Araştırma Makalesi
BibTex RIS Kaynak Göster

Newell-Whitehead Denkleminin Çözümü için Yeni Bir Sayısal Yaklaşım

Yıl 2023, Cilt: 23 Sayı: 6, 1428 - 1433, 28.12.2023
https://doi.org/10.35414/akufemubid.1323548

Öz

Bu çalışmada Newell-Whitehead denkleminin sayısal çözümleri kollokasyon yöntemi ile elde edilmiştir. Daha yüksek dereceli fonksiyonlar daha iyi yaklaşımlar ürettiğinden, analiz ve yaklaşım için septik B-spline baz fonksiyonları kullanılmıştır. Mevcut yöntemin yeterliliği ve etkinliği için hata normları hesaplanmıştır. Koşulsuz kararlılık, Von-Neumann teorisi kullanılarak kanıtlanmıştır. Sayısal sonuçlar elde edilmiş ve yapılan karşılaştırmalar tablolar halinde sunulmuştur. Ek olarak, çözümün sayısal davranışını göstermek için tüm sayısal sonuçların grafikleri çizilmiştir. Sayısal sonuçlar, yöntemi daha uygun hale getirir ve doğrusal olmayan çözüm sürecini sistematik olarak ele alır. Bulunan sayısal çözümler, kollokasyon yöntemini Fitzhugh-Nagumo tipi denklemlerin çözümü için oldukça ilgi çekici ve güvenilir kılmaktadır.

Kaynakça

  • Abbasbandy, S., 2008. Soliton solutions for the Fitzhugh--Nagumo equation with the homotopy analysis method. Applied Mathematical Modelling, 32(12), 2706-2714.
  • Ali, H., Kamrujjaman, M., and Islam, M. S., 2020. Numerical computation of Fitzhugh-Nagumo equation: a novel Galerkin finite element approach. International Journal of Mathematical Research, 9(1), 20-27.
  • Baker, C. T. H., 1976. Initial value problems for Volterra integro-differential equations, in: G. Hall, J. Watt (Eds.), Modern Numerical Methods for Ordinary Differential Equations, Clarendon Press, Oxford, 296--307.
  • Bhrawy, A. H., 2013. A Jacobi--Gauss--Lobatto collocation method for solving generalized Fitzhugh--Nagumo equation with time-dependent coefficients. Applied Mathematics and Computation, 222, 255-264.
  • Chen, Z., Gumel, A. B., and Mickens, R. E., 2003. Nonstandard discretizations of the generalized Nagumo reaction-diffusion equation. Numerical Methods for Partial Differential Equations: An International Journal, 19(3), 363-379.
  • Devi, A.and Yadav, P., 2022. Higher Order Galerkin Finite Element Method for Generalized Fitzhugh-Nagumo Reaction Diffusion Equation, Department of Mathematics & Scientific Computing, National Institute of Technology Hamirpur, India.
  • Ezzati, R., and Shakibi, K., 2011. Using Adomian's decomposition and multiquadric quasi-interpolation methods for solving Newell-Whitehead equation. Procedia Computer Science, 3, 1043-1048.
  • FitzHugh, R., 1961. Impulses and physiological states in theoretical models of nerve membrane. Biophysical journal, 1(6), 445-466.
  • Hariharan, G., and Kannan, K., 2010. Haar wavelet method for solving FitzHugh-Nagumo equation. International Journal of Mathematical and Statistical Sciences, 2(2), 59-63.
  • Hariharan, G., 2014. An efficient Legendre wavelet-based approximation method for a few Newell--Whitehead and Allen--Cahn equations. The Journal of membrane biology, 247, 371-380.
  • Hodgkin, A. L., and Huxley, A. F., 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of physiology, 117(4), 500.
  • Inan, B., Ali, K. K., Saha, A., Ak, T., 2021. Analytical and numerical solutions of the Fitzhugh--Nagumo equation and their multistability behavior. Numerical Methods for Partial Differential Equations, 37(1), 7-23.
  • Kakiuchi, N. and Tchizawa, K., 1997. On an explicit duck solution and delay in the Fitzhugh-Nagumo equation, Journal of differential equations, 141(2), 327-339.
  • Karakoc, S. B. G., Sucu, D. Y., Taghachi M. A., 2022. Numerical Simulation of Generalized Oskolkov Equation via tahe Septic B-Spline Collocation Method. Journal of Universal Mathematics, 5(2), 108-116.
  • Kutluay, S., Yağmurlu, N. M., and Karakaş, A. S., 2022. An Effective Numerical Approach Based on Cubic Hermite B-spline Collocation Method for Solving the 1D Heat Conduction Equation, New Trends in Mathematical Sciences, 10(4), 20-31.
  • Karakoc, S. B. G., Saha, A., Bhowmik, S. K., and Sucu, D. Y., 2023. Numerical and dynamical behaviors of nonlinear traveling wave solutions of the Kudryashov--Sinelshchikov equation. Wave Motion, 118, 103-121.
  • Kheiri, H., Alipour, N., and Dehghani, R., 2011. Homotopy analysis and homotopy pade methods for the modified Burgers-Korteweg-de Vries and the Newell-Whitehead equations.
  • Li, H., and Guo, Y., 2006. New exact solutions to the Fitzhugh--Nagumo equation. Applied Mathematics and Computation, 180(2), 524-528.
  • Nagumo, J., Arimoto, S., and Yoshizawa, S., 1962. An active pulse transmission line simulating nerve axon. Proceedings of the IRE, 50(10), 2061-2070.
  • M. Nucci and P. Clarkson, 1992. The nonclassical method is more general than the direct method for symmetry reductions. an example of the Fitzhugh-Nagumo equation, Physics Letters A, 164(1), 49-56.
  • Prenter, P. M., 1975. Splines and Variational Methods, Wiley-interscience publication, New York.
  • Shih, M., Momoniat, E., & Mahomed, F. M., 2005. Approximate conditional symmetries and approximate solutions of the perturbed Fitzhugh--Nagumo equation. Journal of mathematical physics, 46(2), 023503.
  • Teodoro,M.F., 2012. Numerical approximation of a nonlinear delay-advance functional differential equation by a finite element method. In AIP Conference Proceedings, 1479, 1, 806-809.

