Araştırma Makalesi
BibTex RIS Kaynak Göster

Spin Kaplama Yöntemi ile Hazırlanan Cu Katkılı ZnO Nanoyapılı İnce Filmlerin Elektrokimyasal, Optik ve Morfolojik Karakterizasyonları

Yıl 2021, Cilt: 21 Sayı: 6, 1306 - 1314, 31.12.2021
https://doi.org/10.35414/akufemubid.888530

Öz

İletkenliğin hayati olduğu nanoteknoloji açısından bakıldığında, spin kaplama ile üretilen Cu katkılı ZnO nanoyapılı ince filmlerin elektrokimyasal özelliklerinin belirlenmesi çok gerekli olsa da literatürde sınırlı çalışmalar bulunmaktadır. Bu nedenle bu çalışmada, kolay ve uygun maliyetli spin kaplama yöntemi kullanılarak cam altlıklar üzerine büyütülen nanoyapılı ince filmlerin elektrokimyasal özelliklerinin derinlemesine incelenmesi amaçlanmıştır. Katkının, farklı konsantrasyonlarda (%0-50) Cu katkılı ZnO nanoyapılı ince filmlerin morfolojik, optik ve elektrokimyasal özellikleri üzerindeki etkileri SEM, XRF, FTIR, UV-vis, mekanik profilometre ve döngüsel voltametri ile araştırıldı. Örneklerin absorpsiyon spektrumları, Cu katkı konsantrasyonunun artmasıyla enerji bant aralığı değerinin azaldığını ortaya çıkardı. SEM görüntüleri, Cu katkısıyla daha küresel ve homojen nanoyapıların oluştuğunu gösterdi. Elektrokimyasal sonuçlar, ZnO nanoparçacıklarında Cu katkılama oranının arttırılmasının daha yüksek elektron transferi ile sonuçlandığını göstermiştir ki bu da ZnO nanoyapılı ince filmlerin Cu katkılaması ile iletkenliğinin arttığını göstermektedir. Basit ve ucuz bir yöntemle daha homojen, daha geniş spektrumlu absorpsiyon yeteneğine sahip ve daha iletken nanoyapılı ince filmler üretmenin mümkün olduğu sonucuna varılmıştır. Elde edilen ince filmlerin çok çeşitli nanoteknoloji uygulamaları için umut verici olduğu öngörülmektedir.

