Araştırma Makalesi
BibTex RIS Kaynak Göster

MİTTAG LEFFLER ÇEKİRDEĞİ İLE LOKAL TÜREVLER İÇİN ÇİFT KATLI LAPLACE DÖNÜŞÜMÜ TEORİSİ VE UYGULAMALARI

Yıl 2025, Cilt: 25 Sayı: 4, 774 - 784, 04.08.2025
https://doi.org/10.35414/akufemubid.1569312

Öz

Bu makale, Mittag-Leffler fonksiyonunu içeren altı parametreli uyumlu türevin genel formu olan M-türevi çift katlı Laplace dönüşümünü tanımlamayı amaçlamaktadır. Birkaç teoremle ifade edilir ve bize M-türevi kısmi diferansiyel denklemleri çözmek için kullanışlı ve güvenilir bir yöntem verecektir. Ayrıca, verilen bu tanım ve teoremlerin kesirli kısmi diferansiyel denklemlere uygulanması gösterilmiştir. Matematiksel, mühendislik ve fiziksel modellerle eşleşebilecek M-türevlerini içeren kısmi diferansiyel denklemlere çözümler bulmak, bu dönüşümün kullanılmasıyla gerçekleştirilebilir.

Kaynakça

  • Abdeljawad, T., 2015. On Conformable fractional calulus, Journal of Computational Applied Mathematics, 279, 57-66. https://doi.org/10.48550/arXiv.1402.6892
  • Bas, E., Acay, B., and Abdeljawad, T., 2020. Non-Local fractional calculus from different viewpoint generated by truncated M-derivative, Journal of Computational and Applied Mathematics, 366, 112410. https://doi.org/10.1016/j.cam.2019.112410
  • Bas, E., Acay, B., 2020. The direct spectral problem via local derivative including truncated Mittag-Leffler function, Applied Mathematıcs and Computation, 366, 124787. https://doi.org/10.1016/j.amc.2019.124787
  • Jarad, F., Uğurlu, E., Abdeljawad, T. and Baleanu, D., 2017. On a new class of fractional operators, Advances in Difference Equations, 2017;247. https://doi.org/10.1186s13662-017-130-z
  • Jarad, F., Uğurlu, E., Abdeljawad, T., D., 2020. Generalized fractional derivatives and Laplace transform, American Institute of Mathematical Sciences, 13, 3, 709-722. https://dx.doi.org/10.3934/dcdss.2020039.
  • Katugampola, U.N., 2017. A new approach to generalized fractional derivatives, mBulletın of Mathematıcal Analysıs and Applıcatıons, 16, 4, 1-15. https://dx.doi.org/10.48550/arXiv.1106.0965
  • Khalil R., Al Horani, M., Yousef, A., Sababheh, M., 2014. A new definition of derivative, Journal of Computational and Applied Mathematics, 264, 65-70. https://doi.org/10.1016/j.cam.2014.01.002
  • Kilbas, A., A., Srivastava, H., M., and Trujillo, J., J., 2006. Theory and Applications of Fractional Differential Equations, Jan van Mill (editor), Elsevıer B. V. Amsterdam, Netherlands, 283-326.
  • Kurt, A.,2018. Comformable Laplace Dönüşümleri ve Uygulamaları, Doctoral Thesis, Institute of Science, Selçuk Üniversiy, 93.
  • Ozkan, O., Kurt, A., 2018. On Conformable double Laplace transform, Opt quant Electron, 50, 103. https://doi.org/10.1007/s11082-018-1372-9
  • Sousa, J., V., D., C., Oliviera, E., C., D., 2017. A new Truncated M-fractional derivate type unifying some fractional derivative types with classical properties, International Journal of Analysis and Applications, 16, 1, 83-96. https://doi.org/10.28924/2291-8639

THEORY AND APPLICATIONS OF THE DOUBLE LAPLACE TRANSFORM FOR LOCAL DERİVATİVES WİTH THE MITTAG LEFFLER KERNEL

Yıl 2025, Cilt: 25 Sayı: 4, 774 - 784, 04.08.2025
https://doi.org/10.35414/akufemubid.1569312

Öz

This article aims to define the 𝑀-derivative double Laplace transform, which is the general form of the six-parameter conformable derivative involving the Mittag-Leffler function. It is expressed with several theorems and will give us a useful and dependable method for solving fractional 𝑀-derivative partial differenial equations. Furthermore, the application of these given definitions and theorems to fractional partial differential equations is shown. Finding solutions to partial differential equations containing 𝑀-derivatives that can match mathematical, engineering, and physical mode ls may be accomplished with the use of this transformation.

