Araştırma Makalesi
BibTex RIS Kaynak Göster

İnce Katman Aktivasyon Yöntemi için 48Ti(α,n)51Cr Reaksiyon Tesir Kesiti Hesabı

Yıl 2017, Cilt: 17 Sayı: 2, 432 - 439, 31.08.2017

Öz

İnce Katman Aktivasyon Yöntemi, sanayide aşınma, korozyon ve erozyon hızlarının ölçülmesinde kullanılan en hassas ve güçlü yöntemdir. Yöntemde öncelikle araştırılmak istenen yüzeyde bir radyoaktif katman oluşturulur ve daha sonra burada oluşan aktivite ölçülerek yüzeydeki aşınma incelenir. Aktivitedeki değişimin katman kalınlığındaki azalma miktarına dönüştürülmesi için deneysel yada teorik bir kalibrasyon eğrisine ihtiyaç vardır. Teorik kalibrasyon eğrisi için ilgili maddenin durdurma gücü ve meydana gelen nükleer reaksiyonun tesir kesti enerjiye bağlı olarak çok hassas olarak bilinmelidir. Bu çalışmada havacılık, uzay ve sağlık endüstrisinde yaygın olarak kullanılan Titanyum ve alaşımlarının korozyonunu ve aşınmasını incelemek için, 48Ti(α,n)51Cr reaksiyonun tesir kesiti, farklı optik model potansiyelleri ve düzey yoğunluğu modelleri ile hesaplanmış ve literatürde bulunan deneysel sonuçlarla karşılaştırılmıştır.

