Araştırma Makalesi
BibTex RIS Kaynak Göster

On Some Properties of m  -Statistical Convergence in a Paranormed Space

Yıl 2019, Cilt: 1 Sayı: 1, 40 - 47, 15.01.2019

Öz

In this study, we introduce the concepts of strongly   m  ,p -Cesàro summability, m  -statistical Cauchy sequence and m  -statistical convergence in a paronormed space. We give some certain properties of these concepts and some inclusion relations between them. Fast [1] and Steinhaus [2] introduced the concept of statistical convergence for sequences of real numbers. Several authors studied this concept with related topics [3-5]. The asymptotic density of K N  is defined as,   (K) lim k n : k K  n     where be a subset of the set of natural numbers and denoted by  K. . indicates the cardinality of the enclosed set. A sequence xk  is called statistically covergent to provided that  k  n lim k n х L 0  n       for each  0 . It is denoted by lim k st x L    . A sequence хk  is called statistically Cauchy sequence provided that there exist a number N N( )   such that

Kaynakça

  • 1. Fast, H., Sur la convergence statistique, Colloq. Math., 2, 241-244 (1951)
  • 2. Steinhaus, H., Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math., 2, 73-74 (1951)
  • 3. Fridy, J. A., On statistical convergence, Analysis, 5, 301-313 (1985)
  • 4. Šalát, T., On statisticaly convergent sequences of real numbers, Math Slovaca, 30, 139-150 (1980)
  • 5. Kolk, E., The Statistical convergence in Banach spaces, Tartu Ül. Toimetised, 928, 41-52 (1991)
  • 6. Alotaibi, A., Alroqi, M. A., Statistical convergence in a paranormed space, J. Inequal. Appl., 2012, 2012:39, 6 pp.
  • 7. Nakano, H., Concave modulars, J. Math. Soc. Japan 5(1953), 29-49.
  • 8. Mohammed, A., Mursaleen, M., λ-statistical convergence in paranormed space, Abstr. Appl. Anal. 2013, Art. ID 264520, 5 pp.
  • 9. Çolak, R., Bektaş, Ç. A., Altınok, H., Ercan, S., On inclusion relations between some sequence spaces, Int. J. Anal. 2016, Art. ID 7283527, 4 pp.
  • 10. Ercan, S., Altın, Y., Bektaş, Ç., On weak lambda-Statistical convergence of order alpha, U.P.B. Sci. Bull., Series A, 80(2), 215-226 (2018)
  • 11. Et, M., Çolak, R., On some generalized difference sequence spaces, Soochow Journal of Mathematics, 21(4) 377-386 (1995).
  • 12. Ercan, S., Bektaş, Ç., Some generalized difference sequence spaces of non absolute type, General Mahematics Notes, 27(2), 37-46 (2015).
  • 13. F. Başar, Summability Theory and Its Applications, Bentham Science Publishers, e-books, Monograph, İstanbul-2012, ISBN: 978-1-60805-420-6.
  • 14. Ercan, S., Some Cesàro-type summability and statistical convergence of sequences generated by fractional difference operator, AKU J. Sci. Eng., 18 (2018) 011302 (125-130)

On Some Properties of m  -Statistical Convergence in a Paranormed Space

Yıl 2019, Cilt: 1 Sayı: 1, 40 - 47, 15.01.2019

Öz

In this study, we introduce the concepts of strongly  ($\Delta ^{m}$,p)-Cesàro summability,  $\Delta ^{m}-statistical Cauchy sequence and  $\Delta ^{m}-statistical convergence in a paronormed space. We give some certain properties of these concepts and some inclusion relations between them.

