. Angewandte Chemie International Edition, 47, 4516–4520.
  • Lu, N., Quan, X., Li, J. Y., Chen, S., Yu, H. T. and Chen G. H., 2007. Fabrication of boron-doped TiO2 nanotube array electrode and investigation of its photoelectrochemical capability. The Journal of Physical Chemistry C, 111, 11836–11842.
  • Mills, A. and Le Hunte, S., 1997. An overview of semiconductor photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry. 108, 1–35.
  • Moon, S.C., Mametsuka, H., Tabata, S. and Suzuki, E., 2000. Photocatalytic production of hydrogen from water using TiO2 and B/TiO2. Catalysis Today, 58, 125–132.
  • Mrowetz M., Balcerski W., Colussi A.J. and Hoffmann M.R., 2004. Oxidative power of nitrogen-doped TiO2 photocatalysts under visible illumination. The Journal of Physical Chemistry B, 108(45), 17269–17273.
  • Nadeem, M.Y., Sadhana, T.B., Altaf, M., Chaudhry, M.A., 2004. Optical band gap in MnO-CdO-P2O5 glasses. Journal of Research (Science), 15, 245-251.
  • Nam, H. J., Amemiya T., Murabayashi M. and Itoh K., 2004. Photocatalytic Activity of Sol‐Gel TiO2 Thin Films on Various Kinds of Glass Substrates: The Effects of Na+ and Primary Particle Size. The Journal of Physical Chemistry B, 108(24), 8254–8259.
  • Pelaez, M., Nolan, N. T., Pillai S. C., Seery, M.K., Falaras, P., Kontos, A.G., Dunlop, P.S.M., Hamilton, J.W.J., Byrne, J.A., O'Shea, K., Entezari, M.H. and Dionysiou, D.D., 2012. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Applied Catalysis B: Environmental, 125, 331–349.
  • Ranjit, K.T. and Viswanathan, B., 1997. Photocatalytic reduction of nitrite and nitrate ions over doped TiO2 catalysts, Journal of Photochemistry and Photobiology A, 107 (1-3), 215-220.
  • Reddy, K. M., Baruwati, B., Jayalakshmi, M., Rao, M. M. and Manorama, S.V., 2005. S-, N- and C-doped titanium dioxide nanoparticles: synthesis, characterization and redox charge transfer study. Journal of Solid State Chemistry, 178, 3352–3358.
  • Ren, W., Ai, Z., Jia, F., Zhang, L., Fan, X. and Zou, Z., 2007. Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2 Applied Catalysis B: Environmental, 69, 138-144.
  • Sakthivel, S. and Kisch, H., 2003. Daylight Photocatalysis by Carbon-Modified Titanium Dioxide, Angewandte Chemie International Edition, 42, 4908-4911.
  • Serpone, N., 2006. Is the band gap of pristine TiO2 narrowed by anion-and cation-doping of titanium dioxide in second-generation photocatalysts. The Journal of Physical Chemistry B, 110, 24287–24293.
  • Serpone, N., Lawless, D., Disdier, J. and Herrmann, J-M., 1994. Spectroscopic, photoconductivity, and photocatalytic studies of TiO2 colloids: naked and with the lattice doped with Cr3+, Fe3+, and V5+ cations, Langmuir, 10 (3), 643-652.
  • Shen, M., Wu, Z., Huang, H., Du, Y., Zou, Z. and Yang, P., 2006. Carbon-doped anatase TiO2 obtained from TiC for photocatalysis under visible light irradiation, Materials Letters, 60, 693-697.
  • Su, Y.L., Zhang, X., Han, S., Chen, X. and Lei, L., 2007. F–B-codoping of anodized TiO2 nanotubes using chemical vapor deposition. Electrochemistry Communications, 9, 2291–2298.
  • Subramanian, V., Wolf, E.E. and Kamat, P.V., 2004. Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration, Journal of the American Chemical Society, 126 (15), 4943-4950.
  • Tripathi, A.K., Singh, M.K., Mathpal, M.C., Mishra, S.K., Agarwal, A., 2013. Study of structural transformation in TiO2 nanoparticles and its optical properties, Journal of Alloys and Compounds, 549, 114–120.
  • Tryk, D. A., Fujishima, A. and Honda, K., 2000. Recent topics in photoelectrochemistry: achievements and future prospects. Electrochimica Acta, 45, 2363– 2376.
  • Uddin, N., Shibly, S. U. A., Ovali, R., Islam, S., Mazumder, M.R., Islam, S., Uddin, M.J., Gulseren, O. and Bengu, E., 2013. An experimental and first-principles study of the effect of B/N doping in TiO2 thin films for visible light photo-catalysis. Journal of Photochemistry and Photobiology A: Chemistry, 254, 25–34.
  • Valentin, C. D., Pacchioni, G. and Selloni, A., 2004. Origin of the different photoactivity of N-doped anatase and rutile TiO2. Physical Review B, 70, 085116(1–4).
  • Wang, H. and Lewis, J.P., 2005. Effects of dopant states on photoactivity in carbon-doped TiO2, Journal of Physics: Condensed Matter, 17, L209-L213.
  • Wang, H. and Lewis, J. P., 2006. Second-generation photocatalytic materials: anion-doped TiO2. Journal of Physics: Condensed Matter, 18, 421–434.
  • Xu, J. H., Li, J., Dai, W. L., Cao, Y., Li, H. and Fan, K., 2008. Simple fabrication of twist-like helix N, S-codoped titania photocatalyst with visible-light response. Applied Catalysis B: Environmental, 79, 72–80.
  • Yang, X. X., Cao, C., Erickson, L., Hohn, K., Maghirang, R. and Klabunde, K., 2006. Synthesis of visible-light-active TiO2 based photocatalysts by carbon and nitrogen doping. Journal of Catalysis, 260, 128–133.
  • Yu, J.G., Yu, J.C., Cheng, B. and Zhao, X., 2002. Photocatalytic activity and characterization of the sol-gel derived Pb-doped TiO2 thin films, Journal of Sol-Gel Science and Technology, 24 (1), 39-48.
  • Zaleska, A., Sobczak, J. W., Grabowska, E. And Hupka, J., 2008. Preparation and photocatalytic activity of boron-modified TiO2 under UV and visible light. Applied Catalysis B: Environmental, 78, 92–100.
  • Zhao, W., Ma, W. H., Chen, C., Zhao, J. and Shuai, Z., 2004. Efficient degradation of toxic organic pollutants with Ni2O3/TiO2-XBX under visible irradiation. Journal of the American Chemical Society, 126, 4782–4783.
  • Zhang, H.Z., Banfield, J.F., 1998. Thermodynamic analysis of phase stability of nanocrystalline titania, Journal of Materials Chemistry, 8, 2073-2076.
  • Zhang, X., Zhang, F. and Chan, K.Y., 2006. The synthesis of Pt-modified titanium dioxide thin films by microemulsion templating, their characterization and visible-light photocatalytic properties, Materials Chemistry and Physics, 97 (2-3), 384-389.
Toplam 46 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Ali Erçin Ersundu