Kaynakça

  • Avrigeanu, V., Avrigeanu, M., Mănăilescu, C. 2014. Further explorations of the α-particle optical model potential at low energies for the mass range A≈45–209. Physical Review C, 90, 044612 .
  • Avrigeanu, V., Hodgson, P. E., Avrigeanu, M. 1994.Global optical potentials for emitted alpha particles.Physical Review C,49, 2136.
  • Baglin, C.M., Norman, E.B., Larimer, R., Rech, G.A. 2005. Measurement of 107Ag(α,γ)111In Cross Sections. AIP Conference Proceedings. 769, 10.1063
  • Chowdhury, D.P., Chaudhuri, J., et al., 1989.Study of wear between piston ring and cylinder housing of an internal combustion engine by thin layer activation technique.Nucl. Instr. and Meth. B 42, 375.
  • Cioffi, M. Gilliland, D. Ceccone G., Chiesa, R. Cigada, A. 2005. Electrochemical release testing of nickel–titanium orthodontic wires in artificial saliva using thin layer activation. Acta Biomaterialia,1, 717–724
  • Conlon, T.W., 1982. Doping surface with radioactive atoms-for research and industry. Contemp. Phys.23, 353.
  • Demetriou, P. Grama C., Goriely, S. 2002. Improved global α-optical model potentials at low energies.Nucl.Phys.A, 707, 253.
  • Demetriou, P., Goriely, S. 2001. Microscopic nuclear level densities for practical applications.Nucl.Phys.A,695, 95.
  • Dilg, W. ,Schantl, W., Vonach, H., Uhl, M. 1973. Level density parameters for the back-shifted fermi gas model in the mass range 40 < A < 250. Nucl.Phys.A, 217, 269.
  • Evans, R., 1980. Radioisotope methods for measuring engine wear: a thin layer activation for the measurement of cam follower wear and its comparison with a neutron activation method. Wear64, 311.
  • Garci, M.C., Macchim, G., et al., 2002. Electrochemical release testing of a stainless steel in a glucose solution using thin layer activation. Corros. Sci. 44, 129–143.
  • Gilbert, A. , Cameron, A.G.W. , 1965 A composite nuclear-level density formula with shell corrections.Can. J. Phys., 43,1446.
  • Goriely, S. Hilaire S., Koning, A.J. 2008.Improved microscopic nuclear level densities within the Hartree-Fock-Bogoliubov plus combinatorial method.Physical Review C,78, 064307.
  • Hilaire, S., Girod, M., Goriely, S., Koning, A.J. 2012.Temperature-dependent combinatorial level densities with the D1M Gogny force. Physical Review C ,86, 064317.
  • Hilaire, S., Goriely, S., 2006.Global microscopic nuclear level densities within the HFB plus combinatorial method for practical applications.Nucl.Phys.A779, 63.
  • Ignatyuk, A.V., Istekov, K.K., Smirenkin, G.N. 1979. The Role of Collective Effects in the Systematics of Nuclear Level Densities, Sov. J. Nucl. Phys. 29, 450.
  • Ignatyuk, A.V., Weil, J.L., Raman, S., Kahane, S. 1993. Density of discrete levels in116Sn. Physical Review C,47, 1504.
  • Koning, A. J., Hilaire, S., veDuijvestijn, M. C. in Proceedings of the International Conference on Nuclear Data for Science and Technology, April 22-27, 2007, Nice, France.
  • Konstantinov, I.O., Krasnov, N.N., 1971. Determination of the wear of machine parts by charged particle surface activation. J. Radioanal. Chem.,8, 357.
  • McFadden, L., Satchler, G.R. 1966. Optical-model analysis of the scattering of 24.7 MeV alpha particles.Nucl.Phys. 84, 177.
  • Morton, A.J., Tims, S.G., Scott, A.F., Hansper, V.Y., Tingwell, C.I.W., Sargood D.G. 1992. The 48Ti(α,n)51Cr and 48Ti(α,p)51V cross sections. Nuclear Physics A, 537,167.
  • Nolte, M., Machner, H., Bojowald, 1987. Global optical potential for α particles with energies above 80 MeV. Physical Review C,36, 1312.
  • Paul H. 2010. Recent results in stopping power for positive ions, and some critical comments, Nucl. Instr. Meth. B, 268, 3421.
  • Paul H. 2012. Comparing experimental stopping power data for positive ions with stopping tables, using statistical analysis, Nucl. Instr. Meth. B, 273, 15.
  • Paul H., Sanchez-Parcerisa D. 2013. A critical overview of recent stopping power programs for positive ions in solid elements, Nucl. Instr. Meth. B,312, 110 – 117.
  • Scharf, W., Niewczas, A., 1987. Traction studies of piston ring using an external radiometric method with proton activation. Nucl. Instr. and Meth. B22, 57.
  • Stroosnijder, M.F., Brugnoni, C., et al., 2002. Atmospheric corrosion evaluation of galvanised steel by thin layer activation. Corros. Sci.46, 2355–2359.
  • Vonach, H., Haight, R.C., Winkler, G. 1983. (α,n) and total α-reaction cross sections for Ti-48 and V-51. Physical Review C, 28, 2278.
  • Wallace, G., Boulton, H.L., Hodder, D., 1989. Corrosion monitoring on a large steel pressure vessel by thin-layer activation, Corrosion 45, 1016.
  • Wallace, G., Pohl, K.P., Hutchinson, E.F., Hemmingen, I.D., 2001. The application of thin layer activation for on-line erosion monitoring, Appl. Radiat. Isot.55, 281.
  • Watanabe, S. 1958. High energy scattering of deuterons by complex nuclei.Nucl.Phys. 8, 484.
  • Yalçın, C. 2015. Thickness measurement using alpha spectroscopy and SRIM.Journal of Physics: Conference Series,590, 012050.
  • Yalçın, C., Gyürky, Gy., Rauscher, T., Kiss, G. G., Özkan, N, Güray, R. T., Halász, Z., Szücs, T., Fülöp, Zs., Farkas, J., Korkulu, Z., Somorjai, E. 2015. Test of statistical model cross section calculations for α-induced reactions on107Ag at energies of astrophysical interest. Physical Review C, 91, 034610.
  • Ziegler J F, Biersack J P and Littmark U 1995 The Stopping and Range of Ions in Solids (New York:Pergamon Press).
  • 1- www.nndc.bnl.gov/nudat2/(01.01.2017).
  • 2- www.srim.org (01.01.2017).
  • 3- www.thimet.org(01.01.2017).
Yıl 2017, Cilt: 17 Sayı: 2, 432 - 439, 31.08.2017

