Araştırma Makalesi
BibTex RIS Kaynak Göster

Boşluk Oranı ve Su Muhtevasının Kumların Düşük Kayma Modülüne Etkisi

Yıl 2025, Cilt: 7 Sayı: 3, 193 - 203, 31.12.2025
https://doi.org/10.46740/alku.1733543

Öz

Deprem riski taşıyan bölgelerdeki kum numunelerinin dinamik davranışı ayrıntılı şekilde belirlenmeli ve yapı tasarım süreçlerinde dikkate alınmalıdır. Depremler, zeminlerin gerilme-şekil değiştirme ilişkisi ile dayanım özelliklerinde önemli değişikliklere yol açmakta, bu durum ise zemin deformasyonlarına ve yapısal hasarlara neden olmaktadır. Bu nedenle, bölgeye özgü zemin özelliklerini yansıtan maksimum kayma modülü, normalize kayma modülü azalma eğrisi ve sönüm oranı eğrisi gibi dinamik zemin parametrelerinin belirlenmesi gerekmektedir. Ancak, maksimum kayma modülünün laboratuvar ortamında belirlenmesi hem zaman alıcı hem de maliyetlidir. Bu nedenle, araştırmacıların kullanımına yönelik pratik çözümler sunan ampirik modeller geliştirilmiştir. Bu çalışmada, Türkiye’nin en aktif fay sistemlerinden biri olan Kuzey Anadolu Fay Zonu (KAFZ) üzerinde yer alan bir bölgeden alınan siltli kum numuneleri üzerinde farklı çevre basıncı, boşluk oranı ve su içeriği değerleri altında rezonant kolon deneyleri gerçekleştirilmiştir. Elde edilen deneysel veriler doğrultusunda, mühendislik uygulamalarında kullanılabilecek yüksek öngörü gücüne sahip bir ampirik model önerilmiştir.

Kaynakça

  • [1] C. O. Molua and J. O. Ataman, “Dynamic analysis of soil-structure interaction in earthquake-prone areas,” International Journal of Applied and Structural Mechanics, no. 12, pp. 19–29, Nov. 2024.
  • [2] S. Janous, M. A. Abid, A. Afras, and A. E. Ghoulbzouri, “Soil-structure interaction influence on the seismic performance of buildings,” Civil Engineering and Architecture, Mar. 2024.
  • [3] D. Lal, B. Regmi, H. F. Bhat, and S. A. Kumar, “Analysis of seismic behavior of buildings with and without shear walls in various seismic zones and soil types,” 2021.
  • [4] J. Permalatha, “Influence of soil structure interaction on seismic performance of steel structure interaction with different types of foundations and soil,” International Journal for Multidisciplinary Research, May 2024.
  • [5] B. Bapir, L. Abrahamczyk, and A. Afroz, “Evaluation of soil-structure interaction for different RC structural systems and foundation sizes,” Journal of Physics: Conference Series, vol. 2647, no. 8, p. 082007, Jun. 2024.
  • [6] C. Vrettos, “Soil-structure interaction,” in Encyclopedia of Earthquake Engineering. Berlin, Heidelberg: Springer, 2014, pp. 1–16.
  • [7] F. Göktepe, “Effect of tunnel depth on the amplification pattern of environmental vibrations considering the seismic interactions between the tunnel and the surrounding soil: A numerical simulation,” Revista de la Construcción, vol. 19, no. 2, pp. 255–270, Sep. 2020.
  • [8] S. Sica, A. D. Russo, F. Rotili, and A. L. Simonelli, “Ground motion amplification due to shallow cavities in nonlinear soils,” Natural Hazards, vol. 71, no. 3, pp. 1913–1935, Apr. 2014.
  • [9] L. Álamo, A. Padrón, J. J. Aznárez, and O. Maeso, “Structure-soil-structure interaction effects on the dynamic response of piled structures under obliquely incident seismic shear waves,” Soil Dynamics and Earthquake Engineering, vol. 78, pp. 142–153, 2015.
  • [10] R. Davoodi-Bilesavar and L. R. Hoyos, “Response of cohesive-frictional soils at small to medium shear strain levels from thermo-controlled resonant column testing,” Canadian Geotechnical Journal, Jun. 2023.
  • [11] T. Wichtmann and T. Triantafyllidis, “Dynamische Steifigkeit und Dämpfung von Sand bei kleinen Dehnungen,” Bautechnik, vol. 82, no. 4, pp. 236–246, Apr. 2005.
  • [12] G. Du, “Evaluation of maximum shear modulus of soft clay from seismic piezocone tests (SCPTU),” Rock and Soil Mechanics, Jan. 2008.
  • [13] B. P. Rocha, B. C. R. da Silva, and H. L. Giacheti, “Maximum shear modulus estimative from SPT for some Brazilian tropical soils,” Soils and Rocks, vol. 46, no. 1, p. e2023005222, Feb. 2023.
  • [14] M. Cruz, J. M. Santos, and N. Cruz, “Maximum shear modulus prediction by Marchetti dilatometer test using neural networks,” in Proc. 5th Int. Symp. on Deformation Characteristics of Geomaterials, Berlin, Heidelberg: Springer, 2011, pp. 335–344.
  • [15] T. Lu, W. R. Bryant, and N. C. Slowey, “Empirical model of dynamic shear modulus for surface marine sediments,” Marine Georesources & Geotechnology, vol. 16, no. 2, pp. 95–109, Apr. 1998.
  • [16] Utest, “Tam otomatik resonant kolon ve burgusal kesme sistemi,” [Online]. Available: http://www.utest.com.tr/tr/20365/Tam-Otomatik-Resonant-Kolon-ve-Burgusal-Kesme-Sistemi. [Accessed: Jul. 2, 2025].
  • [17] ASTM D4015-21, Standard Test Methods for Modulus and Damping of Soils by Fixed-Base Resonant Column Devices, 2021.
  • [18] M. B. Darendeli, “Development of a new family of normalized modulus reduction and material damping curves,” Ph.D. dissertation, Univ. of Texas, Austin, TX, 2001.
  • [19] R. W. Hardin and W. C. Richart, “Elastic wave velocities in granular soils,” Journal of Soil Mechanics and Foundations Division, vol. 89, no. 1, pp. 33–65, 1963.
  • [20] M. Vucetic and R. Dobry, “Effect of soil plasticity on cyclic response,” Journal of Geotechnical Engineering, vol. 117, no. 1, pp. 89–107, 1991.

