Comparison of Different Chaotic Maps Performance in Weighted Superposition Attraction Repulsion Algorithm For Intensity–Duration–Frequency Relations
Yıl 2024,
Cilt: 24 Sayı: 3, 674 - 684, 27.06.2024
Mümin Emre Şenol
,
Mustafa Erkan Turan
,
Tülin Çetin
Öz
In this study, it is aimed to develop chaotic Weighted Superposition Attraction Repulsion (WSAR) versions by using chaotic maps for the first time in the literature in the WSAR algorithm and to examine their effect on the performance of the algorithm. For this purpose, various chaotic versions of the WSAR algorithm were created by employing 11 one-dimensional chaotic maps instead of the standard WSAR algorithm's step function. The problem of determining the parameters of intensity-duration-frequency (IDF) relationships used in designing water structures such as storm sewer systems and culverts was addressed. A total of 16 parameters related to IDF relationships were determined using data from the Izmir meteorological station. The mean squared error (MSE) was selected as the performance criterion. According to the obtained results, a statistically significant difference was observed among the IDF relationships. This difference highlighted that the use of a specific IDF relationship had a statistically significant effect on the algorithm's performance compared to using other IDF relationships. When the impact of chaotic maps on the algorithm's performance was examined, it was observed that the use of chaotic maps instead of the standard WSAR algorithm’s step function in some IDF relationships had a statistically significant effect on the algorithm's performance.
Kaynakça
- Aydemir, S.B., 2022. Küresel optimizasyon için gauss kaotik haritası ile kartal optimizasyonu. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 34(1), 85–104.
https://doi.org/10.35234/fumbd.969335
- Başakın, E. E., Ekmekcioğlu, Ö., Özger, M., and Çıtakoğlu, H., 2021. Determination of Intensity-Duration-Frequency Relation by Particle Swarm Optimization and Genetic Programming. II. International Applied Statistics Conference (UYIK-2021) (pp.1-8). Tokat, Turkey.
- Baykasoğlu, A., 2021. Optimising cutting conditions for minimising cutting time in multi-pass milling via weighted superposition attraction-repulsion (WSAR) algorithm. International Journal of Production Research, 59(15), 4633–4648.
https://doi.org/10.1080/00207543.2020.1767313
- Baykasoğlu, A., and Akpinar, Ş., 2015. Weighted superposition attraction (WSA): a swarm intelligence algorithm for optimization problems–Part 2: constrained optimization. Applied Soft Computing Journal, 37, 396–415.
https://doi.org/10.1016/j.asoc.2015.10.036
- Baykasoğlu, A., and Akpinar, Ş., 2017. Weighted Superposition Attraction (WSA): A swarm intelligence algorithm for optimization problems – Part 1: Unconstrained optimization. Applied Soft Computing Journal, 56, 520–540.
https://doi.org/10.1016/j.asoc.2015.08.052
- Baykasoğlu, A., and Baykasoğlu, C., 2021. Weighted superposition attraction-repulsion (WSAR) algorithm for truss optimization with multiple frequency constraints. Structures, 30, 253–264.
https://doi.org/10.1016/j.istruc.2021.01.017
- Baykasoğlu, A., and Şenol, M. E., 2021. Parallel WSAR for solving permutation flow shop scheduling problem. In Computer Sciences & Mathematics Forum,2(1).
- El-Shorbagy, M. A., and Al-Drees, F. M., 2023. Studying the effect of introducing chaotic search on improving the performance of the sine cosine algorithm to solve optimization problems and nonlinear system of equations. Mathematics, 11(5).
https://doi.org/10.3390/math11051231
- Eryiğit M, Karahan H., 2013. Şiddet-Süre-Frekans bağıntısının yapay bağışıklık algoritması kullanılarak belirlenmesi. VII. Ulusal Hidroloji Kongresi, Isparta, Türkiye, 325-342.
- Geem, Z. W., and Roper, W. E., 2010. Various continuous harmony search algorithms for web-based hydrologic parameter optimisation. International Journal of Mathematical Modelling and Numerical Optimisation, 1(3), 213-226.
