Araştırma Makalesi
BibTex RIS Kaynak Göster

Akciğer Görüntülerinden Tümörlü Verilerin Derin Sinir Ağları ve Evrişimsel Sinir Ağları ile Tahmini

Yıl 2024, , 23 - 36, 15.06.2024
https://doi.org/10.53448/akuumubd.1431051

Öz

Akciğer tümörleri günümüzde sıklıkla görülür ve yaygın bir şekilde insanlarda ölümlere neden olan tehlikeli bir hastalıktır. Ancak çoğu zaman uzmanlar tarafından yapılan manuel tetkikler yanlış teşhise sebep verebilir. Bunun yerine bilgisayar destekli otomatik, doğru ve ayrıntılı yapılan erken kanser teşhisine ihtiyaç bulunmaktadır. Bu sebeple bu çalışmada akciğer hastalıkları ile yapılan çalışmalar ayrıntılı bir şekilde incelenmiştir. Çalışmanın ilk aşamasında 1190 akciğer tomografi görüntüsü önerilen derin öğrenme modelleri için hazırlanmıştır. İkinci aşamasında ise derin öğrenme modellerinden Evrişimsel Sinir Ağı (Convolutional Neural Network – CNN) ve Derin Sinir Ağları ( Deep Neural Network – DNN) kullanılarak akciğer tümörleri ile normal akciğer görüntülerinin tespiti gerçekleştirilmiştir. Kullanılan her modelin doğruluğu duyarlılık, kesinlik ve F1-Skor gibi farklı değerlendirme metrikleri ile hesaplanmış ve sonuçlar karşılaştırılmıştır. Ayrıca her model için performans analizleri yapılmış ve eğitim, test ve valid görüntüleri için karmaşıklık matrisleri ile ROC analizleri sunulmuştur.

Kaynakça

  • Al-Huseiny, M. S., & Sajit, A. S. (2021). Transfer learning with GoogLeNet for detection of lung cancer. Indonesian Journal of Electrical Engineering and Computer Science, 22(2), 1078-1086.
  • Ayayna, F. (2023). Akciğer kanserinin derin öğrenme yaklaşımları kullanılarak tespit edilmesi (Master's thesis, Batman Üniversitesi Lisansüstü Eğitim Enstitüsü).
  • Al-Huseiny, M. S., & Sajit, A. S. (2021). Transfer learning with GoogLeNet for detection of lung cancer. Indonesian Journal of Electrical Engineering and Computer Science, 22(2), 1078-1086.
  • Al Mamlook, R. E., Chen, S., & Bzizi, H. F. (2020, July). Investigation of the performance of machine learning classifiers for pneumonia detection in chest X-ray images. In 2020 IEEE International Conference on Electro Information Technology (EIT) (pp. 098-104). IEEE.
  • Ayayna, F. (2023). Akciğer kanserinin derin öğrenme yaklaşımları kullanılarak tespit edilmesi (Master's thesis, Batman Üniversitesi Lisansüstü Eğitim Enstitüsü).
  • Ibrahim, D. M., Elshennawy, N. M., & Sarhan, A. M. (2021). Deep-chest: Multi-classification deep learning model for diagnosing COVID-19, pneumonia, and lung cancer chest diseases. Computers in biology and medicine, 132, 104348.
