Araştırma Makalesi
BibTex RIS Kaynak Göster

Gecikme Argümentli Rayleigh Tipi Denklem için Periyodik Çözümlerin Varlığı Üzerine

Yıl 2018, Cilt: 18 Sayı: 1, 156 - 161, 30.04.2018

Öz

Bu çalışmada,
 t  f t, t  t  gt, t  t  t  t   0
formundaki gecikme argümentli Rayleigh tipi denklem ele alınmaktadır. Bu denklemin T-periyodik
çözümlerinin varlığı üzerine yeni sonuçlar elde edilmektedir. Bu sonuçlar elde edilirken örtüşen derece
teorisi kullanılmaktadır.    

Kaynakça

  • Acan, O., 2016. Existence and uniqueness of periodic solutions for a kind of forced rayleigh equation, Gazi University Journal of Science, 29, 645-650.
  • Burton T. A., 1985. Stability and Periodic Solutions of Ordinary and Functional Differential Equations, Academic Press, Orland, FL. Deimling, K., 1985. Nonlinear Functional Analysis, Springer, Berlin.
  • Degla, G., 1997. Degree theory for compact displacements of the identity and applications, International Center for Theoretical Physics, P.O. Box 586, Italy.
  • Gaines, R. E., Mawhin, J., 1977. Coincidence Degree and Nonlinear Differential Equations, in: Lecture Notes in Mathematics, Springer-Verlag, Berlin, New York.
  • Huang, C., He, Y., Huang, L., Tan, W., 2007. New results on the periodic solutions for a kind of Rayleigh equation with two deviating arguments, Mathematical and Computer Modelling, 46, 5-6
  • . Li, Y., Huang, L., 2008. New results of periodic solutions for forced Rayleigh-type equations, Journal of mathematical analysis and applications, 221(1), 98-105.
  • Liang, R., 2012. Existence and uniqueness of periodic solution for forced Rayleigh type equations, Journal of Applied Mathematics and Computing, 40, 415-425.
  • Liu, B., 2008. Existence and uniqueness of periodic solutions for a kind of Rayleigh equation with two deviating arguments, Computers & Mathematics with Applications, 55, 2108-2117
  • . Liu, B., 2009. Anti-periodic solutions for forced Rayleigh-type equations, Nonlinear Analaysis, 10, 2850-2856.
  • Liu, B., Huang, L., 2006. Periodic solutions for a kind of Rayleigh equation with a deviating argument, Journal of mathematical analysis and applications, 321, 491-500.
  • Lu, S., Ge, W., 2004a. Periodic solutions for a kind of Liénard equations with deviating arguments, Journal of mathematical analysis and applications, 249, 231-243.
  • Lu, S., Ge, W., 2004b. Some new results on the existence of periodic solutions to a kind of Rayleigh equation with a deviating argument, Nonlinear Analaysis, 56, 501-504.
  • Lu, S., Ge, W., Zheng, Z., 2004. Periodic Solutions for a Kind of Rayleigh Equation with a Deviating Argument, Applied mathematics letters, 17, 443-449.
  • Peng, L., Liu, B., Zhou, Q., Huang, L., 2006. Periodic solutions for a kind of Rayleigh equation with two deviating arguments, Journal of the Franklin Institute, 343, 676-687.
  • Wang, L., Shao, J., 2010. New results of periodic solutions for a kind of forced Rayleigh-type equations, Nonlinear Analaysis, 11, 99-105.
  • Xiong, W., Zhou, Q., Xiao, B., Wang, Y., Long, F., 2007. Periodic solutions for a kind of Liénard equation with two deviating arguments, Nonlinear Analaysis, 8(3), 787-796.
  • Yu, Y., Shao, J., Yue, G., 2009. Existence and uniqueness of anti-periodic solutions for a kind of Rayleigh equation with two deviating arguments, Nonlinear Analaysis, 71, 4689-4695.
  • Zhou, Y., Tang, X., 2007a. On existence of periodic solutions of Rayleigh equation of retarded type, Journal of computational and applied mathematics, 203, 1-5.
  • Zhou, Y., Tang, X., 2007b. Periodic solutions for a kind of Rayleigh equation with a deviating argument, Computers & Mathematics with Applications, 53, 825-830.
  • Zhou, Y., Tang, X., 2008. On existence of periodic solutions of a kind of Rayleigh equation with a deviating argument, Nonlinear Analaysis, 69, 2355-2361.
Yıl 2018, Cilt: 18 Sayı: 1, 156 - 161, 30.04.2018