Öz

Kaynakça

  • Avrigeanu, V., Avrigeanu, M., Mănăilescu, C. 2014. Further explorations of the α-particle optical model potential at low energies for the mass range A≈45–209. Physical Review C, 90, 044612 .
  • Avrigeanu, V., Hodgson, P. E., Avrigeanu, M. 1994.Global optical potentials for emitted alpha particles.Physical Review C,49, 2136.
  • Baglin, C.M., Norman, E.B., Larimer, R., Rech, G.A. 2005. Measurement of 107Ag(α,γ)111In Cross Sections. AIP Conference Proceedings. 769, 10.1063
  • Chowdhury, D.P., Chaudhuri, J., et al., 1989.Study of wear between piston ring and cylinder housing of an internal combustion engine by thin layer activation technique.Nucl. Instr. and Meth. B 42, 375.
  • Cioffi, M. Gilliland, D. Ceccone G., Chiesa, R. Cigada, A. 2005. Electrochemical release testing of nickel–titanium orthodontic wires in artificial saliva using thin layer activation. Acta Biomaterialia,1, 717–724
  • Conlon, T.W., 1982. Doping surface with radioactive atoms-for research and industry. Contemp. Phys.23, 353.
  • Demetriou, P. Grama C., Goriely, S. 2002. Improved global α-optical model potentials at low energies.Nucl.Phys.A, 707, 253.
  • Demetriou, P., Goriely, S. 2001. Microscopic nuclear level densities for practical applications.Nucl.Phys.A,695, 95.
  • Dilg, W. ,Schantl, W., Vonach, H., Uhl, M. 1973. Level density parameters for the back-shifted fermi gas model in the mass range 40 < A < 250. Nucl.Phys.A, 217, 269.
  • Evans, R., 1980. Radioisotope methods for measuring engine wear: a thin layer activation for the measurement of cam follower wear and its comparison with a neutron activation method. Wear64, 311.
  • Garci, M.C., Macchim, G., et al., 2002. Electrochemical release testing of a stainless steel in a glucose solution using thin layer activation. Corros. Sci. 44, 129–143.
  • Gilbert, A. , Cameron, A.G.W. , 1965 A composite nuclear-level density formula with shell corrections.Can. J. Phys., 43,1446.
  • Goriely, S. Hilaire S., Koning, A.J. 2008.Improved microscopic nuclear level densities within the Hartree-Fock-Bogoliubov plus combinatorial method.Physical Review C,78, 064307.
  • Hilaire, S., Girod, M., Goriely, S., Koning, A.J. 2012.Temperature-dependent combinatorial level densities with the D1M Gogny force. Physical Review C ,86, 064317.
  • Hilaire, S., Goriely, S., 2006.Global microscopic nuclear level densities within the HFB plus combinatorial method for practical applications.Nucl.Phys.A779, 63.
  • Ignatyuk, A.V., Istekov, K.K., Smirenkin, G.N. 1979. The Role of Collective Effects in the Systematics of Nuclear Level Densities, Sov. J. Nucl. Phys. 29, 450.
  • Ignatyuk, A.V., Weil, J.L., Raman, S., Kahane, S. 1993. Density of discrete levels in116Sn. Physical Review C,47, 1504.
  • Koning, A. J., Hilaire, S., veDuijvestijn, M. C. in Proceedings of the International Conference on Nuclear Data for Science and Technology, April 22-27, 2007, Nice, France.
  • Konstantinov, I.O., Krasnov, N.N., 1971. Determination of the wear of machine parts by charged particle surface activation. J. Radioanal. Chem.,8, 357.
  • McFadden, L., Satchler, G.R. 1966. Optical-model analysis of the scattering of 24.7 MeV alpha particles.Nucl.Phys. 84, 177.
  • Morton, A.J., Tims, S.G., Scott, A.F., Hansper, V.Y., Tingwell, C.I.W., Sargood D.G. 1992. The 48Ti(α,n)51Cr and 48Ti(α,p)51V cross sections. Nuclear Physics A, 537,167.
  • Nolte, M., Machner, H., Bojowald, 1987. Global optical potential for α particles with energies above 80 MeV. Physical Review C,36, 1312.
  • Paul H. 2010. Recent results in stopping power for positive ions, and some critical comments, Nucl. Instr. Meth. B, 268, 3421.
  • Paul H. 2012. Comparing experimental stopping power data for positive ions with stopping tables, using statistical analysis, Nucl. Instr. Meth. B, 273, 15.
  • Paul H., Sanchez-Parcerisa D. 2013. A critical overview of recent stopping power programs for positive ions in solid elements, Nucl. Instr. Meth. B,312, 110 – 117.
  • Scharf, W., Niewczas, A., 1987. Traction studies of piston ring using an external radiometric method with proton activation. Nucl. Instr. and Meth. B22, 57.
  • Stroosnijder, M.F., Brugnoni, C., et al., 2002. Atmospheric corrosion evaluation of galvanised steel by thin layer activation. Corros. Sci.46, 2355–2359.
  • Vonach, H., Haight, R.C., Winkler, G. 1983. (α,n) and total α-reaction cross sections for Ti-48 and V-51. Physical Review C, 28, 2278.
  • Wallace, G., Boulton, H.L., Hodder, D., 1989. Corrosion monitoring on a large steel pressure vessel by thin-layer activation, Corrosion 45, 1016.
  • Wallace, G., Pohl, K.P., Hutchinson, E.F., Hemmingen, I.D., 2001. The application of thin layer activation for on-line erosion monitoring, Appl. Radiat. Isot.55, 281.
  • Watanabe, S. 1958. High energy scattering of deuterons by complex nuclei.Nucl.Phys. 8, 484.
  • Yalçın, C. 2015. Thickness measurement using alpha spectroscopy and SRIM.Journal of Physics: Conference Series,590, 012050.
  • Yalçın, C., Gyürky, Gy., Rauscher, T., Kiss, G. G., Özkan, N, Güray, R. T., Halász, Z., Szücs, T., Fülöp, Zs., Farkas, J., Korkulu, Z., Somorjai, E. 2015. Test of statistical model cross section calculations for α-induced reactions on107Ag at energies of astrophysical interest. Physical Review C, 91, 034610.
  • Ziegler J F, Biersack J P and Littmark U 1995 The Stopping and Range of Ions in Solids (New York:Pergamon Press).
  • 1- www.nndc.bnl.gov/nudat2/(01.01.2017).
  • 2- www.srim.org (01.01.2017).
  • 3- www.thimet.org(01.01.2017).
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Caner Yalçın