Kaynakça

  • Abderrahmane, B., Djamila, A., Chaabia, N., Fodil R., 2020. Improvement of ZnO nanorods photoelectrochemical, optical, structural and morphological characterizations by cerium ions doping. Journal of Alloys and Compounds, 829, 154498.
  • Allabergenov, B., Tursunkulov, O., Abidov, A.I., Choi, B., Wook, J.S., and Kim, S., 2014. Microstructural analysis and optical characteristics of Cu-doped ZnO thin films prepared by DC magnetron sputtering. Journal of Crystal Growth, 401, 573–576.
  • Aristov, N., and Habekost, A., 2015. Cyclic Voltammetry-A Versatile Electrochemical Method Investigating Electron Transfer Processes. World Journal of Chemical Education. 3, 115–119.
  • Ashokkumar, M., and Muthukumaran, S., 2015. Electrical, dielectric, photoluminescence and magnetic properties of ZnO nanoparticles co-doped with Co and Cu. Journal of Magnetism and Magnetic Materials, 374, 61–66.
  • Ashokkumar, M., and Muthukumaran, S., 2015. Enhanced room temperature ferromagnetism and photoluminescence behavior of Cu-doped ZnO co-doped with Mn. Physica E: Low-Dimensional Systems and Nanostructures, 69, 354–359.
  • Baer, D.R., Amonette, J.E., Engelhard, M.H., Gaspar, D.J., Karakoti, A.S., Kuchibhatla, S., Nachimuthu, P., Nurmi, J.T., Qiang, Y., Sarathy, V., Seal, S., Sharma, A., Tratnyek, P.G., and Wang, C.-M., 2008. Characterization challenges for nanomaterials. Surface and Interface Analysis, 40, 529–537.
  • Baer, D.R., Engelhard, M.H., Johnson, G.E., Laskin, J., Lai, J., Mueller, K., Munusamy, P., Thevuthasan, S., Wang, H., Washton, N., Elder, A., Baisch, B.L., Karakoti, A., Kuchibhatla, S.V.N.T., and Moon, D., 2013. Surface characterization of nanomaterials and nanoparticles: Important needs and challenging opportunities. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 31, 050820.
  • Bard, A. J., and Faulkner, La. R., 2001. Electrochemical Methods: Fundamentals and Applications. New York: Wiley, , 2nd ed., Russian Journal of Electrochemistry, 38 (2002), 1364–1365.
  • Carmo, M., Sekol, R.C., Ding, S., Kumar, G., Schroers, J., and Taylor, A.D., 2011. Bulk metallic glass nanowire architecture for electrochemical applications. ACS Nano, 5, 2979–2983.
  • Denuault, G., 2009. Electrochemical techniques and sensors for ocean research. Ocean Science Discussions, 6,1857–1893.
  • Drmosh, Q.A., Rao, S.G., Yamani, Z.H., Gondal, M.A., 2013. Crystalline nanostructured Cu doped ZnO thin films grown at room temperature by pulsed laser deposition technique and their characterization. Applied Surface Science, 270, 104–108.
  • Esgin, H., Caglar, Y., Caglar, M., 2021. Photovoltaic performance and physical characterization of Cu doped ZnO nanopowders as photoanode for DSSC. Journal of Alloys and Compounds, 890, 161848.
  • Gawande, M.B., Goswami, A., Felpin, F.X., Asefa, T., Huang, X., Silva, R., Zou, X., Zboril, R., Varma, R.S., 2016. Cu and Cu-Based Nanoparticles: Synthesis and Applications in Catalysis. Chemical Reviews, 116, 3722–3811.
  • Grainger, D.W., and Castner, D.G., 2008. Nanobiomaterials and nanoanalysis: Opportunities for improving the science to benefit biomedical technologies. Advanced Materials, 20, 867–877.
  • Handani, S., Emriadi, D., Dahlan, S.A., 2020. Enhanced structural, optical and morphological properties of ZnO thin film using green chemical approach. Vacuum, 179, 109513.
  • Karthik, K. V., Raghu, A.V., Reddy, K. R., Ravishankar, R., Sangeeta, M., Shetti, N. P., Reddy, C. V., 2022. Green synthesis of Cu-doped ZnO nanoparticles and its application for the photocatalytic degradation of hazardous organic pollutants. Chemosphere, 287, 132081.
  • Kuchibhatla, S.V.N.T., Karakoti, A.S., Baer, D.R., Samudrala, S., Engelhard, M.H., Amonette, J.E., Thevuthasan, S., and Seal, S., 2012. Influence of aging and environment on nanoparticle chemistry: Implication to confinement effects in nanoceria. Journal of Physical Chemistry C, 116, 14108–14114.
  • Lien, H.T., Wong, D.P., Tsao, N.H., Huang, C.I., Su, C., Chen, K.H., and Chen, L.C., 2014. Effect of copper oxide oxidation state on the polymer-based solar cell buffer layers. ACS Applied Materials and Interfaces, 6, 22445–22450.
  • Liu, H., Zhou, P., Zhang, L., Liang, Z., Zhao, H., and Wang, Z., 2016. Effects of oxygen partial pressure on the structural and optical properties of undoped and Cu-doped ZnO thin films prepared by magnetron co-sputtering. Materials Letters, 164, 509–512.
