Araştırma Makalesi
BibTex RIS Kaynak Göster

Genelleştirilmiş 1-Tipinden Gauss Tasvirine Sahip Minkowski Uzayının Yarı-Riemann Alt Manifoldları

Yıl 2022, Cilt: 22 Sayı: 3, 536 - 551, 30.06.2022
https://doi.org/10.35414/akufemubid.1109995

Öz

Bu makalede, genelleştirilmiş 1-tipinden Gauss tasvirine sahip Minkowski uzayındaki dönel yüzeyler ve regle alt manifoldları üzerine çalışılmıştır. İlk olarak, ikinci çeşit noktasal 1-tipinden Gauss tasviri ile genelleştirilmiş 1-tipinden Gauss tasviri kavramları arasındaki ilişki verilmiştir. Daha sonra, 3-boyutlu Minkowski uzayında sabit ortalama eğriliğe sahip tümden jeodezik olmayan herhangi bir yüzeyin genelleştirilmiş 1-tipinden Gauss tasvirine sahip olamayacağı ispatlanmıştır. Diğer bölümde, E_1^3 uzayındaki bütün dönel yüzeylerin genelleştirilmiş 1-tipinden Gauss tasvirine sahip olduğu gösterilmiştir. Ayrıca, genelleştirilmiş 1-tipinden Gauss tasvirine sahip dönel yüzeylerle ilgili bir örnek verilmiştir. Son bölümde ise, E_1^(m )Minkowski uzayındaki regle alt manifoldları üzerine çalışılmıştır ve genelleştirilmiş 1-tipinden Gauss tasvirine sahip silindirik regle alt manifoldları incelenmiştir.

