Araştırma Makalesi
BibTex RIS Kaynak Göster

Nitrik Asitle Modifiye Edilmiş Serpentin Kullanılarak Sulu Çözeltilerden Metil Oranj Boyanın Adsorpsiyonu

Yıl 2025, Cilt: 25 Sayı: 5, 1072 - 1080, 01.10.2025
https://doi.org/10.35414/akufemubid.1657989

Öz

Bu çalışmada, nitrik asit (HNO₃) ile modifiye edilmiş serpentin (MS) mineralinin atıksulardan metil oranj (MO) giderimindeki adsorpsiyon performansı değerlendirilmiştir. Adsorpsiyon sürecine etki eden çeşitli parametreler, özellikle temas süresi ve başlangıç MO konsantrasyonu, incelenerek adsorpsiyon verimliliği üzerindeki etkileri araştırılmıştır. Yapılan deneyler sonucunda, MO giderimi için optimum koşullar başlangıç MO konsantrasyonu 300 mg/L ve temas süresi 60 dakika olarak belirlenmiştir. MS’nin adsorpsiyon öncesi ve sonrası yüzey morfolojisi ile kimyasal bileşimindeki değişiklikler, taramalı elektron mikroskobu (SEM), enerji dağılım spektroskopisi (EDS) ve Fourier dönüşümlü kızılötesi spektroskopisi (FTIR) teknikleri kullanılarak analiz edilmiştir. Elde edilen bulgular, MO adsorpsiyonunun Langmuir izoterm modeli ile uyumlu olduğunu ve adsorpsiyon sürecinde hem kimyasal sorpsiyon hem de tersinmezlik etkilerinin önemli bir rol oynadığını ortaya koymuştur. MO için maksimum adsorpsiyon kapasitesi 25, 35 ve 45 °C sıcaklıklarında sırasıyla 36.90, 39.22 ve 40.98 mg/g olarak hesaplanmıştır. Ayrıca, adsorpsiyon kinetiği analizleri, MO gideriminin yalancı ikinci dereceden (PSO) kinetik modeli ile iyi bir uyum gösterdiğini ortaya koymuştur. Elde edilen sonuçlar, MS'nin yüksek adsorpsiyon kapasitesi, kolay temin edilebilirliği ve maliyet etkinliği sayesinde sulu ortamlardan MO boyar maddesinin uzaklaştırılmasında etkili ve uygulanabilir bir adsorban olduğunu göstermektedir.

