Araştırma Makalesi
BibTex RIS Kaynak Göster

Çift Tabakalı Hidroksit ile Oksalik Asit Uzaklaştırılmasının Modellenmesi ve Optimizasyonu

Yıl 2024, Cilt: 6 Sayı: 1, 80 - 95, 30.04.2024
https://doi.org/10.46740/alku.1370584

Öz

Bu çalışmanın temel amacı, oksalik asit (OxA) adsorpsiyon koşullarının çift tabakalı hidroksit (LDH) kullanılarak optimizasyonunun araştırılması, adsorpsiyonun hem tepki yüzeyi metodolojisi (RSM) hem de yapay sinir ağı (YSA) ile modellenmesidir. Mg-Al LDH, birlikte çöktürme yöntemiyle sentezlenmiş olup, Fourier dönüşümlü kızılötesi spektroskopisi (FTIR), İndüktif eşleşmiş plazma - kütle spektrometresi (ICP-MS) ve X-ışını kırınımı (XRD) teknikleriyle karakterize edilmiştir. Adsorpsiyon proses tasarımının gerçekleştirilmesi için gerekli olan denge süresi ve kinetik model verileri incelenmiştir. OxA uzaklaştırma yüzdesi ölçülürken bağımsız değişkenler olarak proses süresi, başlangıç asit konsantrasyonu, sıcaklık ve adsorban dozajı seçilmiştir. Bu sonuçların hem RSM hem de YSA teknikleriyle modellenmesi, RSM modelinden biraz daha iyi bir belirleme katsayısı gösteren bir YSA modeliyle sonuçlanmıştır. Modeller prosesin optimal koşulları için tutarlı sonuçlar vermiştir.

