Araştırma Makalesi
BibTex RIS Kaynak Göster

Kurkumin Nanoyapı Temelli Sensör Kullanılarak Pestisit Malation’un Elektrokimyasal Tayini

Yıl 2025, Cilt: 25 Sayı: 5, 1062 - 1071, 01.10.2025
https://doi.org/10.35414/akufemubid.1548528

Öz

Bu çalışma, organofosforlu pestisitin bir üyesi olan malation’un (MLT) doğrudan elektrokimyasal tayini için kurkumin nanoparçacık (Kur NP) modifiye kalem grafit elektrodun (KGE) geliştirilmesini ve uygulamasını içermektedir. Kur NP, geniş yüzey alanı, değiştirilebilir boyutları, seçici hedefleme, iyi biyouyumluluk ve yüksek kararlılık gibi öne çıkan özellikleri nedeniyle araştırmacıların dikkatini çeken bir nanomalzemedir. Bu nedenle, bu çalışmada, basit, hızlı ve hassas bir yöntemle Kur NP-KGE’nin üretimi gerçekleştirilerek MLT’nin doğrudan elektro tespiti için önerilmiştir. Modifiye elektrodun özelliklerini belirlemek için morfolojik ve elektrokimyasal karakterizasyon gerçekleştirilmiştir. Kur NP modifiye elektrodun elektrokatalitik özellikleri dönüşümlü voltametri kullanılarak kaydedilmiş ve bazı parametreler optimize edilmiştir. Seçilen koşullar altında, diferansiyel puls voltametrisi kullanılarak 0,001 ile 0,6 µM arasında geniş bir doğrusal derişim aralığı elde edilmiş ve gözlenebilme sınırı 0,6 nM olarak belirlenmiştir. Elde edilen sonuçlar, çalışmamızın pratik öneminin altını çizmiş ve MLT’nin hassas ve doğrudan elektrokimyasal tayini için alternatif bir yaklaşım sunmuştur.