Kaynakça

  • Altunkayna, Y., & Canpolat, M., 2022. Ham Portakal Kabuğu ile ulu Çözeltilerden Mangan (II) İyonlarının Uzaklaştırılması: Denge, Kinetik ve Termodinamik Çalışmalar. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 22(1), 45-56. https://doi.org/10.35414/akufemubid.1032148
  • Altunkaynak, Y., Canpolat, M., & Aslan, M., 2023. Adsorption of lead (II) ions on kaolinite from aqueous solutions: isothermal, kinetic, and thermodynamic studies. Ionics, 29(10), 4311-4323. https://doi.org/10.1007/s11581-023-05157-x
  • Awomeso, J. A., Taiwo, A. M., Gbadebo, A. M., & Adenowo, J. A., 2010. Studies on the pollution of water body by textile industry effluents in Lagos, Nigeria. Journal of applied sciences in environmental sanitation, 5(4), 353-359.
  • Canpolat, M., 2023. Removing Co (II) and Mn (II) ions effectively from aqueous solutions by means of chemically non‐processed Mardin stone waste: Equivalent, kinetic, and thermodynamic investigations. Environmental Progress & Sustainable Energy, 42(3), e14042. https://doi.org/10.1002/ep.14042
  • Canpolat, M., & Altunkaynak, Y., 2024. Use of low-cost processed orange peel for effective removal of cobalt (II) and manganese (II) from aqueous solutions. Ionics, 30(1), 591-605. https://doi.org/10.1007/s11581-023-05291-6
  • Ekinci, S., 2023. Elimination of Methylene Blue from Aqueous Medium Using an Agricultural Waste Product of Crude Corn Silk (Stylus maydis) and Corn Silk Treated with Sulphuric Acid. ChemistrySelect, 8(18), e202300284. https://doi.org/10.1002/slct.202300284
  • Farmer, V. C., 2000. Transverse and longitudinal crystal modes associated with OH stretching vibrations in single crystals of kaolinite and dickite. spectrochimica acta part A: molecular and biomolecular spectroscopy, 56(5), 927-930. https://doi.org/10.1016/S1386-1425(99)00182-1
  • Gomez, V., Larrechi, M. S., & Callao, M. P. (2007). Kinetic and adsorption study of acid dye removal using activated carbon. Chemosphere, 69(7), 1151-1158. https://doi.org/10.1016/j.chemosphere.2007.03.076
  • Hosny, N. M., Rady, S., & Dossoki, F. I. E., 2022. Adsorption of methylene blue onto synthesized Co 3 O 4, NiO, CuO and ZnO nanoparticles. Journal of the Iranian Chemical Society, 19, 1877-1887. https://doi.org/10.1007/s13738-021-02424-4
  • Iwuozor, K. O., Ighalo, J. O., Emenike, E. C., Ogunfowora, L. A., & Igwegbe, C. A., 2021. Adsorption of methyl orange: A review on adsorbent performance. Current Research in Green and Sustainable Chemistry, 4, 100179. https://doi.org/10.1016/j.crgsc.2021.100179
  • Kılınç, İ., Budakçı, M., & Korkmaz, M., 2022. Ahşap Yüzeylerde Boya/Vernikleri Temizlemek İçin Kullanılan Çevreci Yöntem ve Medyalar. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 10(4), 2079-2092. https://doi.org/10.29130/dubited.1038859
  • Kılınç, İ., Budakçı, M., & Korkmaz, M., 2023. The Use of Environmentally Friendly Abrasive Blasting Media for Paint Removal from Wood Surfaces. BioResources, 18(1). https://doi.org/10.15376/biores.18.1.1185-1205
  • Kumar, K. V., & Sivanesan, S., 2006. Isotherm parameters for basic dyes onto activated carbon: Comparison of linear and non-linear method. Journal of hazardous materials, 129(1-3), 147-150. https://doi.org/10.1016/j.jhazmat.2005.08.022Get rights and content
  • Kundu, S., Chowdhury, I. H., & Naskar, M. K., 2017. Synthesis of hexagonal shaped nanoporous carbon for efficient adsorption of methyl orange dye. Journal of Molecular Liquids, 234, 417-423. https://doi.org/10.1016/j.molliq.2017.03.090
  • Madejová, J. J. V. S., 2003. FTIR techniques in clay mineral studies. Vibrational spectroscopy, 31(1), 1-10. https://doi.org/10.1016/S0924-2031(02)00065-6
  • Mo, J. H., Lee, Y. H., Kim, J., Jeong, J. Y., & Jegal, J., 2008. Treatment of dye aqueous solutions using nanofiltration polyamide composite membranes for the dye wastewater reuse. Dyes and Pigments, 76(2), 429-434. https://doi.org/10.1016/j.dyepig.2006.09.007
  • Ogemdi, I. K., & Gold, E. E., 2018. Physico-chemical parameters of industrial effluents from a brewery industry in Imo state, Nigeria. Advanced Journal of Chemistry1 (2 Section A), 1(2), 66-78.
  • Pandey, S., & Ramontja, J., 2016. Natural bentonite clay and its composites for dye removal: current state and future potential. American Journal of Chemistry and Applications, 3(2), 8-19.
  • Radoor, S., Karayil, J., Jayakumar, A., Parameswaranpillai, J., & Siengchin, S., 2021. Efficient removal of methyl orange from aqueous solution using mesoporous ZSM-5 zeolite: Synthesis, kinetics and isotherm studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 611, 125852. https://doi.org/10.1016/j.colsurfa.2020.125852
  • Sayğılı, H., Güzel, F., & Önal, Y., 2015. Conversion of grape industrial processing waste to activated carbon sorbent and its performance in cationic and anionic dyes adsorption. Journal of Cleaner Production, 93, 84-93. https://doi.org/10.1016/j.jclepro.2015.01.009
  • Tural, B., Ertaş, E., & Tural, S., 2016. Removal of phenolic pollutants from aqueous solutions by a simple magnetic separation. Desalination and water treatment, 57(54), 26153-26164. https://doi.org/10.1080/19443994.2016.1162202
  • Tural, B., Ertaş, E., Enez, B., Fincan, S. A., & Tural, S., 2017. Preparation and characterization of a novel magnetic biosorbent functionalized with biomass of Bacillus Subtilis: Kinetic and isotherm studies of biosorption processes in the removal of Methylene Blue. Journal of Environmental Chemical Engineering, 5(5), 4795-4802. https://doi.org/10.1016/j.jece.2017.09.019
  • Xing, X., Chang, P. H., Lv, G., Jiang, W. T., Jean, J. S., Liao, L., & Li, Z., 2016. Ionic-liquid-crafted zeolite for the removal of anionic dye methyl orange. Journal of the Taiwan Institute of Chemical Engineers, 59, 237-243. https://doi.org/10.1016/j.jtice.2015.07.026
  • Xiao, Y., & Hill, J. M., 2017. Impact of pore size on fenton oxidation of methyl orange adsorbed on magnetic carbon materials: trade-off between capacity and regenerability. Environmental science & technology, 51(8), 4567-4575.
  • Yu, J., Zhang, X., Wang, D., & Li, P., 2018. Adsorption of methyl orange dye onto biochar adsorbent prepared from chicken manure. Water Science and Technology, 77(5), 1303-1312. https://doi.org/10.2166/wst.2018.003
  • Zayed, A. M., Wahed, M. S. A., Mohamed, E. A., & Sillanpää, M., 2018. Insights on the role of organic matters of some Egyptian clays in methyl orange adsorption: Isotherm and kinetic studies. Applied Clay Science, 166, 49-60. https://doi.org/10.1016/j.clay.2018.09.013