Effect of Void Ratio and Water Contents on the Small-Strain Shear Modulus for Sands

Yıl 2025, Cilt: 7 Sayı: 3, 193 - 203, 31.12.2025
https://doi.org/10.46740/alku.1733543

Öz

The dynamic behavior of sand samples in earthquake-prone regions must be thoroughly characterized and incorporated into building design processes. Seismic events induce significant changes in the stress-strain behavior and strength characteristics of soils, which in turn lead to ground deformations and potential structural damage. Therefore, it is essential to determine key dynamic soil properties such as the maximum shear modulus, the normalized shear modulus reduction curve, and the damping ratio curve, which are representative of the site conditions. However, the laboratory-based determination of the maximum shear modulus is both time-consuming and costly. To address this limitation, empirical models have been developed to provide practical alternatives for researchers. In this study, a series of resonant column tests were conducted on silty sand samples collected from a site located along the North Anatolian Fault Zone (NAFZ), one of the most active fault systems in Turkey. The tests were performed under varying confining pressures, void ratios, and water contents. Based on the experimental results, an empirical model with high predictive capability is proposed for engineering applications.

Kaynakça

  • [1] C. O. Molua and J. O. Ataman, “Dynamic analysis of soil-structure interaction in earthquake-prone areas,” International Journal of Applied and Structural Mechanics, no. 12, pp. 19–29, Nov. 2024.
  • [2] S. Janous, M. A. Abid, A. Afras, and A. E. Ghoulbzouri, “Soil-structure interaction influence on the seismic performance of buildings,” Civil Engineering and Architecture, Mar. 2024.
  • [3] D. Lal, B. Regmi, H. F. Bhat, and S. A. Kumar, “Analysis of seismic behavior of buildings with and without shear walls in various seismic zones and soil types,” 2021.
  • [4] J. Permalatha, “Influence of soil structure interaction on seismic performance of steel structure interaction with different types of foundations and soil,” International Journal for Multidisciplinary Research, May 2024.
  • [5] B. Bapir, L. Abrahamczyk, and A. Afroz, “Evaluation of soil-structure interaction for different RC structural systems and foundation sizes,” Journal of Physics: Conference Series, vol. 2647, no. 8, p. 082007, Jun. 2024.
  • [6] C. Vrettos, “Soil-structure interaction,” in Encyclopedia of Earthquake Engineering. Berlin, Heidelberg: Springer, 2014, pp. 1–16.
  • [7] F. Göktepe, “Effect of tunnel depth on the amplification pattern of environmental vibrations considering the seismic interactions between the tunnel and the surrounding soil: A numerical simulation,” Revista de la Construcción, vol. 19, no. 2, pp. 255–270, Sep. 2020.
  • [8] S. Sica, A. D. Russo, F. Rotili, and A. L. Simonelli, “Ground motion amplification due to shallow cavities in nonlinear soils,” Natural Hazards, vol. 71, no. 3, pp. 1913–1935, Apr. 2014.
  • [9] L. Álamo, A. Padrón, J. J. Aznárez, and O. Maeso, “Structure-soil-structure interaction effects on the dynamic response of piled structures under obliquely incident seismic shear waves,” Soil Dynamics and Earthquake Engineering, vol. 78, pp. 142–153, 2015.
  • [10] R. Davoodi-Bilesavar and L. R. Hoyos, “Response of cohesive-frictional soils at small to medium shear strain levels from thermo-controlled resonant column testing,” Canadian Geotechnical Journal, Jun. 2023.
  • [11] T. Wichtmann and T. Triantafyllidis, “Dynamische Steifigkeit und Dämpfung von Sand bei kleinen Dehnungen,” Bautechnik, vol. 82, no. 4, pp. 236–246, Apr. 2005.