Yayımlanma Tarihi 31 Ağustos 2017
Gönderilme Tarihi 7 Ocak 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 17 Sayı: 2

Kaynak Göster

APA Yalçın, C. (2017). İnce Katman Aktivasyon Yöntemi için 48Ti(α,n)51Cr Reaksiyon Tesir Kesiti Hesabı. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 17(2), 432-439.
AMA Yalçın C. İnce Katman Aktivasyon Yöntemi için 48Ti(α,n)51Cr Reaksiyon Tesir Kesiti Hesabı. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. Ağustos 2017;17(2):432-439.
Chicago Yalçın, Caner. “İnce Katman Aktivasyon Yöntemi için 48Ti(α,n)51Cr Reaksiyon Tesir Kesiti Hesabı”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 17, sy. 2 (Ağustos 2017): 432-39.
EndNote Yalçın C (01 Ağustos 2017) İnce Katman Aktivasyon Yöntemi için 48Ti(α,n)51Cr Reaksiyon Tesir Kesiti Hesabı. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 17 2 432–439.
IEEE C. Yalçın, “İnce Katman Aktivasyon Yöntemi için 48Ti(α,n)51Cr Reaksiyon Tesir Kesiti Hesabı”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 17, sy. 2, ss. 432–439, 2017.
ISNAD Yalçın, Caner. “İnce Katman Aktivasyon Yöntemi için 48Ti(α,n)51Cr Reaksiyon Tesir Kesiti Hesabı”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 17/2 (Ağustos 2017), 432-439.
JAMA Yalçın C. İnce Katman Aktivasyon Yöntemi için 48Ti(α,n)51Cr Reaksiyon Tesir Kesiti Hesabı. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2017;17:432–439.
MLA Yalçın, Caner. “İnce Katman Aktivasyon Yöntemi için 48Ti(α,n)51Cr Reaksiyon Tesir Kesiti Hesabı”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 17, sy. 2, 2017, ss. 432-9.
Vancouver Yalçın C. İnce Katman Aktivasyon Yöntemi için 48Ti(α,n)51Cr Reaksiyon Tesir Kesiti Hesabı. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2017;17(2):432-9.