Adsorption of Methyl Orange Dye from Aqueous Solutions Using Nitric Acid-Modified Serpentine

Yıl 2025, Cilt: 25 Sayı: 5, 1072 - 1080, 01.10.2025
https://doi.org/10.35414/akufemubid.1657989

Öz

In this study, the adsorption performance of nitric acid (HNO₃)-modified serpentine (MS) mineral in the removal of methyl oranıj (MO) from wastewater was evaluated. Various parameters affecting the adsorption process, especially contact time and initial MO concentration, were investigated and their effects on adsorption efficiency were investigated. As a result of the experiments, the optimum conditions for MO removal were determined as initial MO concentration of 300 mg/L and contact time of 60 minutes. Changes in the surface morphology and chemical composition of MS before and after adsorption were analysed using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and Fourier transform infrared spectroscopy (FTIR) techniques. The results obtained revealed that MO adsorption was in accordance with the Langmuir isotherm model and both chemical sorption and irreversibility effects played an important role in the adsorption process. The maximum adsorption capacity for MO was calculated as 36.90, 39.22 and 40.98 mg/g at 25, 35 and 45 °C, respectively. Furthermore, adsorption kinetics analyses revealed that the MO removal was in good agreement with the pseudo-second order (PSO) kinetic model. The results obtained show that MS is an effective and applicable adsorbent for the removal of MO dyestuff from aqueous media due to its high adsorption capacity, easy availability and cost effectiveness.