  • Mahajan, P., Singh, A., and Arya, S., 2020. Improved performance of solution processed organic solar cells with an additive layer of sol-gel synthesized ZnO/CuO core/shell nanoparticles. Journal of Alloys and Compounds, 814, 152292.
  • Mahmoud, A., Echabaane, M., Omri, K., Mir, L. E., Chaabane, R.B., 2019. Development of an impedimetric non enzymatic sensor based on ZnO and Cu doped ZnO nanoparticles for the detection of glucose. Journal of Alloys and Compounds, 786, 960-968.
  • Mittiga, A., Salza, E., Sarto, F., Tucci, M., and Vasanthi, R., 2006. Heterojunction solar cell with 2% efficiency based on a Cu2O substrate. Applied Physics Letters, 88, 163502.
  • Modwi, A., Ghanem, M.A., Al-Mayouf, A.M., and Houas, A., 2018. Lowering energy band gap and enhancing photocatalytic properties of Cu/ZnO composite decorated by transition metals. Journal of Molecular Structure, 1173, 1–6.
  • Naik, E. I., Naik, H. S. B., Swamy, B.E. K., Viswanath, R., Gowda, I.K. S., Prabhakara, M.C., Chetankumar, K., 2021. Influence of Cu doping on ZnO nanoparticles for improved structural, optical, electrochemical properties and their applications in efficient detection of latent fingerprints. Chemical Data Collections, 33, 100671.
  • Nouasria, F.Z., Selloum, D., Henni, A., Zerrouki, D., Tingry, S., 2021. Gradient doping of Cu(I) and Cu(II) in ZnO nanorod photoanode by electrochemical deposition for enhanced photocurrent generation. Ceramics International, 47, 19743–19751.
  • Park, S.Y., Seo, H.O., Kim, K.D., Shim, W.H., Heo, J., Cho, S., Kim, Y.D., Lee, K.H., and Lim, D.C., 2012. Organic solar cells fabricated by one-step deposition of a bulk heterojunction mixture and TiO2/NiO hole-collecting agents. Journal of Physical Chemistry C, 116, 15348–15352.
  • Patel, R.N., Singh, Y.P., Singh, Y., Butcher, R.J., and Jasinski, J.P., 2017. Syntheses, single crystal structures, DFT and antioxidant superoxide dismutase studies of some new mono-/binuclear copper(II) complexes. Polyhedron, 129, 164–181.
  • Pon, V.D., Wilson, K.S. J., Hariprasad, K., Ganesh, V., Ali, H. E., Algarni, H., and Yahia, I.S., 2021. Enhancement of optoelectronic properties of ZnO thin films by Al doping for photodetector applications. Superlattices and Microstructures, 106790.
  • Raul, P.K., Senapati, S., Sahoo, A.K., Umlong, I.M., Devi, R.R., Thakur, A.J., and Veer, V., 2014. CuO nanorods: A potential and efficient adsorbent in water purification. RSC Advances, 4, 40580–40587.
  • Saito, G., Nakasugi, Y., Yamashita, T., and Akiyama, T., 2014. Solution plasma synthesis of bimetallic nanoparticles. Nanotechnology, 25, 135603.
  • Salem, M., Massoudi, I., Akir, S., Litaiem, Y., Gaidi, M., and Khirouni, K., 2017. Photoelectrochemical and opto-electronic properties tuning of ZnO films: Effect of Cu doping composition. Journal of Alloys and Compounds, 722, 313–320.
  • Shen, G., and Chen, D., 2010. One-dimensional nanostructures for electronic and optoelectronic devices. Frontiers of Optoelectronics in China, 3, 125–138.
  • Shewale, P.S., Patil, V.B., Shin, S.W., Kim, J.H., Uplane, M.D., 2013. H2S gas sensing properties of nanocrystalline Cu-doped ZnO thin films prepared by advanced spray pyrolysis. Sensors and Actuators, B: Chemical, 186, 226–234.
  • Talam, S., Karumuri, S.R., and Gunnam, N., 2012. Synthesis, Characterization, and Spectroscopic Properties of ZnO Nanoparticles. ISRN Nanotechnology, 2012, 1–6.
  • Thelander, C., Agarwal, P., Brongersma, S., Eymery, J., Feiner, L.F., Forchel, A., Scheffler, M., Riess, W., Ohlsson, B.J., Gösele, U., and Samuelson, L., 2006. Nanowire-based one-dimensional electronics. Materials Today, 9, 28–35.
  • Wang, Z., and An, P., 2017. Characterization of copper complex nanoparticles synthesized by plant polyphenols. BioRxiv. https://doi.org/10.1101/134940.
  • Wang, Z., Wang, J., Li, M., Sun, K., and Liu, C.J., 2014. Three-dimensional printed acrylonitrile butadiene styrene framework coated with Cu-BTC metal-organic frameworks for the removal of methylene blue. Scientific Reports, 4, 1–7.
  • Xia, Y., Yang, P., Sun,Y., Wu,Y., Mayers, B., Gates, B., Yin, Y., Kim, F., and Yan, H., 2003. One-dimensional nanostructures: Synthesis, characterization, and applications. Advanced Materials, 15, 353–389.
  • Yadav, S., Mehrotra, G.K., and Dutta, P.K., 2021. Chitosan based ZnO nanoparticles loaded gallic-acid films for active food packaging. Food Chemistry, 334, 127605.