A Novel Numerical Approach for Solving the Newell-Whitehead Equation

Yıl 2023, Cilt: 23 Sayı: 6, 1428 - 1433, 28.12.2023
https://doi.org/10.35414/akufemubid.1323548

Öz

Numerical solutions of Newell-Whitehead equation are investigated by collocation method in this study. Since higher order functions produce better approximations, septic B-spline basis functions is used for analysis and approximation. Error norms are calculated for the adequacy and effectiveness of the current method. Unconditional stability is proved using Von-Neumann theory. The numerical results are obtained and the comparisons are presented in the tables. Additionally, simulations of all numerical results are plotted to show the numerical behavior of the solution. Numerical results make the method more convenient and systematically handle the nonlinear solution process. The numerical solutions found make the method attractive and reliable for the solution of Fitzhugh-Nagumo type equations.

Kaynakça

  • Abbasbandy, S., 2008. Soliton solutions for the Fitzhugh--Nagumo equation with the homotopy analysis method. Applied Mathematical Modelling, 32(12), 2706-2714.
  • Ali, H., Kamrujjaman, M., and Islam, M. S., 2020. Numerical computation of Fitzhugh-Nagumo equation: a novel Galerkin finite element approach. International Journal of Mathematical Research, 9(1), 20-27.
  • Baker, C. T. H., 1976. Initial value problems for Volterra integro-differential equations, in: G. Hall, J. Watt (Eds.), Modern Numerical Methods for Ordinary Differential Equations, Clarendon Press, Oxford, 296--307.
  • Bhrawy, A. H., 2013. A Jacobi--Gauss--Lobatto collocation method for solving generalized Fitzhugh--Nagumo equation with time-dependent coefficients. Applied Mathematics and Computation, 222, 255-264.
  • Chen, Z., Gumel, A. B., and Mickens, R. E., 2003. Nonstandard discretizations of the generalized Nagumo reaction-diffusion equation. Numerical Methods for Partial Differential Equations: An International Journal, 19(3), 363-379.
  • Devi, A.and Yadav, P., 2022. Higher Order Galerkin Finite Element Method for Generalized Fitzhugh-Nagumo Reaction Diffusion Equation, Department of Mathematics & Scientific Computing, National Institute of Technology Hamirpur, India.
  • Ezzati, R., and Shakibi, K., 2011. Using Adomian's decomposition and multiquadric quasi-interpolation methods for solving Newell-Whitehead equation. Procedia Computer Science, 3, 1043-1048.
  • FitzHugh, R., 1961. Impulses and physiological states in theoretical models of nerve membrane. Biophysical journal, 1(6), 445-466.
  • Hariharan, G., and Kannan, K., 2010. Haar wavelet method for solving FitzHugh-Nagumo equation. International Journal of Mathematical and Statistical Sciences, 2(2), 59-63.
  • Hariharan, G., 2014. An efficient Legendre wavelet-based approximation method for a few Newell--Whitehead and Allen--Cahn equations. The Journal of membrane biology, 247, 371-380.
  • Hodgkin, A. L., and Huxley, A. F., 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of physiology, 117(4), 500.
  • Inan, B., Ali, K. K., Saha, A., Ak, T., 2021. Analytical and numerical solutions of the Fitzhugh--Nagumo equation and their multistability behavior. Numerical Methods for Partial Differential Equations, 37(1), 7-23.
  • Kakiuchi, N. and Tchizawa, K., 1997. On an explicit duck solution and delay in the Fitzhugh-Nagumo equation, Journal of differential equations, 141(2), 327-339.
  • Karakoc, S. B. G., Sucu, D. Y., Taghachi M. A., 2022. Numerical Simulation of Generalized Oskolkov Equation via tahe Septic B-Spline Collocation Method. Journal of Universal Mathematics, 5(2), 108-116.
  • Kutluay, S., Yağmurlu, N. M., and Karakaş, A. S., 2022. An Effective Numerical Approach Based on Cubic Hermite B-spline Collocation Method for Solving the 1D Heat Conduction Equation, New Trends in Mathematical Sciences, 10(4), 20-31.
  • Karakoc, S. B. G., Saha, A., Bhowmik, S. K., and Sucu, D. Y., 2023. Numerical and dynamical behaviors of nonlinear traveling wave solutions of the Kudryashov--Sinelshchikov equation. Wave Motion, 118, 103-121.
  • Kheiri, H., Alipour, N., and Dehghani, R., 2011. Homotopy analysis and homotopy pade methods for the modified Burgers-Korteweg-de Vries and the Newell-Whitehead equations.
  • Li, H., and Guo, Y., 2006. New exact solutions to the Fitzhugh--Nagumo equation. Applied Mathematics and Computation, 180(2), 524-528.
  • Nagumo, J., Arimoto, S., and Yoshizawa, S., 1962. An active pulse transmission line simulating nerve axon. Proceedings of the IRE, 50(10), 2061-2070.
  • M. Nucci and P. Clarkson, 1992. The nonclassical method is more general than the direct method for symmetry reductions. an example of the Fitzhugh-Nagumo equation, Physics Letters A, 164(1), 49-56.
  • Prenter, P. M., 1975. Splines and Variational Methods, Wiley-interscience publication, New York.
  • Shih, M., Momoniat, E., & Mahomed, F. M., 2005. Approximate conditional symmetries and approximate solutions of the perturbed Fitzhugh--Nagumo equation. Journal of mathematical physics, 46(2), 023503.
  • Teodoro,M.F., 2012. Numerical approximation of a nonlinear delay-advance functional differential equation by a finite element method. In AIP Conference Proceedings, 1479, 1, 806-809.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sayısal Analiz
Bölüm Makaleler
Yazarlar