Öz

Kaynakça

  • Acan, O., 2016. Existence and uniqueness of periodic solutions for a kind of forced rayleigh equation, Gazi University Journal of Science, 29, 645-650.
  • Burton T. A., 1985. Stability and Periodic Solutions of Ordinary and Functional Differential Equations, Academic Press, Orland, FL. Deimling, K., 1985. Nonlinear Functional Analysis, Springer, Berlin.
  • Degla, G., 1997. Degree theory for compact displacements of the identity and applications, International Center for Theoretical Physics, P.O. Box 586, Italy.
  • Gaines, R. E., Mawhin, J., 1977. Coincidence Degree and Nonlinear Differential Equations, in: Lecture Notes in Mathematics, Springer-Verlag, Berlin, New York.
  • Huang, C., He, Y., Huang, L., Tan, W., 2007. New results on the periodic solutions for a kind of Rayleigh equation with two deviating arguments, Mathematical and Computer Modelling, 46, 5-6
  • . Li, Y., Huang, L., 2008. New results of periodic solutions for forced Rayleigh-type equations, Journal of mathematical analysis and applications, 221(1), 98-105.
  • Liang, R., 2012. Existence and uniqueness of periodic solution for forced Rayleigh type equations, Journal of Applied Mathematics and Computing, 40, 415-425.
  • Liu, B., 2008. Existence and uniqueness of periodic solutions for a kind of Rayleigh equation with two deviating arguments, Computers & Mathematics with Applications, 55, 2108-2117
  • . Liu, B., 2009. Anti-periodic solutions for forced Rayleigh-type equations, Nonlinear Analaysis, 10, 2850-2856.
  • Liu, B., Huang, L., 2006. Periodic solutions for a kind of Rayleigh equation with a deviating argument, Journal of mathematical analysis and applications, 321, 491-500.
  • Lu, S., Ge, W., 2004a. Periodic solutions for a kind of Liénard equations with deviating arguments, Journal of mathematical analysis and applications, 249, 231-243.
  • Lu, S., Ge, W., 2004b. Some new results on the existence of periodic solutions to a kind of Rayleigh equation with a deviating argument, Nonlinear Analaysis, 56, 501-504.
  • Lu, S., Ge, W., Zheng, Z., 2004. Periodic Solutions for a Kind of Rayleigh Equation with a Deviating Argument, Applied mathematics letters, 17, 443-449.
  • Peng, L., Liu, B., Zhou, Q., Huang, L., 2006. Periodic solutions for a kind of Rayleigh equation with two deviating arguments, Journal of the Franklin Institute, 343, 676-687.
  • Wang, L., Shao, J., 2010. New results of periodic solutions for a kind of forced Rayleigh-type equations, Nonlinear Analaysis, 11, 99-105.
  • Xiong, W., Zhou, Q., Xiao, B., Wang, Y., Long, F., 2007. Periodic solutions for a kind of Liénard equation with two deviating arguments, Nonlinear Analaysis, 8(3), 787-796.
  • Yu, Y., Shao, J., Yue, G., 2009. Existence and uniqueness of anti-periodic solutions for a kind of Rayleigh equation with two deviating arguments, Nonlinear Analaysis, 71, 4689-4695.
  • Zhou, Y., Tang, X., 2007a. On existence of periodic solutions of Rayleigh equation of retarded type, Journal of computational and applied mathematics, 203, 1-5.
  • Zhou, Y., Tang, X., 2007b. Periodic solutions for a kind of Rayleigh equation with a deviating argument, Computers & Mathematics with Applications, 53, 825-830.
  • Zhou, Y., Tang, X., 2008. On existence of periodic solutions of a kind of Rayleigh equation with a deviating argument, Nonlinear Analaysis, 69, 2355-2361.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Omer Acan Bu kişi benim

Yayımlanma Tarihi 30 Nisan 2018
Gönderilme Tarihi 8 Kasım 2016
Yayımlandığı Sayı Yıl 2018 Cilt: 18 Sayı: 1

Kaynak Göster

APA Acan, O. (2018). Gecikme Argümentli Rayleigh Tipi Denklem için Periyodik Çözümlerin Varlığı Üzerine. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 18(1), 156-161.
AMA Acan O. Gecikme Argümentli Rayleigh Tipi Denklem için Periyodik Çözümlerin Varlığı Üzerine. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. Nisan 2018;18(1):156-161.
Chicago Acan, Omer. “Gecikme Argümentli Rayleigh Tipi Denklem için Periyodik Çözümlerin Varlığı Üzerine”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 18, sy. 1 (Nisan 2018): 156-61.
EndNote Acan O (01 Nisan 2018) Gecikme Argümentli Rayleigh Tipi Denklem için Periyodik Çözümlerin Varlığı Üzerine. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 18 1 156–161.
IEEE O. Acan, “Gecikme Argümentli Rayleigh Tipi Denklem için Periyodik Çözümlerin Varlığı Üzerine”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 18, sy. 1, ss. 156–161, 2018.
ISNAD Acan, Omer. “Gecikme Argümentli Rayleigh Tipi Denklem için Periyodik Çözümlerin Varlığı Üzerine”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 18/1 (Nisan 2018), 156-161.
JAMA Acan O. Gecikme Argümentli Rayleigh Tipi Denklem için Periyodik Çözümlerin Varlığı Üzerine. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2018;18:156–161.
MLA Acan, Omer. “Gecikme Argümentli Rayleigh Tipi Denklem için Periyodik Çözümlerin Varlığı Üzerine”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 18, sy. 1, 2018, ss. 156-61.
Vancouver Acan O. Gecikme Argümentli Rayleigh Tipi Denklem için Periyodik Çözümlerin Varlığı Üzerine. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2018;18(1):156-61.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.