Electrochemical, Optical and Morphological Characterizations of Cu Doped ZnO Nanostructure Thin Films Prepared by Spin Coating Method

Yıl 2021, Cilt: 21 Sayı: 6, 1306 - 1314, 31.12.2021
https://doi.org/10.35414/akufemubid.888530

Öz

From nanotechnology point of view where conductivity is crucial, although it is essential to determine the electrochemical properties Cu doped ZnO nanostructure thin films produced by spin coating, there are rare studies in the literature. Therefore, in this study, the aim was to examine thouroughly the electrochemical properties of nanostructure thin films which were grown on glass substrates by using a facile and cost-effective spin coating method. The effects of the dopant on the morphological, optical and electrochemical properties of ZnO nanostructure thin films doped with Cu at different concentrations (0-50%) were investigated by SEM, XRF, FTIR, UV-vis, mechanical profilometer, and cyclic voltametry. The absorption spectra of the samples revealed that the energy band gap value decreased by the incereasing of Cu doping concentration. SEM images depicted that more spherical and homogeneous nanostructures formed with the doping of Cu. Electrochemical results showed that increasing the Cu doping ratio in ZnO nanoparticles results in higher electron transfer indicating that the conductivity of ZnO nanostructured thin films increases with Cu doping. It can be concluded that it is possible to produce more homogeneous, wider spectrum absorption capable and more conductive nanostructure thin films by a simple and inexpensive method. It is envisaged that the thin films obtained are promising for a wide range of nanotechnology applications.