Etik Beyan

-

Destekleyen Kurum

-

Proje Numarası

-

Teşekkür

-

Kaynakça

  • Aghoutane, Y., Diouf, A., Österlund, L., Bouchikhi, B., & El Bari, N. 2020. Development of a molecularly imprinted polymer electrochemical sensor and its application for sensitive detection and determination of malathion in olive fruits and oils. Bioelectrochemistry, 132, 107404. https://doi.org/10.1016/j.bioelechem.2019.107404
  • Anjitha, R., Antony, A., Shilpa, O., Anupama, K. P., Mallikarjunaiah, S., & Gurushankara, H. P. 2020. Malathion induced cancer-linked gene expression in human lymphocytes. Environmental Research, 182, 109131. https://doi.org/10.1016/j.envres.2020.109131
  • Bolat, G., & Abaci, S. 2018. Non-enzymatic electrochemical sensing of malathion pesticide in tomato and apple samples based on gold nanoparticles-chitosan-ionic liquid hybrid nanocomposite. Sensors (Switzerland), 18(3), 773. https://doi.org/10.3390/s18030773
  • Chauhan, N., Narang, J., & Jain, U. 2016. Amperometric acetylcholinesterase biosensor for pesticides monitoring utilising iron oxide nanoparticles and poly(indole-5-carboxylic acid). Journal of Experimental Nanoscience, 11(2), 111–122. https://doi.org/10.1080/17458080.2015.1030712
  • Chen, H., Hu, O., Fan, Y., Xu, L., Zhang, L., Lan, W., … Fu, H. 2020. Fluorescence paper-based sensor for visual detection of carbamate pesticides in food based on CdTe quantum dot and nano ZnTPyP. Food Chemistry, 327, 127075. https://doi.org/10.1016/j.foodchem.2020.127075
  • Chen, Q., & Fung, Y. 2010. Capillary electrophoresis with immobilized quantum dot fluorescence detection for rapid determination of organophosphorus pesticides in vegetables. Electrophoresis, 31(18), 3107–3114. https://doi.org/10.1002/elps.201000260
  • Dinesh, B., & Saraswathi, R. 2017. Electrochemical synthesis of nanostructured copper-curcumin complex and its electrocatalytic application towards reduction of 4-nitrophenol. Sensors and Actuators B: Chemical, 253, 502–512. https://doi.org/10.1016/J.SNB.2017.06.149
  • Diuzheva, A., Dejmková, H., Fischer, J., & Andruch, V. 2019. Simultaneous determination of three carbamate pesticides using vortex-assisted liquid–liquid microextraction combined with HPLC-amperometric detection. Microchemical Journal, 150, 104071. https://doi.org/10.1016/j.microc.2019.104Y
  • Duan, S., Wu, X., Shu, Z., Xiao, A., Chai, B., & Pi, F. 2023. Curcumin-enhanced MOF electrochemical sensor for sensitive detection of methyl parathion in vegetables and fruits. Microchemical Journal, 184(PB), 108182. https://doi.org/10.1016/j.microc.2022.108182
  • Ebrahim, S., El-Raey, R., Hefnawy, A., Ibrahim, H., Soliman, M., & Abdel-Fattah, T. M. 2014. Electrochemical sensor based on polyaniline nanofibers/single wall carbon nanotubes composite for detection of malathion. Synthetic Metals, 190, 13–19. https://doi.org/10.1016/j.synthmet.2014.01.021
  • Giri, S., Prasad, S. B., Giri, A., & Sharma, G. D. 2002. Genotoxic effects of malathion: An organophosphorus insecticide, using three mammalian bioassays in vivo. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 514(1–2), 223–231. https://doi.org/10.1016/S1383-5718(01)00341-2
  • Guler, M., Turkoglu, V., & Kivrak, A. 2016. Electrochemical detection of malathion pesticide using acetylcholinesterase biosensor based on glassy carbon electrode modified with conducting polymer film. Environmental Science and Pollution Research, 23(12), 12343–12351. https://doi.org/10.1007/s11356-016-6385-y
  • Harshit, D., Charmy, K., & Nrupesh, P. 2017. Organophosphorus pesticides determination by novel HPLC and spectrophotometric method. Food Chemistry, 230, 448–453. https://doi.org/10.1016/j.foodchem.2017.03.083
  • He, L., Cui, B., Liu, J., Song, Y., Wang, M., Peng, D., & Zhang, Z. 2018. Novel electrochemical biosensor based on core-shell nanostructured composite of hollow carbon spheres and polyaniline for sensitively detecting malathion. Sensors and Actuators, B: Chemical, 258, 813–821. https://doi.org/10.1016/j.snb.2017.11.161
  • He, Y., Du, J., Luo, J., Chen, S., & Yuan, R. 2020. Coreactant-free electrochemiluminescence biosensor for the determination of organophosphorus pesticides. Biosensors and Bioelectronics, 150, 111898. https://doi.org/10.1016/j.bios.2019.111898
  • Iqbal, S., Iqbal, M. M., Javed, M., Bahadur, A., Yasien, S., Najam-ud-din, … Liu, G. 2020. Modified QuEChERS extraction method followed by simultaneous quantitation of nine multi-class pesticides in human blood and urine by using GC-MS. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 1152, 122227. https://doi.org/10.1016/j.jchromb.2020.122227
  • Ju, H., & Kandimalla, V. B. 2008. Chapter 2 - Biosensors for pesticides. Electrochemical Sensors, Biosensors and their Biomedical Applications. Editor(s): Xueji Zhang, Huangxian Ju, Joseph Wang. Elsevier , Academic Press, 31-56. https://doi.org/10.1016/B978-012373738-0.50004-0