- Gomes, G. J. C., and Vargas Júnior, E. do A., 2018. A coupled system based on differential evolution for the determination of rainfall intensity equations. RBRH, 23(0).
https://doi.org/10.1590/2318-0331.231820170165
- Görkemli, B., Citakoglu, H., Haktanir, T., and Karaboga, D., 2022. A new method based on artificial bee colony programming for the regional standardized intensity–duration‒frequency relationship. Arabian Journal of Geosciences, 15(3).
https://doi.org/10.1007/s12517-021-09377-1
- He, Y. Y., Zhou, J. Z., Xiang, X. Q., Chen, H., and Qin, H., 2009. Comparison of different chaotic maps in particle swarm optimization algorithm for long-term cascaded hydroelectric system scheduling. Chaos, Solitons and Fractals, 42(5), 3169–3176.
https://doi.org/10.1016/j.chaos.2009.04.019
- Karaçizmeli, İ. H., Kaya, S., and Gümüşçü, A., 2019. Hibrit ateşböceği ve parçacık sürü algoritmasının kaotik haritalar ile iyileştirilmesi. Harran University Journal Of Engineering, 4(2), 69–78.
- Karahan H, 2011. Bölgesel Yağış-Şiddet-Süre-Frekans Bağıntılarının Diferansiyel Gelişim Algoritması Kullanılarak Elde Edilmesi. TÜBİTAK (108Y299), Sonuç Raporu.
- Karahan, H., 2012. Determining rainfall-intensity-duration-frequency relationship using Particle Swarm Optimization. KSCE Journal of Civil Engineering, 16(4), 667–675.
https://doi.org/10.1007/s12205-012-1076-9
- Karahan, H., 2019. Determination of homogeneous sub-regions by using intensity-duration-frequency relationships and cluster analysis: an application for the aegean region. Pamukkale University Journal of Engineering Sciences, 25(8), 998–1013.
https://doi.org/10.5505/pajes.2019.09365
- Karahan, H., Ceylan, H., and Ayvaz, MT., 2007. Predicting rainfall intensity using a genetic algorithm approach. Hydrological Processes, 21(4), 470–475.
https://doi.org/10.1002/hyp.6245
- Karahan, H., Ayvaz, M. T., and Gürarslan, G., 2008. Şiddet-süre-frekans bağıntısının genetik algoritma ile belirlenmesi: GAP örneği. Teknik Dergi, 19(92), 4393-4407.
- Kaveh, A., and Yosefpour, H., 2023. Comparison of three chaotic meta-heuristic algorithms for the optimal design of truss structures with frequency constraints. Periodica Polytechnica Civil Engineering, 67(4), 1130–1151.
https://doi.org/10.3311/PPci.22594
- Kaveh, A., Zarfam, P., Aziminejad, A., and Yosefpoor, H., 2022. Comparison of four chaotic meta-heuristic algorithms for optimal design of large-scale truss structures. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 46(6), 4067–4091.
https://doi.org/10.1007/s40996-022-00908-8
- Lorenz, E. N., 1963. Deterministic nonperiodic flow. Journal of atmospheric sciences, 20(2), 130-141.
- Lozano, M., and García-Martínez, C., 2010. Hybrid metaheuristics with evolutionary algorithms specializing in intensification and diversification: Overview and progress report. Computers and Operations Research, 37(3), 481–497.
https://doi.org/10.1016/j.cor.2009.02.010
- Mingjun, J., and Huanwen, T., 2004. Application of chaos in simulated annealing. Chaos, Solitons and Fractals, 21(4), 933–941.
https://doi.org/10.1016/j.chaos.2003.12.032
- Özbay Altunbey F., and Özbay, E., 2022. Kaotik denizatı optimizasyon algoritması. Avrupa Bilim ve Teknoloji Dergisi, (44), 51-58.
https://doi.org/10.31590/ejosat.1216396
- Şenol, M. E., and Baykasoğlu, A., 2022. Coalition of metaheuristics through parallel computing for solving unconstrained continuous optimization problems. Engineering Computations (Swansea, Wales), 39(8), 2895–2927.
https://doi.org/10.1108/EC-10-2021-0612
- Tanyıldızı, E., and Cigalı, T., 2017. Kaotik haritalı balina optimizasyon algoritmaları. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 29(1), 307-317.
- Yıldızdan, G., 2023. Chaotic snake optimizer. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 23(5), 1122-1141.