Kaynakça

  • Arslan, K., Bayram, B.K., Bulca, B., Kim, Y.-H., Murathan, C. and Öztürk, G., 2011. Rotational embeddings in E^4 with pointwise 1-type Gauss map. Turkish Journal of Mathematics, 35(3), 493-499.
  • Aksoyak, F.K. and Yaylı, Y., 2015. General rotational surfaces with pointwise 1-type Gauss map in pseudo-Euclidean space E_2^4. Indian Journal of Pure and Applied Mathematics, 46(1), 107-118.
  • Arslan, K. and Milousheva, V., 2016. Meridian surfaces of elliptic or hyperbolic with pointwise 1-type Gauss map in Minkowski 4-space. Taiwanese Journal of Mathematics, 20(2), 311-332.
  • Baikoussis, C. and Blair, D.E., 1992. On the Gauss map of ruled surfaces. Glasgow Mathematical Journal, 34(3), 355-359.
  • Baikoussis, C., Chen, B.-Y. and Verstraelen, L., 1993. Ruled surfaces and tubes with finite type Gauss map. Tokyo Journal of Mathematics, 16(2), 341-349.
  • Baikoussis, C., 1994. Ruled submanifolds with finite type Gauss map. Journal of Geometry, 49(1), 42-45.
  • Bektaş, B. and Dursun, U., 2015. Timelike rotational surfaces of elliptic, hyperbolic and parabolic types in Minkowski space E_1^(4 ) with pointwise 1-type Gauss map. Filomat, 29(3), 381-392.
  • Chen, B.-Y., 1973, Geometry of Submanifolds, Marcel Dekker, Inc.
  • Chen, B.-Y., Morvan, J. M. and Nore, T., 1986. Energy, tension and finite type maps. Kodai Mathematical Journal, 9(3), 406-418.
  • Chen, B.-Y. and Piccinni, P., 1987. Submanifolds with finite type Gauss map. Bulletin of the Australian Mathematical Society, 35(2), 161-186.
  • Chen, B.-Y., 1996. A report on submanifolds of finite type. Soochow Journal of Mathematics, 22(2), 117-337.
  • Chen, B.-Y, Choi, M. and Kim, Y.-H., 2005. Surfaces of revolution with pointwise 1-type Gauss map. Journal of the Korean Mathematical Society, 42(3), 447-455.
  • Chen, B.-Y., 2011, Pseudo-Riemannian Geometry, δ-Invariants and Applications, World Scientific Publishing Company.
  • Chen, B.-Y, 2014. Some open problems and conjectures on submanifolds of finite type: recent development. Tamkang Journal of Mathematics, 45(1), 87-108.
  • Chen, B.-Y., 2014, Total Mean Curvature and Submanifolds of Finite Type, 27, World Scientific.
  • Choi, M.-K. and Kim, Y.-H., 2001. Characterization of the helicoid as ruled surfaces with pointwise 1-type Gauss map. Bulletin of the Korean Mathematical Society, 38(4), 753-761.
  • Choi, M.-K. and Kim, Y.-H., 2018. Extension of eigenvalue problems on Gauss map of ruled surfaces. Symmetry, 10(10), 514.
  • Choi, M.-K. and Kim, Y.-H., 2018. Classification theorems of ruled surfaces in Minkowski three-space. Mathematics, 6(12), 318.
  • Dursun, U., 2007. Hypersurfaces with pointwise 1-type Gauss Map. Taiwanese Journal of Mathematics, 11(5), 1407-1416.
  • Dursun, U., 2009. Hypersurfaces with pointwise 1-type Gauss map in Lorentz-Minkowski space. Proceedings of the Estonian Academy of Sciences, 58(3), 146-161.
  • Dursun, U. and Coşkun, E., 2012. Flat surfaces in E_1^(3 )with pointwise 1-type Gauss map. Turkish Journal of Mathematics, 36(4), 613-629.
  • Dursun, U. and Bektaş, B., 2014. Spacelike rotational surfaces of elliptic, hyperbolic and parabolic types in Minkowski space E_1^(4 ) with pointwise 1-type Gauss map. Mathematical Physics, Analysis and Geometry, 17(1), 247-263.
  • İlim, K. and Öztürk, G., 2019. Tubular surface having pointwise 1-type Gauss map in Euclidean 4-space. International Electronic Journal of Geometry, 12(2), 202-209.
  • Jung, S. M. and Kim, Y.-H., 2018. Gauss map and its applications on ruled submanifolds in Minkowski space. Symmetry, 10(6), 218.
  • Jung, S. M., Kim, D. S., and Kim, Y.-H., 2018. Minimal ruled submanifolds associated with Gauss map. Taiwanese Journal of Mathematics, 22(3), 567-605.
  • Kim, Y.-H. and Yoon, D.W., 2000. Ruled surfaces with pointwise 1-type Gauss map. Journal of Geometry and Physics, 34(3-4), 191-205.
  • Kim, Y.-H. and Yoon, D.W., 2004. Classification of rotation surfaces in pseudo-Euclidean space. Journal of the Korean Mathematical Society, 41(2), 379-396.
  • Ki, U.H, Kim, D.S., Kim, Y.-H. and Roh, Y.-H., 2009. Surfaces of revolution with pointwise 1-type Gauss map in Minkowski 3-space. Taiwanese Journal of Mathematics, 13(1), 317-338.
  • Kim, D.-S. and Kim, Y.-H., 2012. Some classification results on finite-type ruled submanifolds in a Lorentz-Minkowski space. Taiwanese Journal of Mathematics, 16(4), 1475-1488.
  • Milousheva, V. and Turgay, N.C., 2016. Quasi minimal Lorentz surfaces with pointwise 1-type Gauss map in Pseudo-Euclidean 4-space. Journal of Geometry and Physics, 106, 171-183.
  • O’Neill, B., 1983, Semi-Riemann Geometry with Applications to Relativity, Academic Press.
  • Qian, J., Fu, X. and Jung, S. D., 2020. Dual associate null scrolls with generalized 1-type Gauss map. Mathematics, 8(7), 1111.Qian, J. H., Su, M. F. and Kim, Y.-H., 2021. Canal surfaces with generalized 1-type Gauss map. Revista De La Union Matematica Argentina, 62, 199-211.
  • Thas, C., 1978. Minimal monosytems. Yokohama Mathematical Journal, 26, 157-167.
  • Turgay, N. C, 2015. Some classifications of Lorentzian surfaces with finite type Gauss map in Minkowski 4-space. Journal of the Australian Mathematical Society, 99(3), 415-427.
  • Yoon, D.W., 2001. Rotation surfaces with finite type Gauss map in E^4. Indian Journal of Pure & Applied Mathematics, 32(12), 1803-1808.
  • Yoon, D. W., Kim, D. S., Kim, Y.-H. and Lee, J. W., 2018. Classifications of flat surfaces with generalized 1-type Gauss map in L^3. Mediterranean Journal of Mathematics, 15(3), 1-16.
  • Yoon, D. W., Kim, D. S., Kim, Y.-H. and Lee, J. W., 2018. Hypersurfaces with generalized 1-type Gauss maps. Mathematics,6(8),130.