  • Kamyabi, M. A., & Moharramnezhad, M. 2020. Nickel foam decorated with ZnO nanocrystals using mesoporous silica templates for ultrasensitive electrogenerated chemiluminescence determination of diazinon. Microchemical Journal, 154, 104540. https://doi.org/10.1016/j.microc.2019.104540
  • Kaur, N., Thakur, H., & Prabhakar, N. 2019a. Multi walled carbon nanotubes embedded conducting polymer based electrochemical aptasensor for estimation of malathion. Microchemical Journal, 147(February), 393–402. https://doi.org/10.1016/j.microc.2019.03.042
  • Kaur, N., Thakur, H., & Prabhakar, N. 2019b. Multi walled carbon nanotubes embedded conducting polymer based electrochemical aptasensor for estimation of malathion. Microchemical Journal, 147(October 2018), 393–402. https://doi.org/10.1016/j.microc.2019.03.042
  • Kim, M. J., Lee, H. S., Chung, D. H., & Lee, Y. T. 2003. Synthesis of haptens of organophosphorus pesticides and development of enzyme-linked immunosorbent assays for parathion-methyl. Analytica Chimica Acta, 493(1), 47–62. https://doi.org/10.1016/S0003-2670(03)00793-1
  • Li, W., Zhao, Y., Yan, X., Duan, J., Saint, C. P., & Beecham, S. 2019. Transformation pathway and toxicity assessment of malathion in aqueous solution during UV photolysis and photocatalysis. Chemosphere, 234, 204–214. https://doi.org/10.1016/j.chemosphere.2019.06.058
  • Lu, X., Tao, L., Li, Y., Huang, H., & Gao, F. 2019. A highly sensitive electrochemical platform based on the bimetallic Pd@Au nanowires network for organophosphorus pesticides detection. Sensors and Actuators, B: Chemical, 284, 103–109. https://doi.org/10.1016/j.snb.2018.12.125
  • Nascimento, M. M., da Rocha, G. O., & de Andrade, J. B. 2018. A rapid low-consuming solvent extraction procedure for simultaneous determination of 34 multiclass pesticides associated to respirable atmospheric particulate matter (PM2.5) by GC–MS. Microchemical Journal, 139, 424–436. https://doi.org/10.1016/j.microc.2018.03.023
  • Qian, G., Wang, L., Wu, Y., Zhang, Q., Sun, Q., Liu, Y., & Liu, F. (2009). A monoclonal antibody-based sensitive enzyme-linked immunosorbent assay (ELISA) for the analysis of the organophosphorous pesticides chlorpyrifos-methyl in real samples. Food Chemistry, 117(2), 364–370. https://doi.org/10.1016/j.foodchem.2009.03.097
  • Raghu, P., Reddy, T. M., Reddaiah, K., Swamy, B. E. K., & Sreedhar, M. 2014. Acetylcholinesterase based biosensor for monitoring of malathion and acephate in food samples: A voltammetric study. Food Chemistry, 142, 188–196. https://doi.org/10.1016/j.foodchem.2013.07.047
  • Rhouati, A., Majdinasab, M., & Hayat, A. (2018). A perspective on non-enzymatic electrochemical nanosensors for direct detection of pesticides. Current Opinion in Electrochemistry, 11, 12–18. https://doi.org/10.1016/j.coelec.2018.06.013
  • Sivalingam, T., Devasena, T., Dey, N., & Maheswari, U. 2019. Curcumin-Loaded Chitosan Sensing System for Electrochemical Detection of Bilirubin. Sensor Letters, 17(3), 228–236. https://doi.org/10.1166/sl.2019.4077
  • Venkatesan, R., Park, Y. U., Ji, E., Yeo, E. J., & Kim, S. Y. 2017. Malathion increases apoptotic cell death by inducing lysosomal membrane permeabilization in N2a neuroblastoma cells: A model for neurodegeneration in Alzheimer’s disease. Cell Death Discovery, 3(1), 17007. https://doi.org/10.1038/cddiscovery.2017.7
  • Xie, Y., Yu, Y., Lu, L., Ma, X., Gong, L., Huang, X., … Yu, Y. 2018. CuO nanoparticles decorated 3D graphene nanocomposite as non-enzymatic electrochemical sensing platform for malathion detection. Journal of Electroanalytical Chemistry, 812, 82–89. https://doi.org/10.1016/j.jelechem.2018.01.043
  • Xu, G., Hou, J., Zhao, Y., Bao, J., Yang, M., Fa, H., … Hou, C. 2019. Dual-signal aptamer sensor based on polydopamine-gold nanoparticles and exonuclease I for ultrasensitive malathion detection. Sensors and Actuators, B: Chemical, 287, 428–436. https://doi.org/10.1016/j.snb.2019.01.113
  • Xu, G., Huo, D., Hou, J., Zhang, C., Zhao, Y., Hou, C., … Yang, M. 2021. An electrochemical aptasensor of malathion based on ferrocene/DNA-hybridized MOF, DNA coupling-gold nanoparticles and competitive DNA strand reaction. Microchemical Journal, 162, 105829. https://doi.org/10.1016/j.microc.2020.105829
  • Yaman, Y. T., Bolat, G., Saygin, T. B., & Abaci, S. 2021. Molecularly imprinted label-free sensor platform for impedimetric detection of 3-monochloropropane-1,2˗diol. Sensors and Actuators, B: Chemical, 328, 128986. https://doi.org/10.1016/j.snb.2020.128986
  • Yaman, Y.T., Akbal, O., Bolat, G., & Abaci, S. 2023. Fabrication of trastuzumab conjugated curcumin nanoparticles based impedimetric cytosensor for the cancer cell detection. Microchemical Journal, 191, 108773. https://doi.org/10.1016/j.microc.2023.108773
  • Zhao, H., Ji, X., Wang, B., Wang, N., Li, X., Ni, R., Ren, J. 2015. An Ultra-Sensitive Acetylcholinesterase Biosensor Based on Reduced Graphene Oxide-Au Nanoparticles-β-Cyclodextrin/Prussian Blue Chitosan Nanocomposites for Organophosphorus Pesticides Detection. Biosensors and Bioelectronics. 65,23−30. https://doi.org/10.1016/j.bios.2014.10.007