Şiddet-Süre-Frekans Bağıntıları için Ağırlıklı Süperpozisyon Çekme İtme Algoritmasında Farklı Kaotik Harita Performanslarının Karşılaştırılması
Yıl 2024,
Cilt: 24 Sayı: 3, 674 - 684, 27.06.2024
Mümin Emre Şenol
,
Mustafa Erkan Turan
,
Tülin Çetin
Öz
Bu çalışmada, Ağırlıklı Süper Pozisyon Çekme İtme (Weighted Superposition Attraction Repulsion, WSAR) algoritmasında kaotik haritaların literatürde ilk defa kullanılarak kaotik WSAR versiyonlarının geliştirilmesi ve algoritmanın performansına olan etkisinin incelenmesi amaçlanmıştır. Bu amaçla, standart WSAR algoritmasına ait adım fonksiyonu yerine 11 adet bir boyutlu kaotik haritaların kullanılmasıyla WSAR algoritmasının çeşitli kaotik versiyonları oluşturulmuştur. Yağmur suyu kanalizasyonu ve menfez gibi su yapılarının tasarım debilerinin belirlenmesinde kullanılan şiddet-süre-frekans (ŞSF) bağıntılarına ait parametrelerin belirlenmesi problemi ele alınmıştır. Toplamda 16 adet ŞSF bağıntılarına ait parametreler, İzmir meteoroloji istasyonunun verileri kullanılarak belirlenmiştir. Performans ölçütü olarak ortalama kare hata değeri (MSE) seçilmiştir. Elde edilen sonuçlara göre, ŞSF bağıntıları arasında istatistiksel olarak anlamlı bir farkın varlığı gözlemlenmiştir. Bu fark, belirli bir ŞSF bağıntısının kullanılmasının diğer ŞSF bağıntılarının kullanılmasına kıyasla algoritmanın performansı üzerinde istatistiksel olarak anlamlı bir etkiye sahip olduğunu ortaya koymuştur. Kaotik haritaların algoritmanın performansına etkisi incelendiğinde ise, bazı ŞSF bağıntılarında standart WSAR algoritmasının adım fonksiyonu yerine kaotik haritaların kullanılmasının algoritmanın performansı üzerinde istatistiksel olarak anlamlı bir etki oluşturduğu görülmüştür.
Kaynakça
- Aydemir, S.B., 2022. Küresel optimizasyon için gauss kaotik haritası ile kartal optimizasyonu. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 34(1), 85–104.
https://doi.org/10.35234/fumbd.969335
- Başakın, E. E., Ekmekcioğlu, Ö., Özger, M., and Çıtakoğlu, H., 2021. Determination of Intensity-Duration-Frequency Relation by Particle Swarm Optimization and Genetic Programming. II. International Applied Statistics Conference (UYIK-2021) (pp.1-8). Tokat, Turkey.
- Baykasoğlu, A., 2021. Optimising cutting conditions for minimising cutting time in multi-pass milling via weighted superposition attraction-repulsion (WSAR) algorithm. International Journal of Production Research, 59(15), 4633–4648.
https://doi.org/10.1080/00207543.2020.1767313
- Baykasoğlu, A., and Akpinar, Ş., 2015. Weighted superposition attraction (WSA): a swarm intelligence algorithm for optimization problems–Part 2: constrained optimization. Applied Soft Computing Journal, 37, 396–415.
https://doi.org/10.1016/j.asoc.2015.10.036
- Baykasoğlu, A., and Akpinar, Ş., 2017. Weighted Superposition Attraction (WSA): A swarm intelligence algorithm for optimization problems – Part 1: Unconstrained optimization. Applied Soft Computing Journal, 56, 520–540.
https://doi.org/10.1016/j.asoc.2015.08.052
- Baykasoğlu, A., and Baykasoğlu, C., 2021. Weighted superposition attraction-repulsion (WSAR) algorithm for truss optimization with multiple frequency constraints. Structures, 30, 253–264.
https://doi.org/10.1016/j.istruc.2021.01.017
- Baykasoğlu, A., and Şenol, M. E., 2021. Parallel WSAR for solving permutation flow shop scheduling problem. In Computer Sciences & Mathematics Forum,2(1).
- El-Shorbagy, M. A., and Al-Drees, F. M., 2023. Studying the effect of introducing chaotic search on improving the performance of the sine cosine algorithm to solve optimization problems and nonlinear system of equations. Mathematics, 11(5).
https://doi.org/10.3390/math11051231
- Eryiğit M, Karahan H., 2013. Şiddet-Süre-Frekans bağıntısının yapay bağışıklık algoritması kullanılarak belirlenmesi. VII. Ulusal Hidroloji Kongresi, Isparta, Türkiye, 325-342.
- Geem, Z. W., and Roper, W. E., 2010. Various continuous harmony search algorithms for web-based hydrologic parameter optimisation. International Journal of Mathematical Modelling and Numerical Optimisation, 1(3), 213-226.