  • Jaiswal, A. K., Tiwari, P., Kumar, S., Gupta, D., Khanna, A., & Rodrigues, J. J. (2019). Identifying pneumonia in chest X-rays: A deep learning approach. Measurement, 145, 511-518.
  • Kareem, H. F., AL-Husieny, M. S., Mohsen, F. Y., Khalil, E. A., & Hassan, Z. S. (2021). Evaluation of SVM performance in the detection of lung cancer in marked CT scan dataset. Indonesian Journal of Electrical Engineering and Computer Science, 21(3), 1731.
  • Masood, A., Sheng, B., Li, P., Hou, X., Wei, X., Qin, J., & Feng, D. (2018). Computer-Assisted Decision Support System in Pulmonary Cancer detection and stage classification on CT images. Journal of Biomedical Informatics, 79(June 2017), 117–128.
  • Mothkur, R., & Veerappa, B. N. (2023). Classification Of Lung Cancer Using Lightweight Deep Neural Networks. Procedia Computer Science, 218, 1869-1877.
  • Prasad, U., Chakravarty, S., & Mahto, G. (2023). Lung cancer detection and classification using deep neural network based on hybrid metaheuristic algorithm. Soft Computing, 1-24.
  • Provath, M. A. M., Deb, K., Dhar, P. K., & Shimamura, T. (2023). Classification of Lung and Colon Cancer Histopathological Images Using Global Context Attention Based Convolutional Neural Network. IEEE Access.
  • Raza, R., Zulfiqar, F., Khan, M. O., Arif, M., Alvi, A., Iftikhar, M. A., & Alam, T. (2023). Lung-EffNet: Lung cancer classification using EfficientNet from CT-scan images. Engineering Applications of Artificial Intelligence, 126, 106902.
  • Sabzalian, M. H., Kharajinezhadian, F., Tajally, A., Reihanisaransari, R., Alkhazaleh, H. A., & Bokov, D. (2023). New bidirectional recurrent neural network optimized by improved Ebola search optimization algorithm for lung cancer diagnosis. Biomedical Signal Processing and Control, 84, 104965.
  • Sirazitdinov, I., Kholiavchenko, M., Mustafaev, T., Yixuan, Y., Kuleev, R., & Ibragimov, B. (2019). Deep neural network ensemble for pneumonia localization from a large-scale chest x-ray database. Computers & electrical engineering, 78, 388-399.
  • Solyman, S., & Schwenker, F. (2022, October). Lung Tumor Detection and Recognition Using Deep Convolutional Neural Networks. In Pan African Conference on Artificial Intelligence (pp. 79-91). Cham: Springer Nature Switzerland.
  • Thakur, S. K., Singh, D. P., & Choudhary, J. (2020). Lung cancer identification: a review on detection and classification. Cancer and Metastasis Reviews, 39, 989-998. www.kaggle.com/datasets/adityamahimkar/iqothnccd-lung-cancer-dataset
  • Zhou, T., Lu, H., Yang, Z., Qiu, S., Huo, B., & Dong, Y. (2021). The ensemble deep learning model for novel COVID-19 on CT images. Applied soft computing, 98, 106885.

