Sulardan Boyar Madde Giderimi için PVDF Temelli Filtre Üretimi ve Deneysel Optimizasyon ile Adsorpsiyon Etkinliğinin Belirlenmesi
Yıl 2024,
Cilt: 24 Sayı: 5, 1225 - 1234, 01.10.2024
Ayşenur Katırcı
,
Seniyecan Kahraman
,
Filiz Uğur Nigiz
Öz
Bu çalışmada, elektro eğirme tekniği ile nanofiber poliviniliden florür (PVDF) membranlar üretilmiş ve membranların adsorpsiyon performansları incelenmiştir. Membranların ayırma performanslarını iyileştirmek için içerisine doğal zeolit (klinoptilolit) %0, 2, 4 oranında eklenmiştir. Membran ayırımı sırasında, membranın malzemeyi adsorplama mekanizması deneysel optimizasyon ile belirlenmiştir. Deneysel optimizasyonda boyar madde konsantrasyonu (5-10-15 mg/L), doğal zeolit (klinoptilolit) oranı (%0-2-4) ve adsorbent dozajının (0.01-0.015-0.02 g) etkisi incelenmiştir. Optimum koşullar olarak 10 mg/L boya konsantrasyonu, 0,02 g adsorbent miktarı ve %2 katkı oranı olarak belirlenmiştir. Yapılan izoterm çalışmaları Langmuir izotermine uyum göstermiştir. Dolayısıyla PVDF adsorbent yüzeyindeki aktif noktalar homojen dağılımlıdır ve tek katmanlı adsorpsiyon gerçekleşmiştir.
Etik Beyan
Bu araştırma makalesi çalışmasında; makalede sunduğum verileri, bilgileri ve dokümanları akademik ve etik kurallar çerçevesinde elde ettiğimi, tüm bilgi, belge, değerlendirme ve sonuçları bilimsel etik ve ahlak kurallarına uygun olarak sunduğumu, makalede yararlandığım eserlerin tümüne uygun atıfta bulunarak kaynak gösterdiğimi, kullanılan verilerde herhangi bir değişiklik yapmadığımı, bu tezde sunduğum çalışmanın özgün olduğunu, bildirir, aksi bir durumda aleyhime doğabilecek tüm hak kayıplarını kabullendiğimi taahhüt ve beyan ederim.
Destekleyen Kurum
TÜBİTAK
Teşekkür
Bu çalışma TÜBİTAK 1001 Bilimsel ve Teknolojik Araştırma Projelerini Destekleme Programı tarafından desteklenmiştir (Proje numarası: 123Y119).
Kaynakça
- Akdeniz, A., 2022. Boyarmadde adsorpsiyonunda polivinilden florür–grafen oksit kullanımı. Yüksek Lisans Tezi, Pamukkale Üniversitesi Fen Bilimleri Enstitüsü, Denizli, 48.
- Babazadeh-Mamaqani, M., Roghani-Mamaqani, H., Alidaei-Sharif, H., & Salami-Kalajahi, M., 2023. Development of pH sensing colloidal nanoparticles and oil/water separating electrospun membranes containing oxazolidine from functional polymers. Journal of Materials Chemistry C, 11(2), 685-697.
https://doi.org/10.1039/D2TC04546J
- Badini Pourazar, M., Mohammadi, T., Jafari Nasr, M. R., Bakhtiari, O., & Javanbakht, M., 2020. Preparation and characterization of poly (vinylidene fluoride)‐13X zeolite mixed matrix membranes for lithium ion batteries' separator with enhanced performance. Journal of Applied Polymer Science, 137(44), 49367.
https://doi.org/10.1002/app.49367
- Chan, M. K., Tan, S. J., Yeow, A. T., Ng, S. C., & Lau, W. J., 2024. Zeolite-Based Poly (vinylidene fluoride) Ultrafiltration Membrane: Characterization and Molecular Weight Cut-Off Estimation with Support Vector Regression Modelling. Membranes, 14(4), 91.
https://doi.org/10.3390/membranes14040091
- Cui, J., Li, F., Wang, Y., Zhang, Q., Ma, W., & Huang, C. 2020. Electrospun nanofiber membranes for wastewater treatment applications. Separation and Purification Technology, 250, 117116.
https://doi.org/10.1016/j.seppur.2020.117116
- Çatıoğlu, F. N., 2019. Ultrasonik ortamda manyetik nanopartiküller kullanarak sulu çözeltiden boya giderilmesi. Yüksek lisans tezi, Aksaray Üniversitesi Fen Bilimleri Enstitüsü, Aksaray, 72.