Kaynakça

  • 1. Fast, H., Sur la convergence statistique, Colloq. Math., 2, 241-244 (1951)
  • 2. Steinhaus, H., Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math., 2, 73-74 (1951)
  • 3. Fridy, J. A., On statistical convergence, Analysis, 5, 301-313 (1985)
  • 4. Šalát, T., On statisticaly convergent sequences of real numbers, Math Slovaca, 30, 139-150 (1980)
  • 5. Kolk, E., The Statistical convergence in Banach spaces, Tartu Ül. Toimetised, 928, 41-52 (1991)
  • 6. Alotaibi, A., Alroqi, M. A., Statistical convergence in a paranormed space, J. Inequal. Appl., 2012, 2012:39, 6 pp.
  • 7. Nakano, H., Concave modulars, J. Math. Soc. Japan 5(1953), 29-49.
  • 8. Mohammed, A., Mursaleen, M., λ-statistical convergence in paranormed space, Abstr. Appl. Anal. 2013, Art. ID 264520, 5 pp.
  • 9. Çolak, R., Bektaş, Ç. A., Altınok, H., Ercan, S., On inclusion relations between some sequence spaces, Int. J. Anal. 2016, Art. ID 7283527, 4 pp.
  • 10. Ercan, S., Altın, Y., Bektaş, Ç., On weak lambda-Statistical convergence of order alpha, U.P.B. Sci. Bull., Series A, 80(2), 215-226 (2018)
  • 11. Et, M., Çolak, R., On some generalized difference sequence spaces, Soochow Journal of Mathematics, 21(4) 377-386 (1995).
  • 12. Ercan, S., Bektaş, Ç., Some generalized difference sequence spaces of non absolute type, General Mahematics Notes, 27(2), 37-46 (2015).
  • 13. F. Başar, Summability Theory and Its Applications, Bentham Science Publishers, e-books, Monograph, İstanbul-2012, ISBN: 978-1-60805-420-6.
  • 14. Ercan, S., Some Cesàro-type summability and statistical convergence of sequences generated by fractional difference operator, AKU J. Sci. Eng., 18 (2018) 011302 (125-130)
Toplam 14 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Çiğdem Bektaş

Emine Özçelik Bu kişi benim

Gönderilme Tarihi 31 Ağustos 2018
Kabul Tarihi 3 Aralık 2018
Yayımlanma Tarihi 15 Ocak 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 1 Sayı: 1

Kaynak Göster

APA Bektaş, Ç., & Özçelik, E. (2019). On Some Properties of m  -Statistical Convergence in a Paranormed Space. ALKÜ Fen Bilimleri Dergisi, 1(1), 40-47.
AMA Bektaş Ç, Özçelik E. On Some Properties of m  -Statistical Convergence in a Paranormed Space. ALKÜ Fen Bilimleri Dergisi. Ocak 2019;1(1):40-47.
Chicago Bektaş, Çiğdem, ve Emine Özçelik. “On Some Properties of m  -Statistical Convergence in a Paranormed Space”. ALKÜ Fen Bilimleri Dergisi 1, sy. 1 (Ocak 2019): 40-47.
EndNote Bektaş Ç, Özçelik E (01 Ocak 2019) On Some Properties of m  -Statistical Convergence in a Paranormed Space. ALKÜ Fen Bilimleri Dergisi 1 1 40–47.
IEEE Ç. Bektaş ve E. Özçelik, “On Some Properties of m  -Statistical Convergence in a Paranormed Space”, ALKÜ Fen Bilimleri Dergisi, c. 1, sy. 1, ss. 40–47, 2019.
ISNAD Bektaş, Çiğdem - Özçelik, Emine. “On Some Properties of m  -Statistical Convergence in a Paranormed Space”. ALKÜ Fen Bilimleri Dergisi 1/1 (Ocak2019), 40-47.
JAMA Bektaş Ç, Özçelik E. On Some Properties of m  -Statistical Convergence in a Paranormed Space. ALKÜ Fen Bilimleri Dergisi. 2019;1:40–47.
MLA Bektaş, Çiğdem ve Emine Özçelik. “On Some Properties of m  -Statistical Convergence in a Paranormed Space”. ALKÜ Fen Bilimleri Dergisi, c. 1, sy. 1, 2019, ss. 40-47.
Vancouver Bektaş Ç, Özçelik E. On Some Properties of m  -Statistical Convergence in a Paranormed Space. ALKÜ Fen Bilimleri Dergisi. 2019;1(1):40-7.