Pseudo-Riemannian Submanifolds of Minkowski Space with Generalized 1-Type Gauss Map

Yıl 2022, Cilt: 22 Sayı: 3, 536 - 551, 30.06.2022
https://doi.org/10.35414/akufemubid.1109995

Öz

In this article, we study on rotational surfaces and regle submanifolds of the Minkowski space with generalized 1-type Gauss map. First of all, we give a relation between notions of pointwise 1-type Gauss map of the second kind and generalized 1-type Gauss map. Then, we prove that any non-totally geodesic surface in 3-dimensional Minkowski space with constant mean curvature does not have a generalized 1-type Gauss map. In other section, we show that all rotational surfaces in E_1^3 have generalized 1-type Gauss map. Furthermore, we give an example for the rotational surface having generalized 1-type Gauss map. In last section, we study the ruled submanifolds in the Minkowski space E_1^m and we examine the cylindrical ruled submanifolds having generalized 1-type Gauss map.

Kaynakça

  • Arslan, K., Bayram, B.K., Bulca, B., Kim, Y.-H., Murathan, C. and Öztürk, G., 2011. Rotational embeddings in E^4 with pointwise 1-type Gauss map. Turkish Journal of Mathematics, 35(3), 493-499.
  • Aksoyak, F.K. and Yaylı, Y., 2015. General rotational surfaces with pointwise 1-type Gauss map in pseudo-Euclidean space E_2^4. Indian Journal of Pure and Applied Mathematics, 46(1), 107-118.
  • Arslan, K. and Milousheva, V., 2016. Meridian surfaces of elliptic or hyperbolic with pointwise 1-type Gauss map in Minkowski 4-space. Taiwanese Journal of Mathematics, 20(2), 311-332.
  • Baikoussis, C. and Blair, D.E., 1992. On the Gauss map of ruled surfaces. Glasgow Mathematical Journal, 34(3), 355-359.
  • Baikoussis, C., Chen, B.-Y. and Verstraelen, L., 1993. Ruled surfaces and tubes with finite type Gauss map. Tokyo Journal of Mathematics, 16(2), 341-349.
  • Baikoussis, C., 1994. Ruled submanifolds with finite type Gauss map. Journal of Geometry, 49(1), 42-45.
  • Bektaş, B. and Dursun, U., 2015. Timelike rotational surfaces of elliptic, hyperbolic and parabolic types in Minkowski space E_1^(4 ) with pointwise 1-type Gauss map. Filomat, 29(3), 381-392.
  • Chen, B.-Y., 1973, Geometry of Submanifolds, Marcel Dekker, Inc.
  • Chen, B.-Y., Morvan, J. M. and Nore, T., 1986. Energy, tension and finite type maps. Kodai Mathematical Journal, 9(3), 406-418.
  • Chen, B.-Y. and Piccinni, P., 1987. Submanifolds with finite type Gauss map. Bulletin of the Australian Mathematical Society, 35(2), 161-186.
  • Chen, B.-Y., 1996. A report on submanifolds of finite type. Soochow Journal of Mathematics, 22(2), 117-337.
  • Chen, B.-Y, Choi, M. and Kim, Y.-H., 2005. Surfaces of revolution with pointwise 1-type Gauss map. Journal of the Korean Mathematical Society, 42(3), 447-455.
  • Chen, B.-Y., 2011, Pseudo-Riemannian Geometry, δ-Invariants and Applications, World Scientific Publishing Company.
  • Chen, B.-Y, 2014. Some open problems and conjectures on submanifolds of finite type: recent development. Tamkang Journal of Mathematics, 45(1), 87-108.
  • Chen, B.-Y., 2014, Total Mean Curvature and Submanifolds of Finite Type, 27, World Scientific.
  • Choi, M.-K. and Kim, Y.-H., 2001. Characterization of the helicoid as ruled surfaces with pointwise 1-type Gauss map. Bulletin of the Korean Mathematical Society, 38(4), 753-761.