- Gomes, G. J. C., and Vargas Júnior, E. do A., 2018. A coupled system based on differential evolution for the determination of rainfall intensity equations. RBRH, 23(0).
https://doi.org/10.1590/2318-0331.231820170165
- Görkemli, B., Citakoglu, H., Haktanir, T., and Karaboga, D., 2022. A new method based on artificial bee colony programming for the regional standardized intensity–duration‒frequency relationship. Arabian Journal of Geosciences, 15(3).
https://doi.org/10.1007/s12517-021-09377-1
- He, Y. Y., Zhou, J. Z., Xiang, X. Q., Chen, H., and Qin, H., 2009. Comparison of different chaotic maps in particle swarm optimization algorithm for long-term cascaded hydroelectric system scheduling. Chaos, Solitons and Fractals, 42(5), 3169–3176.
https://doi.org/10.1016/j.chaos.2009.04.019
- Karaçizmeli, İ. H., Kaya, S., and Gümüşçü, A., 2019. Hibrit ateşböceği ve parçacık sürü algoritmasının kaotik haritalar ile iyileştirilmesi. Harran University Journal Of Engineering, 4(2), 69–78.
- Karahan H, 2011. Bölgesel Yağış-Şiddet-Süre-Frekans Bağıntılarının Diferansiyel Gelişim Algoritması Kullanılarak Elde Edilmesi. TÜBİTAK (108Y299), Sonuç Raporu.
- Karahan, H., 2012. Determining rainfall-intensity-duration-frequency relationship using Particle Swarm Optimization. KSCE Journal of Civil Engineering, 16(4), 667–675.
https://doi.org/10.1007/s12205-012-1076-9
- Karahan, H., 2019. Determination of homogeneous sub-regions by using intensity-duration-frequency relationships and cluster analysis: an application for the aegean region. Pamukkale University Journal of Engineering Sciences, 25(8), 998–1013.
https://doi.org/10.5505/pajes.2019.09365
- Karahan, H., Ceylan, H., and Ayvaz, MT., 2007. Predicting rainfall intensity using a genetic algorithm approach. Hydrological Processes, 21(4), 470–475.
https://doi.org/10.1002/hyp.6245
- Karahan, H., Ayvaz, M. T., and Gürarslan, G., 2008. Şiddet-süre-frekans bağıntısının genetik algoritma ile belirlenmesi: GAP örneği. Teknik Dergi, 19(92), 4393-4407.
- Kaveh, A., and Yosefpour, H., 2023. Comparison of three chaotic meta-heuristic algorithms for the optimal design of truss structures with frequency constraints. Periodica Polytechnica Civil Engineering, 67(4), 1130–1151.
https://doi.org/10.3311/PPci.22594
- Kaveh, A., Zarfam, P., Aziminejad, A., and Yosefpoor, H., 2022. Comparison of four chaotic meta-heuristic algorithms for optimal design of large-scale truss structures. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 46(6), 4067–4091.
https://doi.org/10.1007/s40996-022-00908-8
- Lorenz, E. N., 1963. Deterministic nonperiodic flow. Journal of atmospheric sciences, 20(2), 130-141.
- Lozano, M., and García-Martínez, C., 2010. Hybrid metaheuristics with evolutionary algorithms specializing in intensification and diversification: Overview and progress report. Computers and Operations Research, 37(3), 481–497.
https://doi.org/10.1016/j.cor.2009.02.010
- Mingjun, J., and Huanwen, T., 2004. Application of chaos in simulated annealing. Chaos, Solitons and Fractals, 21(4), 933–941.
https://doi.org/10.1016/j.chaos.2003.12.032
- Özbay Altunbey F., and Özbay, E., 2022. Kaotik denizatı optimizasyon algoritması. Avrupa Bilim ve Teknoloji Dergisi, (44), 51-58.
https://doi.org/10.31590/ejosat.1216396
- Şenol, M. E., and Baykasoğlu, A., 2022. Coalition of metaheuristics through parallel computing for solving unconstrained continuous optimization problems. Engineering Computations (Swansea, Wales), 39(8), 2895–2927.
https://doi.org/10.1108/EC-10-2021-0612
- Tanyıldızı, E., and Cigalı, T., 2017. Kaotik haritalı balina optimizasyon algoritmaları. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 29(1), 307-317.
- Yıldızdan, G., 2023. Chaotic snake optimizer. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 23(5), 1122-1141.