Derya Yıldırım Sucu 0000-0001-8396-8081

Seydi Battal Gazi Karakoç 0000-0002-2348-4170

Erken Görünüm Tarihi 22 Aralık 2023
Yayımlanma Tarihi 28 Aralık 2023
Gönderilme Tarihi 6 Temmuz 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 23 Sayı: 6

Kaynak Göster

APA Yıldırım Sucu, D., & Karakoç, S. B. G. (2023). A Novel Numerical Approach for Solving the Newell-Whitehead Equation. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 23(6), 1428-1433. https://doi.org/10.35414/akufemubid.1323548
AMA Yıldırım Sucu D, Karakoç SBG. A Novel Numerical Approach for Solving the Newell-Whitehead Equation. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. Aralık 2023;23(6):1428-1433. doi:10.35414/akufemubid.1323548
Chicago Yıldırım Sucu, Derya, ve Seydi Battal Gazi Karakoç. “A Novel Numerical Approach for Solving the Newell-Whitehead Equation”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23, sy. 6 (Aralık 2023): 1428-33. https://doi.org/10.35414/akufemubid.1323548.
EndNote Yıldırım Sucu D, Karakoç SBG (01 Aralık 2023) A Novel Numerical Approach for Solving the Newell-Whitehead Equation. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23 6 1428–1433.
IEEE D. Yıldırım Sucu ve S. B. G. Karakoç, “A Novel Numerical Approach for Solving the Newell-Whitehead Equation”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 23, sy. 6, ss. 1428–1433, 2023, doi: 10.35414/akufemubid.1323548.
ISNAD Yıldırım Sucu, Derya - Karakoç, Seydi Battal Gazi. “A Novel Numerical Approach for Solving the Newell-Whitehead Equation”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23/6 (Aralık 2023), 1428-1433. https://doi.org/10.35414/akufemubid.1323548.
JAMA Yıldırım Sucu D, Karakoç SBG. A Novel Numerical Approach for Solving the Newell-Whitehead Equation. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2023;23:1428–1433.
MLA Yıldırım Sucu, Derya ve Seydi Battal Gazi Karakoç. “A Novel Numerical Approach for Solving the Newell-Whitehead Equation”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 23, sy. 6, 2023, ss. 1428-33, doi:10.35414/akufemubid.1323548.
Vancouver Yıldırım Sucu D, Karakoç SBG. A Novel Numerical Approach for Solving the Newell-Whitehead Equation. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2023;23(6):1428-33.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.