Kaynakça

  • Abderrahmane, B., Djamila, A., Chaabia, N., Fodil R., 2020. Improvement of ZnO nanorods photoelectrochemical, optical, structural and morphological characterizations by cerium ions doping. Journal of Alloys and Compounds, 829, 154498.
  • Allabergenov, B., Tursunkulov, O., Abidov, A.I., Choi, B., Wook, J.S., and Kim, S., 2014. Microstructural analysis and optical characteristics of Cu-doped ZnO thin films prepared by DC magnetron sputtering. Journal of Crystal Growth, 401, 573–576.
  • Aristov, N., and Habekost, A., 2015. Cyclic Voltammetry-A Versatile Electrochemical Method Investigating Electron Transfer Processes. World Journal of Chemical Education. 3, 115–119.
  • Ashokkumar, M., and Muthukumaran, S., 2015. Electrical, dielectric, photoluminescence and magnetic properties of ZnO nanoparticles co-doped with Co and Cu. Journal of Magnetism and Magnetic Materials, 374, 61–66.
  • Ashokkumar, M., and Muthukumaran, S., 2015. Enhanced room temperature ferromagnetism and photoluminescence behavior of Cu-doped ZnO co-doped with Mn. Physica E: Low-Dimensional Systems and Nanostructures, 69, 354–359.
  • Baer, D.R., Amonette, J.E., Engelhard, M.H., Gaspar, D.J., Karakoti, A.S., Kuchibhatla, S., Nachimuthu, P., Nurmi, J.T., Qiang, Y., Sarathy, V., Seal, S., Sharma, A., Tratnyek, P.G., and Wang, C.-M., 2008. Characterization challenges for nanomaterials. Surface and Interface Analysis, 40, 529–537.
  • Baer, D.R., Engelhard, M.H., Johnson, G.E., Laskin, J., Lai, J., Mueller, K., Munusamy, P., Thevuthasan, S., Wang, H., Washton, N., Elder, A., Baisch, B.L., Karakoti, A., Kuchibhatla, S.V.N.T., and Moon, D., 2013. Surface characterization of nanomaterials and nanoparticles: Important needs and challenging opportunities. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 31, 050820.
  • Bard, A. J., and Faulkner, La. R., 2001. Electrochemical Methods: Fundamentals and Applications. New York: Wiley, , 2nd ed., Russian Journal of Electrochemistry, 38 (2002), 1364–1365.
  • Carmo, M., Sekol, R.C., Ding, S., Kumar, G., Schroers, J., and Taylor, A.D., 2011. Bulk metallic glass nanowire architecture for electrochemical applications. ACS Nano, 5, 2979–2983.
  • Denuault, G., 2009. Electrochemical techniques and sensors for ocean research. Ocean Science Discussions, 6,1857–1893.
  • Drmosh, Q.A., Rao, S.G., Yamani, Z.H., Gondal, M.A., 2013. Crystalline nanostructured Cu doped ZnO thin films grown at room temperature by pulsed laser deposition technique and their characterization. Applied Surface Science, 270, 104–108.
  • Esgin, H., Caglar, Y., Caglar, M., 2021. Photovoltaic performance and physical characterization of Cu doped ZnO nanopowders as photoanode for DSSC. Journal of Alloys and Compounds, 890, 161848.
  • Gawande, M.B., Goswami, A., Felpin, F.X., Asefa, T., Huang, X., Silva, R., Zou, X., Zboril, R., Varma, R.S., 2016. Cu and Cu-Based Nanoparticles: Synthesis and Applications in Catalysis. Chemical Reviews, 116, 3722–3811.
  • Grainger, D.W., and Castner, D.G., 2008. Nanobiomaterials and nanoanalysis: Opportunities for improving the science to benefit biomedical technologies. Advanced Materials, 20, 867–877.
  • Handani, S., Emriadi, D., Dahlan, S.A., 2020. Enhanced structural, optical and morphological properties of ZnO thin film using green chemical approach. Vacuum, 179, 109513.
  • Karthik, K. V., Raghu, A.V., Reddy, K. R., Ravishankar, R., Sangeeta, M., Shetti, N. P., Reddy, C. V., 2022. Green synthesis of Cu-doped ZnO nanoparticles and its application for the photocatalytic degradation of hazardous organic pollutants. Chemosphere, 287, 132081.
  • Kuchibhatla, S.V.N.T., Karakoti, A.S., Baer, D.R., Samudrala, S., Engelhard, M.H., Amonette, J.E., Thevuthasan, S., and Seal, S., 2012. Influence of aging and environment on nanoparticle chemistry: Implication to confinement effects in nanoceria. Journal of Physical Chemistry C, 116, 14108–14114.
  • Lien, H.T., Wong, D.P., Tsao, N.H., Huang, C.I., Su, C., Chen, K.H., and Chen, L.C., 2014. Effect of copper oxide oxidation state on the polymer-based solar cell buffer layers. ACS Applied Materials and Interfaces, 6, 22445–22450.
  • Liu, H., Zhou, P., Zhang, L., Liang, Z., Zhao, H., and Wang, Z., 2016. Effects of oxygen partial pressure on the structural and optical properties of undoped and Cu-doped ZnO thin films prepared by magnetron co-sputtering. Materials Letters, 164, 509–512.