Prediction of Tumor Data from Lung Images with Deep Neural Networks and Convolutional Neural Networks

Yıl 2024, , 23 - 36, 15.06.2024
https://doi.org/10.53448/akuumubd.1431051

Öz

Lung tumors are common today and are a dangerous disease that commonly causes death in people. However, manual examinations performed by experts can often lead to incorrect diagnosis. Instead, computer-assisted, automatic, accurate and detailed early cancer diagnosis is needed. For this reason, studies on lung diseases were examined in detail in this study. In the first stage of the study, 1190 lung tomography images were prepared for the proposed deep learning models. In the second stage, lung tumors and normal lung images were detected by using Convolutional Neural Network (CNN) and Deep Neural Network (DNN), which are deep learning models. The accuracy of each model used was calculated with different evaluation metrics such as sensitivity, precision and F1-Score, and the results were compared. In addition, performance analyzes were performed for each model, and complexity matrices and ROC analyzes were presented for training, testing and valid images.

Kaynakça

  • Al-Huseiny, M. S., & Sajit, A. S. (2021). Transfer learning with GoogLeNet for detection of lung cancer. Indonesian Journal of Electrical Engineering and Computer Science, 22(2), 1078-1086.
  • Ayayna, F. (2023). Akciğer kanserinin derin öğrenme yaklaşımları kullanılarak tespit edilmesi (Master's thesis, Batman Üniversitesi Lisansüstü Eğitim Enstitüsü).
  • Al-Huseiny, M. S., & Sajit, A. S. (2021). Transfer learning with GoogLeNet for detection of lung cancer. Indonesian Journal of Electrical Engineering and Computer Science, 22(2), 1078-1086.
  • Al Mamlook, R. E., Chen, S., & Bzizi, H. F. (2020, July). Investigation of the performance of machine learning classifiers for pneumonia detection in chest X-ray images. In 2020 IEEE International Conference on Electro Information Technology (EIT) (pp. 098-104). IEEE.
  • Ayayna, F. (2023). Akciğer kanserinin derin öğrenme yaklaşımları kullanılarak tespit edilmesi (Master's thesis, Batman Üniversitesi Lisansüstü Eğitim Enstitüsü).
  • Ibrahim, D. M., Elshennawy, N. M., & Sarhan, A. M. (2021). Deep-chest: Multi-classification deep learning model for diagnosing COVID-19, pneumonia, and lung cancer chest diseases. Computers in biology and medicine, 132, 104348.
  • Jaiswal, A. K., Tiwari, P., Kumar, S., Gupta, D., Khanna, A., & Rodrigues, J. J. (2019). Identifying pneumonia in chest X-rays: A deep learning approach. Measurement, 145, 511-518.
  • Kareem, H. F., AL-Husieny, M. S., Mohsen, F. Y., Khalil, E. A., & Hassan, Z. S. (2021). Evaluation of SVM performance in the detection of lung cancer in marked CT scan dataset. Indonesian Journal of Electrical Engineering and Computer Science, 21(3), 1731.
  • Masood, A., Sheng, B., Li, P., Hou, X., Wei, X., Qin, J., & Feng, D. (2018). Computer-Assisted Decision Support System in Pulmonary Cancer detection and stage classification on CT images. Journal of Biomedical Informatics, 79(June 2017), 117–128.
  • Mothkur, R., & Veerappa, B. N. (2023). Classification Of Lung Cancer Using Lightweight Deep Neural Networks. Procedia Computer Science, 218, 1869-1877.
  • Prasad, U., Chakravarty, S., & Mahto, G. (2023). Lung cancer detection and classification using deep neural network based on hybrid metaheuristic algorithm. Soft Computing, 1-24.
  • Provath, M. A. M., Deb, K., Dhar, P. K., & Shimamura, T. (2023). Classification of Lung and Colon Cancer Histopathological Images Using Global Context Attention Based Convolutional Neural Network. IEEE Access.
  • Raza, R., Zulfiqar, F., Khan, M. O., Arif, M., Alvi, A., Iftikhar, M. A., & Alam, T. (2023). Lung-EffNet: Lung cancer classification using EfficientNet from CT-scan images. Engineering Applications of Artificial Intelligence, 126, 106902.
  • Sabzalian, M. H., Kharajinezhadian, F., Tajally, A., Reihanisaransari, R., Alkhazaleh, H. A., & Bokov, D. (2023). New bidirectional recurrent neural network optimized by improved Ebola search optimization algorithm for lung cancer diagnosis. Biomedical Signal Processing and Control, 84, 104965.
  • Sirazitdinov, I., Kholiavchenko, M., Mustafaev, T., Yixuan, Y., Kuleev, R., & Ibragimov, B. (2019). Deep neural network ensemble for pneumonia localization from a large-scale chest x-ray database. Computers & electrical engineering, 78, 388-399.
  • Solyman, S., & Schwenker, F. (2022, October). Lung Tumor Detection and Recognition Using Deep Convolutional Neural Networks. In Pan African Conference on Artificial Intelligence (pp. 79-91). Cham: Springer Nature Switzerland.
  • Thakur, S. K., Singh, D. P., & Choudhary, J. (2020). Lung cancer identification: a review on detection and classification. Cancer and Metastasis Reviews, 39, 989-998. www.kaggle.com/datasets/adityamahimkar/iqothnccd-lung-cancer-dataset
  • Zhou, T., Lu, H., Yang, Z., Qiu, S., Huo, B., & Dong, Y. (2021). The ensemble deep learning model for novel COVID-19 on CT images. Applied soft computing, 98, 106885.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Derin Öğrenme
Bölüm Makaleler
Yazarlar

Volkan Çetin 0000-0003-3388-1222

Çiğdem Bakır 0000-0001-8482-2412

Erken Görünüm Tarihi 29 Mayıs 2024
Yayımlanma Tarihi 15 Haziran 2024
Gönderilme Tarihi 3 Şubat 2024
Kabul Tarihi 3 Nisan 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Çetin, V., & Bakır, Ç. (2024). Akciğer Görüntülerinden Tümörlü Verilerin Derin Sinir Ağları ve Evrişimsel Sinir Ağları ile Tahmini. International Journal of Engineering Technology and Applied Science, 7(1), 23-36. https://doi.org/10.53448/akuumubd.1431051