Electrochemical Determination of Pesticide Malathion using Curcumin Nanostructure Based Sensor

Yıl 2025, Cilt: 25 Sayı: 5, 1062 - 1071, 01.10.2025
https://doi.org/10.35414/akufemubid.1548528

Öz

This study involves the development and application of a curcumin nanoparticle (Kur NP) modified pencil graphite electrode (PGE) for the direct electrochemical determination of malathion (MLT), a member of organophosphorus pesticide. Kur NP is a nanomaterial that has attracted the attention of researchers due to its prominent features such as large surface area, modifiable dimensions, selective targeting, good biocompatibility and high stability. Therefore, in this study, a simple, fast and sensitive method for the fabrication of Kur NP-KGE is proposed for the direct electro-detection of MLT. To determine properties of the modified electrode, morphological and electrochemical characterization was carried out. The electrocatalytic properties of the Cur NP modified electrode was recorded using cyclic voltammetry and some parameters were optimized. Under selected conditions, a wide linear concentration range was obtained from 0.001 to 0.6 µM and the detection limit was determined as 0.6 nM by using differential pulse voltammetry. The gathered results underlined the practical importance of our work and represented an alternative approach for the sensitive and direct electrochemical detection of MLT.

Proje Numarası

-

Kaynakça

  • Aghoutane, Y., Diouf, A., Österlund, L., Bouchikhi, B., & El Bari, N. 2020. Development of a molecularly imprinted polymer electrochemical sensor and its application for sensitive detection and determination of malathion in olive fruits and oils. Bioelectrochemistry, 132, 107404. https://doi.org/10.1016/j.bioelechem.2019.107404
  • Anjitha, R., Antony, A., Shilpa, O., Anupama, K. P., Mallikarjunaiah, S., & Gurushankara, H. P. 2020. Malathion induced cancer-linked gene expression in human lymphocytes. Environmental Research, 182, 109131. https://doi.org/10.1016/j.envres.2020.109131
  • Bolat, G., & Abaci, S. 2018. Non-enzymatic electrochemical sensing of malathion pesticide in tomato and apple samples based on gold nanoparticles-chitosan-ionic liquid hybrid nanocomposite. Sensors (Switzerland), 18(3), 773. https://doi.org/10.3390/s18030773
  • Chauhan, N., Narang, J., & Jain, U. 2016. Amperometric acetylcholinesterase biosensor for pesticides monitoring utilising iron oxide nanoparticles and poly(indole-5-carboxylic acid). Journal of Experimental Nanoscience, 11(2), 111–122. https://doi.org/10.1080/17458080.2015.1030712
  • Chen, H., Hu, O., Fan, Y., Xu, L., Zhang, L., Lan, W., … Fu, H. 2020. Fluorescence paper-based sensor for visual detection of carbamate pesticides in food based on CdTe quantum dot and nano ZnTPyP. Food Chemistry, 327, 127075. https://doi.org/10.1016/j.foodchem.2020.127075
  • Chen, Q., & Fung, Y. 2010. Capillary electrophoresis with immobilized quantum dot fluorescence detection for rapid determination of organophosphorus pesticides in vegetables. Electrophoresis, 31(18), 3107–3114. https://doi.org/10.1002/elps.201000260
  • Dinesh, B., & Saraswathi, R. 2017. Electrochemical synthesis of nanostructured copper-curcumin complex and its electrocatalytic application towards reduction of 4-nitrophenol. Sensors and Actuators B: Chemical, 253, 502–512. https://doi.org/10.1016/J.SNB.2017.06.149
  • Diuzheva, A., Dejmková, H., Fischer, J., & Andruch, V. 2019. Simultaneous determination of three carbamate pesticides using vortex-assisted liquid–liquid microextraction combined with HPLC-amperometric detection. Microchemical Journal, 150, 104071. https://doi.org/10.1016/j.microc.2019.104Y
  • Duan, S., Wu, X., Shu, Z., Xiao, A., Chai, B., & Pi, F. 2023. Curcumin-enhanced MOF electrochemical sensor for sensitive detection of methyl parathion in vegetables and fruits. Microchemical Journal, 184(PB), 108182. https://doi.org/10.1016/j.microc.2022.108182