  • Mahajan, P., Singh, A., and Arya, S., 2020. Improved performance of solution processed organic solar cells with an additive layer of sol-gel synthesized ZnO/CuO core/shell nanoparticles. Journal of Alloys and Compounds, 814, 152292.
  • Mahmoud, A., Echabaane, M., Omri, K., Mir, L. E., Chaabane, R.B., 2019. Development of an impedimetric non enzymatic sensor based on ZnO and Cu doped ZnO nanoparticles for the detection of glucose. Journal of Alloys and Compounds, 786, 960-968.
  • Mittiga, A., Salza, E., Sarto, F., Tucci, M., and Vasanthi, R., 2006. Heterojunction solar cell with 2% efficiency based on a Cu2O substrate. Applied Physics Letters, 88, 163502.
  • Modwi, A., Ghanem, M.A., Al-Mayouf, A.M., and Houas, A., 2018. Lowering energy band gap and enhancing photocatalytic properties of Cu/ZnO composite decorated by transition metals. Journal of Molecular Structure, 1173, 1–6.
  • Naik, E. I., Naik, H. S. B., Swamy, B.E. K., Viswanath, R., Gowda, I.K. S., Prabhakara, M.C., Chetankumar, K., 2021. Influence of Cu doping on ZnO nanoparticles for improved structural, optical, electrochemical properties and their applications in efficient detection of latent fingerprints. Chemical Data Collections, 33, 100671.
  • Nouasria, F.Z., Selloum, D., Henni, A., Zerrouki, D., Tingry, S., 2021. Gradient doping of Cu(I) and Cu(II) in ZnO nanorod photoanode by electrochemical deposition for enhanced photocurrent generation. Ceramics International, 47, 19743–19751.
  • Park, S.Y., Seo, H.O., Kim, K.D., Shim, W.H., Heo, J., Cho, S., Kim, Y.D., Lee, K.H., and Lim, D.C., 2012. Organic solar cells fabricated by one-step deposition of a bulk heterojunction mixture and TiO2/NiO hole-collecting agents. Journal of Physical Chemistry C, 116, 15348–15352.
  • Patel, R.N., Singh, Y.P., Singh, Y., Butcher, R.J., and Jasinski, J.P., 2017. Syntheses, single crystal structures, DFT and antioxidant superoxide dismutase studies of some new mono-/binuclear copper(II) complexes. Polyhedron, 129, 164–181.
  • Pon, V.D., Wilson, K.S. J., Hariprasad, K., Ganesh, V., Ali, H. E., Algarni, H., and Yahia, I.S., 2021. Enhancement of optoelectronic properties of ZnO thin films by Al doping for photodetector applications. Superlattices and Microstructures, 106790.
  • Raul, P.K., Senapati, S., Sahoo, A.K., Umlong, I.M., Devi, R.R., Thakur, A.J., and Veer, V., 2014. CuO nanorods: A potential and efficient adsorbent in water purification. RSC Advances, 4, 40580–40587.
  • Saito, G., Nakasugi, Y., Yamashita, T., and Akiyama, T., 2014. Solution plasma synthesis of bimetallic nanoparticles. Nanotechnology, 25, 135603.
  • Salem, M., Massoudi, I., Akir, S., Litaiem, Y., Gaidi, M., and Khirouni, K., 2017. Photoelectrochemical and opto-electronic properties tuning of ZnO films: Effect of Cu doping composition. Journal of Alloys and Compounds, 722, 313–320.
  • Shen, G., and Chen, D., 2010. One-dimensional nanostructures for electronic and optoelectronic devices. Frontiers of Optoelectronics in China, 3, 125–138.
  • Shewale, P.S., Patil, V.B., Shin, S.W., Kim, J.H., Uplane, M.D., 2013. H2S gas sensing properties of nanocrystalline Cu-doped ZnO thin films prepared by advanced spray pyrolysis. Sensors and Actuators, B: Chemical, 186, 226–234.
  • Talam, S., Karumuri, S.R., and Gunnam, N., 2012. Synthesis, Characterization, and Spectroscopic Properties of ZnO Nanoparticles. ISRN Nanotechnology, 2012, 1–6.
  • Thelander, C., Agarwal, P., Brongersma, S., Eymery, J., Feiner, L.F., Forchel, A., Scheffler, M., Riess, W., Ohlsson, B.J., Gösele, U., and Samuelson, L., 2006. Nanowire-based one-dimensional electronics. Materials Today, 9, 28–35.
  • Wang, Z., and An, P., 2017. Characterization of copper complex nanoparticles synthesized by plant polyphenols. BioRxiv. https://doi.org/10.1101/134940.
  • Wang, Z., Wang, J., Li, M., Sun, K., and Liu, C.J., 2014. Three-dimensional printed acrylonitrile butadiene styrene framework coated with Cu-BTC metal-organic frameworks for the removal of methylene blue. Scientific Reports, 4, 1–7.
  • Xia, Y., Yang, P., Sun,Y., Wu,Y., Mayers, B., Gates, B., Yin, Y., Kim, F., and Yan, H., 2003. One-dimensional nanostructures: Synthesis, characterization, and applications. Advanced Materials, 15, 353–389.
  • Yadav, S., Mehrotra, G.K., and Dutta, P.K., 2021. Chitosan based ZnO nanoparticles loaded gallic-acid films for active food packaging. Food Chemistry, 334, 127605.
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Özlem Yağci 0000-0002-7394-7479