- Hassan, F., Mushtaq, R., Saghar, S., Younas, U., Pervaiz, M., muteb Aljuwayid, A., ... & Sillanpaa, M., 2022. Fabrication of graphene-oxide and zeolite loaded polyvinylidene fluoride reverse osmosis membrane for saltwater remediation. Chemosphere, 307, 136012.
https://doi.org/10.1016/j.chemosphere.2022.136012
- Hosseini, S. A., Vossoughi, M., Mahmoodi, N. M., & Sadrzadeh, M., 2019. Clay-based electrospun nanofibrous membranes for colored wastewater treatment. Applied Clay Science, 168, 77-86.
https://doi.org/10.1016/j.clay.2018.11.003
- Kumar S, Mostafazadeh AK, Kumar LR, Tyagi RD, Drogui P, Brien E., 2022. Advancements in laundry wastewater treatment for reuse: a review. J Environ Sci Health A Tox Hazard Subst Environ Eng., 57(11), 927-946.
https://doi.org/10.1080/10934529.2022.2132076
- Li, L., Li, Y., & Yang, C., 2016. Chemical filtration of Cr (VI) with electrospun chitosan nanofiber membranes. Carbohydrate polymers, 140, 299-307.
https://doi.org/10.1016/j.carbpol.2015.12.067
- Liang, S., Qi, G., Xiao, K., Sun, J., Giannelis, E. P., Huang, X., & Elimelech, M., 2014. Organic fouling behavior of superhydrophilic polyvinylidene fluoride (PVDF) ultrafiltration membranes functionalized with surface-tailored nanoparticles: Implications for organic fouling in membrane bioreactors. Journal of Membrane Science, 463, 94-101.
https://doi.org/10.1016/j.memsci.2014.03.037
- Lopes, A. C., Ribeiro, C., Sencadas, V., Botelho, G., & Lanceros-Méndez, S., 2014. Effect of filler content on morphology and physical–chemical characteristics of poly (vinylidene fluoride)/NaY zeolite-filled membranes. Journal of Materials Science, 49, 3361-3370.
https://doi.org/10.1007/s10853-014-8043-4
- Manouchehri, M., Kargari, A., 2017. Water recovery from laundry wastewater by the cross flow microfiltration process: A strategy for water recycling in residential buildings. Journal of Cleaner Production,168, 227-238.
https://doi.org/10.1016/j.jclepro.2017.08.211
- Ngulube T., Gumbo J. R., Masindi V. & Maity A., 2017. An update on synthetic dyes adsorption onto clay based minerals: a state-of-art review. Journal of Environmental Management 191, 35–57.
https://doi.org/10.1016/j.jenvman.2016.12.031
- Nikooe, N., & Saljoughi, E., 2017. Preparation and characterization of novel PVDF nanofiltration membranes with hydrophilic property for filtration of dye aqueous solution. Applied Surface Science, 413, 41-49.
https://doi.org/10.1016/j.apsusc.2017.04.029
- Patel, R. V., Raj, G. B., Chaubey, S., & Yadav, A., 2022. Investigation on the feasibility of recycled polyvinylidene difluoride polymer from used membranes for removal of methylene blue: experimental and DFT studies. Water Science and Technology, 86(1), 194-210.
https://doi.org/10.2166/wst.2022.193
- Puszka, A., Kneć, M., Franus, W., Podkościelna, B., 2023. Preparation and Thermo-Mechanical Characteristics of Composites Based on Epoxy Resin with Kaolinite and Clinoptilolite. Polymers 15(8),1898.
https://doi.org/10.3390/polym15081898
- Rafatullah, M., Sulaiman, O., Hashim, R., & Ahmad, A., 2010. Adsorption of methylene blue on low-cost adsorbents: a review. Journal of hazardous materials, 177(1-3), 70-80.
https://doi.org/10.1016/j.jhazmat.2009.12.047
- Satkan, M., 2023. Doplanmış polibenzoksazol (PBO) ve grafen katkılı pvdf nanofiberin sulu çözeltilerde boyarmadde giderimi. Yüksek Lisans Tezi, Pamukkale Üniversitesi Fen Bilimleri Enstitüsü, Denizli, 69.
- Türkyilmaz, A., 2018. Sulu çözeltilerden nano kil (halosit) yüzeyine metilen mavisi adsorpsiyonu ve kinetiği. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 20(2), 413-424.