  • Ebrahim, S., El-Raey, R., Hefnawy, A., Ibrahim, H., Soliman, M., & Abdel-Fattah, T. M. 2014. Electrochemical sensor based on polyaniline nanofibers/single wall carbon nanotubes composite for detection of malathion. Synthetic Metals, 190, 13–19. https://doi.org/10.1016/j.synthmet.2014.01.021
  • Giri, S., Prasad, S. B., Giri, A., & Sharma, G. D. 2002. Genotoxic effects of malathion: An organophosphorus insecticide, using three mammalian bioassays in vivo. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 514(1–2), 223–231. https://doi.org/10.1016/S1383-5718(01)00341-2
  • Guler, M., Turkoglu, V., & Kivrak, A. 2016. Electrochemical detection of malathion pesticide using acetylcholinesterase biosensor based on glassy carbon electrode modified with conducting polymer film. Environmental Science and Pollution Research, 23(12), 12343–12351. https://doi.org/10.1007/s11356-016-6385-y
  • Harshit, D., Charmy, K., & Nrupesh, P. 2017. Organophosphorus pesticides determination by novel HPLC and spectrophotometric method. Food Chemistry, 230, 448–453. https://doi.org/10.1016/j.foodchem.2017.03.083
  • He, L., Cui, B., Liu, J., Song, Y., Wang, M., Peng, D., & Zhang, Z. 2018. Novel electrochemical biosensor based on core-shell nanostructured composite of hollow carbon spheres and polyaniline for sensitively detecting malathion. Sensors and Actuators, B: Chemical, 258, 813–821. https://doi.org/10.1016/j.snb.2017.11.161
  • He, Y., Du, J., Luo, J., Chen, S., & Yuan, R. 2020. Coreactant-free electrochemiluminescence biosensor for the determination of organophosphorus pesticides. Biosensors and Bioelectronics, 150, 111898. https://doi.org/10.1016/j.bios.2019.111898
  • Iqbal, S., Iqbal, M. M., Javed, M., Bahadur, A., Yasien, S., Najam-ud-din, … Liu, G. 2020. Modified QuEChERS extraction method followed by simultaneous quantitation of nine multi-class pesticides in human blood and urine by using GC-MS. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 1152, 122227. https://doi.org/10.1016/j.jchromb.2020.122227
  • Ju, H., & Kandimalla, V. B. 2008. Chapter 2 - Biosensors for pesticides. Electrochemical Sensors, Biosensors and their Biomedical Applications. Editor(s): Xueji Zhang, Huangxian Ju, Joseph Wang. Elsevier , Academic Press, 31-56. https://doi.org/10.1016/B978-012373738-0.50004-0
  • Kamyabi, M. A., & Moharramnezhad, M. 2020. Nickel foam decorated with ZnO nanocrystals using mesoporous silica templates for ultrasensitive electrogenerated chemiluminescence determination of diazinon. Microchemical Journal, 154, 104540. https://doi.org/10.1016/j.microc.2019.104540
  • Kaur, N., Thakur, H., & Prabhakar, N. 2019a. Multi walled carbon nanotubes embedded conducting polymer based electrochemical aptasensor for estimation of malathion. Microchemical Journal, 147(February), 393–402. https://doi.org/10.1016/j.microc.2019.03.042
  • Kaur, N., Thakur, H., & Prabhakar, N. 2019b. Multi walled carbon nanotubes embedded conducting polymer based electrochemical aptasensor for estimation of malathion. Microchemical Journal, 147(October 2018), 393–402. https://doi.org/10.1016/j.microc.2019.03.042
  • Kim, M. J., Lee, H. S., Chung, D. H., & Lee, Y. T. 2003. Synthesis of haptens of organophosphorus pesticides and development of enzyme-linked immunosorbent assays for parathion-methyl. Analytica Chimica Acta, 493(1), 47–62. https://doi.org/10.1016/S0003-2670(03)00793-1
  • Li, W., Zhao, Y., Yan, X., Duan, J., Saint, C. P., & Beecham, S. 2019. Transformation pathway and toxicity assessment of malathion in aqueous solution during UV photolysis and photocatalysis. Chemosphere, 234, 204–214. https://doi.org/10.1016/j.chemosphere.2019.06.058