  • [12] G. Du, “Evaluation of maximum shear modulus of soft clay from seismic piezocone tests (SCPTU),” Rock and Soil Mechanics, Jan. 2008.
  • [13] B. P. Rocha, B. C. R. da Silva, and H. L. Giacheti, “Maximum shear modulus estimative from SPT for some Brazilian tropical soils,” Soils and Rocks, vol. 46, no. 1, p. e2023005222, Feb. 2023.
  • [14] M. Cruz, J. M. Santos, and N. Cruz, “Maximum shear modulus prediction by Marchetti dilatometer test using neural networks,” in Proc. 5th Int. Symp. on Deformation Characteristics of Geomaterials, Berlin, Heidelberg: Springer, 2011, pp. 335–344.
  • [15] T. Lu, W. R. Bryant, and N. C. Slowey, “Empirical model of dynamic shear modulus for surface marine sediments,” Marine Georesources & Geotechnology, vol. 16, no. 2, pp. 95–109, Apr. 1998.
  • [16] Utest, “Tam otomatik resonant kolon ve burgusal kesme sistemi,” [Online]. Available: http://www.utest.com.tr/tr/20365/Tam-Otomatik-Resonant-Kolon-ve-Burgusal-Kesme-Sistemi. [Accessed: Jul. 2, 2025].
  • [17] ASTM D4015-21, Standard Test Methods for Modulus and Damping of Soils by Fixed-Base Resonant Column Devices, 2021.
  • [18] M. B. Darendeli, “Development of a new family of normalized modulus reduction and material damping curves,” Ph.D. dissertation, Univ. of Texas, Austin, TX, 2001.
  • [19] R. W. Hardin and W. C. Richart, “Elastic wave velocities in granular soils,” Journal of Soil Mechanics and Foundations Division, vol. 89, no. 1, pp. 33–65, 1963.
  • [20] M. Vucetic and R. Dobry, “Effect of soil plasticity on cyclic response,” Journal of Geotechnical Engineering, vol. 117, no. 1, pp. 89–107, 1991.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular İnşaat Geoteknik Mühendisliği
Bölüm Araştırma Makalesi
Yazarlar

Ersin Güler 0000-0002-5679-8838

Gönderilme Tarihi 2 Temmuz 2025
Kabul Tarihi 9 Eylül 2025
Yayımlanma Tarihi 31 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 7 Sayı: 3

Kaynak Göster

APA Güler, E. (2025). Effect of Void Ratio and Water Contents on the Small-Strain Shear Modulus for Sands. ALKÜ Fen Bilimleri Dergisi, 7(3), 193-203. https://doi.org/10.46740/alku.1733543
AMA Güler E. Effect of Void Ratio and Water Contents on the Small-Strain Shear Modulus for Sands. ALKÜ Fen Bilimleri Dergisi. Aralık 2025;7(3):193-203. doi:10.46740/alku.1733543
Chicago Güler, Ersin. “Effect of Void Ratio and Water Contents on the Small-Strain Shear Modulus for Sands”. ALKÜ Fen Bilimleri Dergisi 7, sy. 3 (Aralık 2025): 193-203. https://doi.org/10.46740/alku.1733543.
EndNote Güler E (01 Aralık 2025) Effect of Void Ratio and Water Contents on the Small-Strain Shear Modulus for Sands. ALKÜ Fen Bilimleri Dergisi 7 3 193–203.
IEEE E. Güler, “Effect of Void Ratio and Water Contents on the Small-Strain Shear Modulus for Sands”, ALKÜ Fen Bilimleri Dergisi, c. 7, sy. 3, ss. 193–203, 2025, doi: 10.46740/alku.1733543.
ISNAD Güler, Ersin. “Effect of Void Ratio and Water Contents on the Small-Strain Shear Modulus for Sands”. ALKÜ Fen Bilimleri Dergisi 7/3 (Aralık2025), 193-203. https://doi.org/10.46740/alku.1733543.
JAMA Güler E. Effect of Void Ratio and Water Contents on the Small-Strain Shear Modulus for Sands. ALKÜ Fen Bilimleri Dergisi. 2025;7:193–203.
MLA Güler, Ersin. “Effect of Void Ratio and Water Contents on the Small-Strain Shear Modulus for Sands”. ALKÜ Fen Bilimleri Dergisi, c. 7, sy. 3, 2025, ss. 193-0, doi:10.46740/alku.1733543.
Vancouver Güler E. Effect of Void Ratio and Water Contents on the Small-Strain Shear Modulus for Sands. ALKÜ Fen Bilimleri Dergisi. 2025;7(3):193-20.