Kaynakça

  • Altunkayna, Y., & Canpolat, M., 2022. Ham Portakal Kabuğu ile ulu Çözeltilerden Mangan (II) İyonlarının Uzaklaştırılması: Denge, Kinetik ve Termodinamik Çalışmalar. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 22(1), 45-56. https://doi.org/10.35414/akufemubid.1032148
  • Altunkaynak, Y., Canpolat, M., & Aslan, M., 2023. Adsorption of lead (II) ions on kaolinite from aqueous solutions: isothermal, kinetic, and thermodynamic studies. Ionics, 29(10), 4311-4323. https://doi.org/10.1007/s11581-023-05157-x
  • Awomeso, J. A., Taiwo, A. M., Gbadebo, A. M., & Adenowo, J. A., 2010. Studies on the pollution of water body by textile industry effluents in Lagos, Nigeria. Journal of applied sciences in environmental sanitation, 5(4), 353-359.
  • Canpolat, M., 2023. Removing Co (II) and Mn (II) ions effectively from aqueous solutions by means of chemically non‐processed Mardin stone waste: Equivalent, kinetic, and thermodynamic investigations. Environmental Progress & Sustainable Energy, 42(3), e14042. https://doi.org/10.1002/ep.14042
  • Canpolat, M., & Altunkaynak, Y., 2024. Use of low-cost processed orange peel for effective removal of cobalt (II) and manganese (II) from aqueous solutions. Ionics, 30(1), 591-605. https://doi.org/10.1007/s11581-023-05291-6
  • Ekinci, S., 2023. Elimination of Methylene Blue from Aqueous Medium Using an Agricultural Waste Product of Crude Corn Silk (Stylus maydis) and Corn Silk Treated with Sulphuric Acid. ChemistrySelect, 8(18), e202300284. https://doi.org/10.1002/slct.202300284
  • Farmer, V. C., 2000. Transverse and longitudinal crystal modes associated with OH stretching vibrations in single crystals of kaolinite and dickite. spectrochimica acta part A: molecular and biomolecular spectroscopy, 56(5), 927-930. https://doi.org/10.1016/S1386-1425(99)00182-1
  • Gomez, V., Larrechi, M. S., & Callao, M. P. (2007). Kinetic and adsorption study of acid dye removal using activated carbon. Chemosphere, 69(7), 1151-1158. https://doi.org/10.1016/j.chemosphere.2007.03.076
  • Hosny, N. M., Rady, S., & Dossoki, F. I. E., 2022. Adsorption of methylene blue onto synthesized Co 3 O 4, NiO, CuO and ZnO nanoparticles. Journal of the Iranian Chemical Society, 19, 1877-1887. https://doi.org/10.1007/s13738-021-02424-4
  • Iwuozor, K. O., Ighalo, J. O., Emenike, E. C., Ogunfowora, L. A., & Igwegbe, C. A., 2021. Adsorption of methyl orange: A review on adsorbent performance. Current Research in Green and Sustainable Chemistry, 4, 100179. https://doi.org/10.1016/j.crgsc.2021.100179
  • Kılınç, İ., Budakçı, M., & Korkmaz, M., 2022. Ahşap Yüzeylerde Boya/Vernikleri Temizlemek İçin Kullanılan Çevreci Yöntem ve Medyalar. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 10(4), 2079-2092. https://doi.org/10.29130/dubited.1038859
  • Kılınç, İ., Budakçı, M., & Korkmaz, M., 2023. The Use of Environmentally Friendly Abrasive Blasting Media for Paint Removal from Wood Surfaces. BioResources, 18(1). https://doi.org/10.15376/biores.18.1.1185-1205
  • Kumar, K. V., & Sivanesan, S., 2006. Isotherm parameters for basic dyes onto activated carbon: Comparison of linear and non-linear method. Journal of hazardous materials, 129(1-3), 147-150. https://doi.org/10.1016/j.jhazmat.2005.08.022Get rights and content
  • Kundu, S., Chowdhury, I. H., & Naskar, M. K., 2017. Synthesis of hexagonal shaped nanoporous carbon for efficient adsorption of methyl orange dye. Journal of Molecular Liquids, 234, 417-423. https://doi.org/10.1016/j.molliq.2017.03.090
  • Madejová, J. J. V. S., 2003. FTIR techniques in clay mineral studies. Vibrational spectroscopy, 31(1), 1-10. https://doi.org/10.1016/S0924-2031(02)00065-6
  • Mo, J. H., Lee, Y. H., Kim, J., Jeong, J. Y., & Jegal, J., 2008. Treatment of dye aqueous solutions using nanofiltration polyamide composite membranes for the dye wastewater reuse. Dyes and Pigments, 76(2), 429-434. https://doi.org/10.1016/j.dyepig.2006.09.007
  • Ogemdi, I. K., & Gold, E. E., 2018. Physico-chemical parameters of industrial effluents from a brewery industry in Imo state, Nigeria. Advanced Journal of Chemistry1 (2 Section A), 1(2), 66-78.
  • Pandey, S., & Ramontja, J., 2016. Natural bentonite clay and its composites for dye removal: current state and future potential. American Journal of Chemistry and Applications, 3(2), 8-19.
  • Radoor, S., Karayil, J., Jayakumar, A., Parameswaranpillai, J., & Siengchin, S., 2021. Efficient removal of methyl orange from aqueous solution using mesoporous ZSM-5 zeolite: Synthesis, kinetics and isotherm studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 611, 125852. https://doi.org/10.1016/j.colsurfa.2020.125852
  • Sayğılı, H., Güzel, F., & Önal, Y., 2015. Conversion of grape industrial processing waste to activated carbon sorbent and its performance in cationic and anionic dyes adsorption. Journal of Cleaner Production, 93, 84-93. https://doi.org/10.1016/j.jclepro.2015.01.009
  • Tural, B., Ertaş, E., & Tural, S., 2016. Removal of phenolic pollutants from aqueous solutions by a simple magnetic separation. Desalination and water treatment, 57(54), 26153-26164. https://doi.org/10.1080/19443994.2016.1162202
  • Tural, B., Ertaş, E., Enez, B., Fincan, S. A., & Tural, S., 2017. Preparation and characterization of a novel magnetic biosorbent functionalized with biomass of Bacillus Subtilis: Kinetic and isotherm studies of biosorption processes in the removal of Methylene Blue. Journal of Environmental Chemical Engineering, 5(5), 4795-4802. https://doi.org/10.1016/j.jece.2017.09.019
  • Xing, X., Chang, P. H., Lv, G., Jiang, W. T., Jean, J. S., Liao, L., & Li, Z., 2016. Ionic-liquid-crafted zeolite for the removal of anionic dye methyl orange. Journal of the Taiwan Institute of Chemical Engineers, 59, 237-243. https://doi.org/10.1016/j.jtice.2015.07.026
  • Xiao, Y., & Hill, J. M., 2017. Impact of pore size on fenton oxidation of methyl orange adsorbed on magnetic carbon materials: trade-off between capacity and regenerability. Environmental science & technology, 51(8), 4567-4575.
  • Yu, J., Zhang, X., Wang, D., & Li, P., 2018. Adsorption of methyl orange dye onto biochar adsorbent prepared from chicken manure. Water Science and Technology, 77(5), 1303-1312. https://doi.org/10.2166/wst.2018.003
  • Zayed, A. M., Wahed, M. S. A., Mohamed, E. A., & Sillanpää, M., 2018. Insights on the role of organic matters of some Egyptian clays in methyl orange adsorption: Isotherm and kinetic studies. Applied Clay Science, 166, 49-60. https://doi.org/10.1016/j.clay.2018.09.013
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Fiziksel Kimya (Diğer)
Bölüm Makaleler
Yazarlar