Yayımlanma Tarihi 24 Nisan 2017
Gönderilme Tarihi 16 Ağustos 2016
Yayımlandığı Sayı Yıl 2017 Cilt: 17 Sayı: 1

Kaynak Göster

APA Ersundu, A. E. (2017). Sol-jel Yöntemi ile Sentezlenen Bor ve/veya Azot Katkılı TiO2 Toz ve İnce Filmlerin Görünür ve Mor Ötesi Işık Altında Fotokatalitik Aktivitelerinin İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 17(1), 227-238.
AMA Ersundu AE. Sol-jel Yöntemi ile Sentezlenen Bor ve/veya Azot Katkılı TiO2 Toz ve İnce Filmlerin Görünür ve Mor Ötesi Işık Altında Fotokatalitik Aktivitelerinin İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. Nisan 2017;17(1):227-238.
Chicago Ersundu, Ali Erçin. “Sol-Jel Yöntemi Ile Sentezlenen Bor ve/Veya Azot Katkılı TiO2 Toz Ve İnce Filmlerin Görünür Ve Mor Ötesi Işık Altında Fotokatalitik Aktivitelerinin İncelenmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 17, sy. 1 (Nisan 2017): 227-38.
EndNote Ersundu AE (01 Nisan 2017) Sol-jel Yöntemi ile Sentezlenen Bor ve/veya Azot Katkılı TiO2 Toz ve İnce Filmlerin Görünür ve Mor Ötesi Işık Altında Fotokatalitik Aktivitelerinin İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 17 1 227–238.
IEEE A. E. Ersundu, “Sol-jel Yöntemi ile Sentezlenen Bor ve/veya Azot Katkılı TiO2 Toz ve İnce Filmlerin Görünür ve Mor Ötesi Işık Altında Fotokatalitik Aktivitelerinin İncelenmesi”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 17, sy. 1, ss. 227–238, 2017.
ISNAD Ersundu, Ali Erçin. “Sol-Jel Yöntemi Ile Sentezlenen Bor ve/Veya Azot Katkılı TiO2 Toz Ve İnce Filmlerin Görünür Ve Mor Ötesi Işık Altında Fotokatalitik Aktivitelerinin İncelenmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 17/1 (Nisan 2017), 227-238.
JAMA Ersundu AE. Sol-jel Yöntemi ile Sentezlenen Bor ve/veya Azot Katkılı TiO2 Toz ve İnce Filmlerin Görünür ve Mor Ötesi Işık Altında Fotokatalitik Aktivitelerinin İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2017;17:227–238.
MLA Ersundu, Ali Erçin. “Sol-Jel Yöntemi Ile Sentezlenen Bor ve/Veya Azot Katkılı TiO2 Toz Ve İnce Filmlerin Görünür Ve Mor Ötesi Işık Altında Fotokatalitik Aktivitelerinin İncelenmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 17, sy. 1, 2017, ss. 227-38.
Vancouver Ersundu AE. Sol-jel Yöntemi ile Sentezlenen Bor ve/veya Azot Katkılı TiO2 Toz ve İnce Filmlerin Görünür ve Mor Ötesi Işık Altında Fotokatalitik Aktivitelerinin İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2017;17(1):227-38.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.