- Vecino X., Devesa-Rey R., Cruz J. M. & Moldes A. B., 2015. Study of the physical properties of calcium alginate hydrogel beads containing vineyard pruning waste for dye removal. Carbohydrate Polymers, 115, 129–138.
https://doi.org/10.1016/j.carbpol.2014.08.088
- Xu, C., Huang, W., Lu, X., Yan, D., Chen, S., & Huang, H., 2012. Preparation of PVDF porous membranes by using PVDF-g-PVP powder as an additive and their antifouling property. Radiation Physics and Chemistry, 81(11), 1763-1769.
https://doi.org/10.1016/j.radphyschem.2012.07.001
- Zhang D., Dai F., Zhang P., An Z., Zhao Y. & Chen L., 2019. The photodegradation of methylene blue in water with PVDF/GO/ZnO composite membrane. Materials Science and Engineering, 96, 684–692.
https://doi.org/10.1016/j.msec.2018.11.049
Production of PVDF-Based Filters for Dye Removal From Water and Determining Its Effectiveness Through Experimental Optimization for The Adsorpstion
Yıl 2024,
Cilt: 24 Sayı: 5, 1225 - 1234, 01.10.2024
Ayşenur Katırcı
,
Seniyecan Kahraman
,
Filiz Uğur Nigiz
Öz
In this study, Nanofiber Polyvinylidene fluoride (PVDF) membranes was produced by electon spinning method and examined by absorbition performances. To improve membranes’ seperation performances, natural zeolite (clinoptilolite) was used in 0, 2, 4% rates. In membrane seperation progress, membranes’ material absorbition mechanism was set on with experimental optimization. In experimental optimization dyed matter concentration (5-10-15 mg/L), natural zeolite (clinoptilolite) rate (0-2-4%) and absorbation dosage (0.01-0.015-0.02 g) effect was examined. Optimized conditions was set as 10 mg/L dye concentration, 0,02 g amount of absorbition and 2% as contribution rate. It is approved that these isoterm tests were compatible with Langmiur isoterm. Therefore, active points in PVDF absorbition surface were homogenous and single layered absorbition was occured.
Kaynakça
- Akdeniz, A., 2022. Boyarmadde adsorpsiyonunda polivinilden florür–grafen oksit kullanımı. Yüksek Lisans Tezi, Pamukkale Üniversitesi Fen Bilimleri Enstitüsü, Denizli, 48.
- Babazadeh-Mamaqani, M., Roghani-Mamaqani, H., Alidaei-Sharif, H., & Salami-Kalajahi, M., 2023. Development of pH sensing colloidal nanoparticles and oil/water separating electrospun membranes containing oxazolidine from functional polymers. Journal of Materials Chemistry C, 11(2), 685-697.
https://doi.org/10.1039/D2TC04546J
- Badini Pourazar, M., Mohammadi, T., Jafari Nasr, M. R., Bakhtiari, O., & Javanbakht, M., 2020. Preparation and characterization of poly (vinylidene fluoride)‐13X zeolite mixed matrix membranes for lithium ion batteries' separator with enhanced performance. Journal of Applied Polymer Science, 137(44), 49367.
https://doi.org/10.1002/app.49367
- Chan, M. K., Tan, S. J., Yeow, A. T., Ng, S. C., & Lau, W. J., 2024. Zeolite-Based Poly (vinylidene fluoride) Ultrafiltration Membrane: Characterization and Molecular Weight Cut-Off Estimation with Support Vector Regression Modelling. Membranes, 14(4), 91.
https://doi.org/10.3390/membranes14040091
- Cui, J., Li, F., Wang, Y., Zhang, Q., Ma, W., & Huang, C. 2020. Electrospun nanofiber membranes for wastewater treatment applications. Separation and Purification Technology, 250, 117116.
https://doi.org/10.1016/j.seppur.2020.117116
- Çatıoğlu, F. N., 2019. Ultrasonik ortamda manyetik nanopartiküller kullanarak sulu çözeltiden boya giderilmesi. Yüksek lisans tezi, Aksaray Üniversitesi Fen Bilimleri Enstitüsü, Aksaray, 72.
- Hassan, F., Mushtaq, R., Saghar, S., Younas, U., Pervaiz, M., muteb Aljuwayid, A., ... & Sillanpaa, M., 2022. Fabrication of graphene-oxide and zeolite loaded polyvinylidene fluoride reverse osmosis membrane for saltwater remediation. Chemosphere, 307, 136012.
https://doi.org/10.1016/j.chemosphere.2022.136012
- Hosseini, S. A., Vossoughi, M., Mahmoodi, N. M., & Sadrzadeh, M., 2019. Clay-based electrospun nanofibrous membranes for colored wastewater treatment. Applied Clay Science, 168, 77-86.