  • Lu, X., Tao, L., Li, Y., Huang, H., & Gao, F. 2019. A highly sensitive electrochemical platform based on the bimetallic Pd@Au nanowires network for organophosphorus pesticides detection. Sensors and Actuators, B: Chemical, 284, 103–109. https://doi.org/10.1016/j.snb.2018.12.125
  • Nascimento, M. M., da Rocha, G. O., & de Andrade, J. B. 2018. A rapid low-consuming solvent extraction procedure for simultaneous determination of 34 multiclass pesticides associated to respirable atmospheric particulate matter (PM2.5) by GC–MS. Microchemical Journal, 139, 424–436. https://doi.org/10.1016/j.microc.2018.03.023
  • Qian, G., Wang, L., Wu, Y., Zhang, Q., Sun, Q., Liu, Y., & Liu, F. (2009). A monoclonal antibody-based sensitive enzyme-linked immunosorbent assay (ELISA) for the analysis of the organophosphorous pesticides chlorpyrifos-methyl in real samples. Food Chemistry, 117(2), 364–370. https://doi.org/10.1016/j.foodchem.2009.03.097
  • Raghu, P., Reddy, T. M., Reddaiah, K., Swamy, B. E. K., & Sreedhar, M. 2014. Acetylcholinesterase based biosensor for monitoring of malathion and acephate in food samples: A voltammetric study. Food Chemistry, 142, 188–196. https://doi.org/10.1016/j.foodchem.2013.07.047
  • Rhouati, A., Majdinasab, M., & Hayat, A. (2018). A perspective on non-enzymatic electrochemical nanosensors for direct detection of pesticides. Current Opinion in Electrochemistry, 11, 12–18. https://doi.org/10.1016/j.coelec.2018.06.013
  • Sivalingam, T., Devasena, T., Dey, N., & Maheswari, U. 2019. Curcumin-Loaded Chitosan Sensing System for Electrochemical Detection of Bilirubin. Sensor Letters, 17(3), 228–236. https://doi.org/10.1166/sl.2019.4077
  • Venkatesan, R., Park, Y. U., Ji, E., Yeo, E. J., & Kim, S. Y. 2017. Malathion increases apoptotic cell death by inducing lysosomal membrane permeabilization in N2a neuroblastoma cells: A model for neurodegeneration in Alzheimer’s disease. Cell Death Discovery, 3(1), 17007. https://doi.org/10.1038/cddiscovery.2017.7
  • Xie, Y., Yu, Y., Lu, L., Ma, X., Gong, L., Huang, X., … Yu, Y. 2018. CuO nanoparticles decorated 3D graphene nanocomposite as non-enzymatic electrochemical sensing platform for malathion detection. Journal of Electroanalytical Chemistry, 812, 82–89. https://doi.org/10.1016/j.jelechem.2018.01.043
  • Xu, G., Hou, J., Zhao, Y., Bao, J., Yang, M., Fa, H., … Hou, C. 2019. Dual-signal aptamer sensor based on polydopamine-gold nanoparticles and exonuclease I for ultrasensitive malathion detection. Sensors and Actuators, B: Chemical, 287, 428–436. https://doi.org/10.1016/j.snb.2019.01.113
  • Xu, G., Huo, D., Hou, J., Zhang, C., Zhao, Y., Hou, C., … Yang, M. 2021. An electrochemical aptasensor of malathion based on ferrocene/DNA-hybridized MOF, DNA coupling-gold nanoparticles and competitive DNA strand reaction. Microchemical Journal, 162, 105829. https://doi.org/10.1016/j.microc.2020.105829
  • Yaman, Y. T., Bolat, G., Saygin, T. B., & Abaci, S. 2021. Molecularly imprinted label-free sensor platform for impedimetric detection of 3-monochloropropane-1,2˗diol. Sensors and Actuators, B: Chemical, 328, 128986. https://doi.org/10.1016/j.snb.2020.128986
  • Yaman, Y.T., Akbal, O., Bolat, G., & Abaci, S. 2023. Fabrication of trastuzumab conjugated curcumin nanoparticles based impedimetric cytosensor for the cancer cell detection. Microchemical Journal, 191, 108773. https://doi.org/10.1016/j.microc.2023.108773
  • Zhao, H., Ji, X., Wang, B., Wang, N., Li, X., Ni, R., Ren, J. 2015. An Ultra-Sensitive Acetylcholinesterase Biosensor Based on Reduced Graphene Oxide-Au Nanoparticles-β-Cyclodextrin/Prussian Blue Chitosan Nanocomposites for Organophosphorus Pesticides Detection. Biosensors and Bioelectronics. 65,23−30. https://doi.org/10.1016/j.bios.2014.10.007
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Elektrokimya
Bölüm Makaleler
Yazarlar