Kaynakça

  • Abdeljawad, T., 2015. On Conformable fractional calulus, Journal of Computational Applied Mathematics, 279, 57-66. https://doi.org/10.48550/arXiv.1402.6892
  • Bas, E., Acay, B., and Abdeljawad, T., 2020. Non-Local fractional calculus from different viewpoint generated by truncated M-derivative, Journal of Computational and Applied Mathematics, 366, 112410. https://doi.org/10.1016/j.cam.2019.112410
  • Bas, E., Acay, B., 2020. The direct spectral problem via local derivative including truncated Mittag-Leffler function, Applied Mathematıcs and Computation, 366, 124787. https://doi.org/10.1016/j.amc.2019.124787
  • Jarad, F., Uğurlu, E., Abdeljawad, T. and Baleanu, D., 2017. On a new class of fractional operators, Advances in Difference Equations, 2017;247. https://doi.org/10.1186s13662-017-130-z
  • Jarad, F., Uğurlu, E., Abdeljawad, T., D., 2020. Generalized fractional derivatives and Laplace transform, American Institute of Mathematical Sciences, 13, 3, 709-722. https://dx.doi.org/10.3934/dcdss.2020039.
  • Katugampola, U.N., 2017. A new approach to generalized fractional derivatives, mBulletın of Mathematıcal Analysıs and Applıcatıons, 16, 4, 1-15. https://dx.doi.org/10.48550/arXiv.1106.0965
  • Khalil R., Al Horani, M., Yousef, A., Sababheh, M., 2014. A new definition of derivative, Journal of Computational and Applied Mathematics, 264, 65-70. https://doi.org/10.1016/j.cam.2014.01.002
  • Kilbas, A., A., Srivastava, H., M., and Trujillo, J., J., 2006. Theory and Applications of Fractional Differential Equations, Jan van Mill (editor), Elsevıer B. V. Amsterdam, Netherlands, 283-326.
  • Kurt, A.,2018. Comformable Laplace Dönüşümleri ve Uygulamaları, Doctoral Thesis, Institute of Science, Selçuk Üniversiy, 93.
  • Ozkan, O., Kurt, A., 2018. On Conformable double Laplace transform, Opt quant Electron, 50, 103. https://doi.org/10.1007/s11082-018-1372-9
  • Sousa, J., V., D., C., Oliviera, E., C., D., 2017. A new Truncated M-fractional derivate type unifying some fractional derivative types with classical properties, International Journal of Analysis and Applications, 16, 1, 83-96. https://doi.org/10.28924/2291-8639
Toplam 11 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Diferansiyel ve İntegral Denklemlerin Sayısal Çözümü
Bölüm Makaleler
Yazarlar

Burak Özküçük 0000-0002-3301-181X

Erdal Baş 0000-0002-7285-7308

Erken Görünüm Tarihi 21 Temmuz 2025
Yayımlanma Tarihi 4 Ağustos 2025
Gönderilme Tarihi 17 Ekim 2024
Kabul Tarihi 27 Şubat 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 25 Sayı: 4

Kaynak Göster

APA Özküçük, B., & Baş, E. (2025). THEORY AND APPLICATIONS OF THE DOUBLE LAPLACE TRANSFORM FOR LOCAL DERİVATİVES WİTH THE MITTAG LEFFLER KERNEL. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 25(4), 774-784. https://doi.org/10.35414/akufemubid.1569312
AMA Özküçük B, Baş E. THEORY AND APPLICATIONS OF THE DOUBLE LAPLACE TRANSFORM FOR LOCAL DERİVATİVES WİTH THE MITTAG LEFFLER KERNEL. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. Ağustos 2025;25(4):774-784. doi:10.35414/akufemubid.1569312
Chicago Özküçük, Burak, ve Erdal Baş. “THEORY AND APPLICATIONS OF THE DOUBLE LAPLACE TRANSFORM FOR LOCAL DERİVATİVES WİTH THE MITTAG LEFFLER KERNEL”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25, sy. 4 (Ağustos 2025): 774-84. https://doi.org/10.35414/akufemubid.1569312.
EndNote Özküçük B, Baş E (01 Ağustos 2025) THEORY AND APPLICATIONS OF THE DOUBLE LAPLACE TRANSFORM FOR LOCAL DERİVATİVES WİTH THE MITTAG LEFFLER KERNEL. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25 4 774–784.
IEEE B. Özküçük ve E. Baş, “THEORY AND APPLICATIONS OF THE DOUBLE LAPLACE TRANSFORM FOR LOCAL DERİVATİVES WİTH THE MITTAG LEFFLER KERNEL”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 25, sy. 4, ss. 774–784, 2025, doi: 10.35414/akufemubid.1569312.
ISNAD Özküçük, Burak - Baş, Erdal. “THEORY AND APPLICATIONS OF THE DOUBLE LAPLACE TRANSFORM FOR LOCAL DERİVATİVES WİTH THE MITTAG LEFFLER KERNEL”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25/4 (Ağustos2025), 774-784. https://doi.org/10.35414/akufemubid.1569312.
JAMA Özküçük B, Baş E. THEORY AND APPLICATIONS OF THE DOUBLE LAPLACE TRANSFORM FOR LOCAL DERİVATİVES WİTH THE MITTAG LEFFLER KERNEL. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2025;25:774–784.
MLA Özküçük, Burak ve Erdal Baş. “THEORY AND APPLICATIONS OF THE DOUBLE LAPLACE TRANSFORM FOR LOCAL DERİVATİVES WİTH THE MITTAG LEFFLER KERNEL”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 25, sy. 4, 2025, ss. 774-8, doi:10.35414/akufemubid.1569312.
Vancouver Özküçük B, Baş E. THEORY AND APPLICATIONS OF THE DOUBLE LAPLACE TRANSFORM FOR LOCAL DERİVATİVES WİTH THE MITTAG LEFFLER KERNEL. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2025;25(4):774-8.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.