https://doi.org/10.1016/j.clay.2018.11.003
- Kumar S, Mostafazadeh AK, Kumar LR, Tyagi RD, Drogui P, Brien E., 2022. Advancements in laundry wastewater treatment for reuse: a review. J Environ Sci Health A Tox Hazard Subst Environ Eng., 57(11), 927-946.
https://doi.org/10.1080/10934529.2022.2132076
- Li, L., Li, Y., & Yang, C., 2016. Chemical filtration of Cr (VI) with electrospun chitosan nanofiber membranes. Carbohydrate polymers, 140, 299-307.
https://doi.org/10.1016/j.carbpol.2015.12.067
- Liang, S., Qi, G., Xiao, K., Sun, J., Giannelis, E. P., Huang, X., & Elimelech, M., 2014. Organic fouling behavior of superhydrophilic polyvinylidene fluoride (PVDF) ultrafiltration membranes functionalized with surface-tailored nanoparticles: Implications for organic fouling in membrane bioreactors. Journal of Membrane Science, 463, 94-101.
https://doi.org/10.1016/j.memsci.2014.03.037
- Lopes, A. C., Ribeiro, C., Sencadas, V., Botelho, G., & Lanceros-Méndez, S., 2014. Effect of filler content on morphology and physical–chemical characteristics of poly (vinylidene fluoride)/NaY zeolite-filled membranes. Journal of Materials Science, 49, 3361-3370.
https://doi.org/10.1007/s10853-014-8043-4
- Manouchehri, M., Kargari, A., 2017. Water recovery from laundry wastewater by the cross flow microfiltration process: A strategy for water recycling in residential buildings. Journal of Cleaner Production,168, 227-238.
https://doi.org/10.1016/j.jclepro.2017.08.211
- Ngulube T., Gumbo J. R., Masindi V. & Maity A., 2017. An update on synthetic dyes adsorption onto clay based minerals: a state-of-art review. Journal of Environmental Management 191, 35–57.
https://doi.org/10.1016/j.jenvman.2016.12.031
- Nikooe, N., & Saljoughi, E., 2017. Preparation and characterization of novel PVDF nanofiltration membranes with hydrophilic property for filtration of dye aqueous solution. Applied Surface Science, 413, 41-49.
https://doi.org/10.1016/j.apsusc.2017.04.029
- Patel, R. V., Raj, G. B., Chaubey, S., & Yadav, A., 2022. Investigation on the feasibility of recycled polyvinylidene difluoride polymer from used membranes for removal of methylene blue: experimental and DFT studies. Water Science and Technology, 86(1), 194-210.
https://doi.org/10.2166/wst.2022.193
- Puszka, A., Kneć, M., Franus, W., Podkościelna, B., 2023. Preparation and Thermo-Mechanical Characteristics of Composites Based on Epoxy Resin with Kaolinite and Clinoptilolite. Polymers 15(8),1898.
https://doi.org/10.3390/polym15081898
- Rafatullah, M., Sulaiman, O., Hashim, R., & Ahmad, A., 2010. Adsorption of methylene blue on low-cost adsorbents: a review. Journal of hazardous materials, 177(1-3), 70-80.
https://doi.org/10.1016/j.jhazmat.2009.12.047
- Satkan, M., 2023. Doplanmış polibenzoksazol (PBO) ve grafen katkılı pvdf nanofiberin sulu çözeltilerde boyarmadde giderimi. Yüksek Lisans Tezi, Pamukkale Üniversitesi Fen Bilimleri Enstitüsü, Denizli, 69.
- Türkyilmaz, A., 2018. Sulu çözeltilerden nano kil (halosit) yüzeyine metilen mavisi adsorpsiyonu ve kinetiği. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 20(2), 413-424.
- Vecino X., Devesa-Rey R., Cruz J. M. & Moldes A. B., 2015. Study of the physical properties of calcium alginate hydrogel beads containing vineyard pruning waste for dye removal. Carbohydrate Polymers, 115, 129–138.
https://doi.org/10.1016/j.carbpol.2014.08.088
- Xu, C., Huang, W., Lu, X., Yan, D., Chen, S., & Huang, H., 2012. Preparation of PVDF porous membranes by using PVDF-g-PVP powder as an additive and their antifouling property. Radiation Physics and Chemistry, 81(11), 1763-1769.
https://doi.org/10.1016/j.radphyschem.2012.07.001
- Zhang D., Dai F., Zhang P., An Z., Zhao Y. & Chen L., 2019. The photodegradation of methylene blue in water with PVDF/GO/ZnO composite membrane. Materials Science and Engineering, 96, 684–692.
https://doi.org/10.1016/j.msec.2018.11.049