Yeşim Tuğçe Yaman 0000-0001-9693-6302

Serdar Abacı 0000-0003-2302-0779

Proje Numarası -
Erken Görünüm Tarihi 18 Eylül 2025
Yayımlanma Tarihi 1 Ekim 2025
Gönderilme Tarihi 11 Eylül 2024
Kabul Tarihi 7 Nisan 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 25 Sayı: 5

Kaynak Göster

APA Yaman, Y. T., & Abacı, S. (2025). Kurkumin Nanoyapı Temelli Sensör Kullanılarak Pestisit Malation’un Elektrokimyasal Tayini. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 25(5), 1062-1071. https://doi.org/10.35414/akufemubid.1548528
AMA Yaman YT, Abacı S. Kurkumin Nanoyapı Temelli Sensör Kullanılarak Pestisit Malation’un Elektrokimyasal Tayini. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. Ekim 2025;25(5):1062-1071. doi:10.35414/akufemubid.1548528
Chicago Yaman, Yeşim Tuğçe, ve Serdar Abacı. “Kurkumin Nanoyapı Temelli Sensör Kullanılarak Pestisit Malation’un Elektrokimyasal Tayini”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25, sy. 5 (Ekim 2025): 1062-71. https://doi.org/10.35414/akufemubid.1548528.
EndNote Yaman YT, Abacı S (01 Ekim 2025) Kurkumin Nanoyapı Temelli Sensör Kullanılarak Pestisit Malation’un Elektrokimyasal Tayini. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25 5 1062–1071.
IEEE Y. T. Yaman ve S. Abacı, “Kurkumin Nanoyapı Temelli Sensör Kullanılarak Pestisit Malation’un Elektrokimyasal Tayini”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 25, sy. 5, ss. 1062–1071, 2025, doi: 10.35414/akufemubid.1548528.
ISNAD Yaman, Yeşim Tuğçe - Abacı, Serdar. “Kurkumin Nanoyapı Temelli Sensör Kullanılarak Pestisit Malation’un Elektrokimyasal Tayini”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25/5 (Ekim2025), 1062-1071. https://doi.org/10.35414/akufemubid.1548528.
JAMA Yaman YT, Abacı S. Kurkumin Nanoyapı Temelli Sensör Kullanılarak Pestisit Malation’un Elektrokimyasal Tayini. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2025;25:1062–1071.
MLA Yaman, Yeşim Tuğçe ve Serdar Abacı. “Kurkumin Nanoyapı Temelli Sensör Kullanılarak Pestisit Malation’un Elektrokimyasal Tayini”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 25, sy. 5, 2025, ss. 1062-71, doi:10.35414/akufemubid.1548528.
Vancouver Yaman YT, Abacı S. Kurkumin Nanoyapı Temelli Sensör Kullanılarak Pestisit Malation’un Elektrokimyasal Tayini. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2025;25(5):1062-71.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.