  • Choi, M.-K. and Kim, Y.-H., 2018. Extension of eigenvalue problems on Gauss map of ruled surfaces. Symmetry, 10(10), 514.
  • Choi, M.-K. and Kim, Y.-H., 2018. Classification theorems of ruled surfaces in Minkowski three-space. Mathematics, 6(12), 318.
  • Dursun, U., 2007. Hypersurfaces with pointwise 1-type Gauss Map. Taiwanese Journal of Mathematics, 11(5), 1407-1416.
  • Dursun, U., 2009. Hypersurfaces with pointwise 1-type Gauss map in Lorentz-Minkowski space. Proceedings of the Estonian Academy of Sciences, 58(3), 146-161.
  • Dursun, U. and Coşkun, E., 2012. Flat surfaces in E_1^(3 )with pointwise 1-type Gauss map. Turkish Journal of Mathematics, 36(4), 613-629.
  • Dursun, U. and Bektaş, B., 2014. Spacelike rotational surfaces of elliptic, hyperbolic and parabolic types in Minkowski space E_1^(4 ) with pointwise 1-type Gauss map. Mathematical Physics, Analysis and Geometry, 17(1), 247-263.
  • İlim, K. and Öztürk, G., 2019. Tubular surface having pointwise 1-type Gauss map in Euclidean 4-space. International Electronic Journal of Geometry, 12(2), 202-209.
  • Jung, S. M. and Kim, Y.-H., 2018. Gauss map and its applications on ruled submanifolds in Minkowski space. Symmetry, 10(6), 218.
  • Jung, S. M., Kim, D. S., and Kim, Y.-H., 2018. Minimal ruled submanifolds associated with Gauss map. Taiwanese Journal of Mathematics, 22(3), 567-605.
  • Kim, Y.-H. and Yoon, D.W., 2000. Ruled surfaces with pointwise 1-type Gauss map. Journal of Geometry and Physics, 34(3-4), 191-205.
  • Kim, Y.-H. and Yoon, D.W., 2004. Classification of rotation surfaces in pseudo-Euclidean space. Journal of the Korean Mathematical Society, 41(2), 379-396.
  • Ki, U.H, Kim, D.S., Kim, Y.-H. and Roh, Y.-H., 2009. Surfaces of revolution with pointwise 1-type Gauss map in Minkowski 3-space. Taiwanese Journal of Mathematics, 13(1), 317-338.
  • Kim, D.-S. and Kim, Y.-H., 2012. Some classification results on finite-type ruled submanifolds in a Lorentz-Minkowski space. Taiwanese Journal of Mathematics, 16(4), 1475-1488.
  • Milousheva, V. and Turgay, N.C., 2016. Quasi minimal Lorentz surfaces with pointwise 1-type Gauss map in Pseudo-Euclidean 4-space. Journal of Geometry and Physics, 106, 171-183.
  • O’Neill, B., 1983, Semi-Riemann Geometry with Applications to Relativity, Academic Press.
  • Qian, J., Fu, X. and Jung, S. D., 2020. Dual associate null scrolls with generalized 1-type Gauss map. Mathematics, 8(7), 1111.Qian, J. H., Su, M. F. and Kim, Y.-H., 2021. Canal surfaces with generalized 1-type Gauss map. Revista De La Union Matematica Argentina, 62, 199-211.
  • Thas, C., 1978. Minimal monosytems. Yokohama Mathematical Journal, 26, 157-167.
  • Turgay, N. C, 2015. Some classifications of Lorentzian surfaces with finite type Gauss map in Minkowski 4-space. Journal of the Australian Mathematical Society, 99(3), 415-427.
  • Yoon, D.W., 2001. Rotation surfaces with finite type Gauss map in E^4. Indian Journal of Pure & Applied Mathematics, 32(12), 1803-1808.
  • Yoon, D. W., Kim, D. S., Kim, Y.-H. and Lee, J. W., 2018. Classifications of flat surfaces with generalized 1-type Gauss map in L^3. Mediterranean Journal of Mathematics, 15(3), 1-16.
  • Yoon, D. W., Kim, D. S., Kim, Y.-H. and Lee, J. W., 2018. Hypersurfaces with generalized 1-type Gauss maps. Mathematics,6(8),130.
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Matematik
Bölüm Makaleler
Yazarlar