Yayımlanma Tarihi 31 Aralık 2021
Gönderilme Tarihi 3 Mart 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 21 Sayı: 6

Kaynak Göster

APA Yağci, Ö. (2021). Electrochemical, Optical and Morphological Characterizations of Cu Doped ZnO Nanostructure Thin Films Prepared by Spin Coating Method. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 21(6), 1306-1314. https://doi.org/10.35414/akufemubid.888530
AMA Yağci Ö. Electrochemical, Optical and Morphological Characterizations of Cu Doped ZnO Nanostructure Thin Films Prepared by Spin Coating Method. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. Aralık 2021;21(6):1306-1314. doi:10.35414/akufemubid.888530
Chicago Yağci, Özlem. “Electrochemical, Optical and Morphological Characterizations of Cu Doped ZnO Nanostructure Thin Films Prepared by Spin Coating Method”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 21, sy. 6 (Aralık 2021): 1306-14. https://doi.org/10.35414/akufemubid.888530.
EndNote Yağci Ö (01 Aralık 2021) Electrochemical, Optical and Morphological Characterizations of Cu Doped ZnO Nanostructure Thin Films Prepared by Spin Coating Method. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 21 6 1306–1314.
IEEE Ö. Yağci, “Electrochemical, Optical and Morphological Characterizations of Cu Doped ZnO Nanostructure Thin Films Prepared by Spin Coating Method”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 21, sy. 6, ss. 1306–1314, 2021, doi: 10.35414/akufemubid.888530.
ISNAD Yağci, Özlem. “Electrochemical, Optical and Morphological Characterizations of Cu Doped ZnO Nanostructure Thin Films Prepared by Spin Coating Method”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 21/6 (Aralık 2021), 1306-1314. https://doi.org/10.35414/akufemubid.888530.
JAMA Yağci Ö. Electrochemical, Optical and Morphological Characterizations of Cu Doped ZnO Nanostructure Thin Films Prepared by Spin Coating Method. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2021;21:1306–1314.
MLA Yağci, Özlem. “Electrochemical, Optical and Morphological Characterizations of Cu Doped ZnO Nanostructure Thin Films Prepared by Spin Coating Method”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 21, sy. 6, 2021, ss. 1306-14, doi:10.35414/akufemubid.888530.
Vancouver Yağci Ö. Electrochemical, Optical and Morphological Characterizations of Cu Doped ZnO Nanostructure Thin Films Prepared by Spin Coating Method. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2021;21(6):1306-14.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.