Yalçın Altunkaynak 0000-0003-2562-9297

Mutlu Canpolat 0000-0002-3771-6737

Erken Görünüm Tarihi 18 Eylül 2025
Yayımlanma Tarihi 1 Ekim 2025
Gönderilme Tarihi 14 Mart 2025
Kabul Tarihi 18 Nisan 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 25 Sayı: 5

Kaynak Göster

APA Altunkaynak, Y., & Canpolat, M. (2025). Nitrik Asitle Modifiye Edilmiş Serpentin Kullanılarak Sulu Çözeltilerden Metil Oranj Boyanın Adsorpsiyonu. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 25(5), 1072-1080. https://doi.org/10.35414/akufemubid.1657989
AMA Altunkaynak Y, Canpolat M. Nitrik Asitle Modifiye Edilmiş Serpentin Kullanılarak Sulu Çözeltilerden Metil Oranj Boyanın Adsorpsiyonu. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. Ekim 2025;25(5):1072-1080. doi:10.35414/akufemubid.1657989
Chicago Altunkaynak, Yalçın, ve Mutlu Canpolat. “Nitrik Asitle Modifiye Edilmiş Serpentin Kullanılarak Sulu Çözeltilerden Metil Oranj Boyanın Adsorpsiyonu”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25, sy. 5 (Ekim 2025): 1072-80. https://doi.org/10.35414/akufemubid.1657989.
EndNote Altunkaynak Y, Canpolat M (01 Ekim 2025) Nitrik Asitle Modifiye Edilmiş Serpentin Kullanılarak Sulu Çözeltilerden Metil Oranj Boyanın Adsorpsiyonu. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25 5 1072–1080.
IEEE Y. Altunkaynak ve M. Canpolat, “Nitrik Asitle Modifiye Edilmiş Serpentin Kullanılarak Sulu Çözeltilerden Metil Oranj Boyanın Adsorpsiyonu”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 25, sy. 5, ss. 1072–1080, 2025, doi: 10.35414/akufemubid.1657989.
ISNAD Altunkaynak, Yalçın - Canpolat, Mutlu. “Nitrik Asitle Modifiye Edilmiş Serpentin Kullanılarak Sulu Çözeltilerden Metil Oranj Boyanın Adsorpsiyonu”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25/5 (Ekim2025), 1072-1080. https://doi.org/10.35414/akufemubid.1657989.
JAMA Altunkaynak Y, Canpolat M. Nitrik Asitle Modifiye Edilmiş Serpentin Kullanılarak Sulu Çözeltilerden Metil Oranj Boyanın Adsorpsiyonu. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2025;25:1072–1080.
MLA Altunkaynak, Yalçın ve Mutlu Canpolat. “Nitrik Asitle Modifiye Edilmiş Serpentin Kullanılarak Sulu Çözeltilerden Metil Oranj Boyanın Adsorpsiyonu”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 25, sy. 5, 2025, ss. 1072-80, doi:10.35414/akufemubid.1657989.
Vancouver Altunkaynak Y, Canpolat M. Nitrik Asitle Modifiye Edilmiş Serpentin Kullanılarak Sulu Çözeltilerden Metil Oranj Boyanın Adsorpsiyonu. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2025;25(5):1072-80.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.