Burcu Bektaş Demirci 0000-0002-5611-5478

Yayımlanma Tarihi 30 Haziran 2022
Gönderilme Tarihi 27 Nisan 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 22 Sayı: 3

Kaynak Göster

APA Bektaş Demirci, B. (2022). Genelleştirilmiş 1-Tipinden Gauss Tasvirine Sahip Minkowski Uzayının Yarı-Riemann Alt Manifoldları. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 22(3), 536-551. https://doi.org/10.35414/akufemubid.1109995
AMA Bektaş Demirci B. Genelleştirilmiş 1-Tipinden Gauss Tasvirine Sahip Minkowski Uzayının Yarı-Riemann Alt Manifoldları. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. Haziran 2022;22(3):536-551. doi:10.35414/akufemubid.1109995
Chicago Bektaş Demirci, Burcu. “Genelleştirilmiş 1-Tipinden Gauss Tasvirine Sahip Minkowski Uzayının Yarı-Riemann Alt Manifoldları”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22, sy. 3 (Haziran 2022): 536-51. https://doi.org/10.35414/akufemubid.1109995.
EndNote Bektaş Demirci B (01 Haziran 2022) Genelleştirilmiş 1-Tipinden Gauss Tasvirine Sahip Minkowski Uzayının Yarı-Riemann Alt Manifoldları. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22 3 536–551.
IEEE B. Bektaş Demirci, “Genelleştirilmiş 1-Tipinden Gauss Tasvirine Sahip Minkowski Uzayının Yarı-Riemann Alt Manifoldları”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 22, sy. 3, ss. 536–551, 2022, doi: 10.35414/akufemubid.1109995.
ISNAD Bektaş Demirci, Burcu. “Genelleştirilmiş 1-Tipinden Gauss Tasvirine Sahip Minkowski Uzayının Yarı-Riemann Alt Manifoldları”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22/3 (Haziran 2022), 536-551. https://doi.org/10.35414/akufemubid.1109995.
JAMA Bektaş Demirci B. Genelleştirilmiş 1-Tipinden Gauss Tasvirine Sahip Minkowski Uzayının Yarı-Riemann Alt Manifoldları. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2022;22:536–551.
MLA Bektaş Demirci, Burcu. “Genelleştirilmiş 1-Tipinden Gauss Tasvirine Sahip Minkowski Uzayının Yarı-Riemann Alt Manifoldları”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 22, sy. 3, 2022, ss. 536-51, doi:10.35414/akufemubid.1109995.
Vancouver Bektaş Demirci B. Genelleştirilmiş 1-Tipinden Gauss Tasvirine Sahip Minkowski Uzayının Yarı-Riemann Alt Manifoldları. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2022;22(3):536-51.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.