Kaynakça

  • [1] Skwarek E. (2015) Thermal analysis of hydroxyapatite with adsorbed oxalic acid. J Therm Anal Calorim 122: 33-45. https://doi.org/10.1007/s10973-015-4692-z.
  • [2] Jung YH, Kim KH (2015)Acidic pretreatment, Pretreatment of Biomass, in: A. Pandey, P. Binod, S. Negi, C. Larroche (Eds), Elsevier, 27-50. https://doi.org/10.1016/B978-0-12-800080-9.00003-7.
  • [3] Sun J, Bostick BC, Mailloux BJ, Ross JM, Chillrud SN (2016) Effect of oxalic acid treatment on sediment arsenic concentrations and lability under reducing conditions. J Hazard Mater 311: 125-133. https://doi.org/10.1016/j.jhazmat.2016.02.060.
  • [4] Lee JW, Rodrigues RC, Jeffries TW (2009) Simultaneous saccharification and ethanol fermentation of oxalic acid pretreated corncob assessed with response surface methodology, Bioresour Technol 100:6307-6311. https://doi.org/10.1016/j.biortech.2009.06.088.
  • [5] Abollino O, Aceto M, Malandrino M, Sarzanini C, Mentasti E (2003) Adsorption of heavy metals on Na-montmorillonite. Effect of pH and organic substances. Water Res 37:1619-1627. https://doi.org/ 10.1016/S0043-1354(02)00524-9.
  • [6] Adamu H, Anderson JA (2015) Insights into competitive adsorption between nitrate and oxalic acid over TiO2 and consequences for photocatalytic remediation, Proceedings of the World Congress on New Technologies (NewTech 2015), Barcelona, Spain, p. 17.
  • [7] Wu J, Wang J, Li H, Li Y, Du Y, Yang Y, Jia X (2017) Surface activation of MnNb2O6 nanosheets by oxalic acid for enhanced photocatalysis. Appl Surf Sci 403:314-325. https://doi.org/ 10.1016/j.apsusc.2017.01.170.
  • [8] Manzak A, Inal M (2014) The 2014 World Congress on Advances in Civil, Enviromental, and Materials Research (ACEM14) August, Busan, pp 24−28.
  • [9] Crahan KK, Hegg D, Covert DS, Jonsson H (2004) An exploration of aqueous oxalic acid production in the coastal marine atmosphere. Atmos Environ 38:3757-3764. https://doi.org/10.1016/j.atmosenv.2004.04.009.
  • [10] Oke OL (1969) Oxalic acid in plants and in nutrition. World Rev Nutr Diet 10:262-303. https://doi.org/10.1159/000387569.
  • [11] Baylan N, Çehreli S (2020) Experimental and modeling study for the removal of formic acid through bulk ionic liquid membrane using response surface methodology. Chem Eng Commun 207:1426-1439. https://doi.org/10.1080/00986445.2019.1656076
  • [12] Liu F, Peng C, Wilson BP, Lundström M (2019) Oxalic acid recovery from high iron oxalate waste solution by a combination of ultrasound-assisted conversion and cooling crystallization. ACS Sustainable Chem Eng 20:17372-17378. https://doi.org/10.1021/acssuschemeng.9b04351
  • [13] Kirsch T, Maurer G (1996) Distribution of oxalic acid between water and organic solutions of tri-n-octylamine. Ind Eng Chem Res 35:1722-1735. https://doi.org/10.1021/ie9505827.
  • [14] Uslu H, Baykal E, Gök A, Kırbaşlar Şİ, Santos D (2020) Study on Oxalic Acid Extraction by Tripropylamine: Equilibrium and Computational COSMO-SAC Analysis. J Chem Eng Data, 65:4347-4353. https://doi.org/10.1021/acs.jced.9b01150. [15] Hasret E, Kırbaslar Şİ, Uslu H (2019) Comparison of extractability of oxalic acid from dilute aqueous solutions using dioctylamine and trioctylphosphine oxide. J Chem Eng Data 64:1275−1280. https://doi.org/10.1021/acs.jced.8b01155.
  • [16] Sarı SK, Özmen D (2018) Design of optimum response surface experiments for the adsorption of acetic, butyric, and oxalic acids on Amberlyst A21. J Disper Sci Technol 39:305-309. https://doi.org/10.1080/01932691.2017.1316208.
  • [17] Özcan Ö, İnci İ, Aşçı YS, Bayazit ŞS (2017) Oxalic acid removal from wastewater using multi-walled carbon nanotubes: Kinetic and equilibrium analysis. J Disper Sci Technol 38:65–69. https://doi.org/10.1080/01932691.2016.1141688.
  • [18] Jain KK, Vishwa GP, Singh N (1979) Application of flyash instead of activated carbon for oxalic acid removal. J Chem Technol Biotechnol 29:36-38. https://doi.org/10.1002/jctb.503290107.
  • [19] Singh T, Sharma V, Chandrawat U, Rani A (2005) Studies on adsorption of oxalic acid on pure activated carbon, power plant flyash and their mixed blends-A kinetic approach. Indian Journal of Environmental Protection 25:839-847.
  • [20] Ikram M, Rehman AU, Ali S, Bakhtiar SUH, Alam S (2016) The adsorptive potential of chicken egg shells for the removal of oxalic acid from wastewater. Journal of Biomedical Engineering and Informatics 2:118-130. https://doi.org/10.5430/jbei.v2n2p118.
  • [21] Preocanin T, Majic Z, Kovaˇcevi´c D, Kallay N (2007) Adsorption of oxalic acid onto hematite: Application of surface potential measurements. Adsorption Science & Technology 25:429-437. https://doi.org/10.1260/026361707783908300
  • [22] Zhang X, Zhang L, Zou X, Han F, Yan Z, Li Z, Hu S (2018) Semi-quantitative analysis of microbial production of oxalic acid by montmorillonite sorption and ATR-IR. Applied Clay Science 162:518-523. https://doi.org/10.1016/j.clay.2018.07.006.
  • [23] Xue X, Wang W, Fan H, Xu Z, Pedruzzi I, Lil P, Yu J (2019) Adsorption behavior of oxalic acid at water–feldspar interface: experiments and molecular simulation. Adsorption 25:1191–1204. https://doi.org/10.1007/s10450-019-00111-8.
  • [24] Li C, Wei M, Evans DG, Duan X (2014) Layered double hydroxide-based nanomaterials as highly efficient catalysts and adsorbents. Small 10:4469–4486. https://doi.org/10.1002/smll.201401464.
  • [25] Vreysen S, Maes A (2008) Adsorption mechanism of humic and fulvic acid onto Mg/Al layered double hydroxides. Appl Clay Sci 38:237–249. https://doi.org/10.1016/j.clay.2007.02.010.
  • [26] Gök A, Gök MK, Aşçı YS, Lalikoğlu M (2014) Equilibrium, kinetics and thermodynamic studies for separation of malic acid on layered double hydroxide (LDH). Fluid Ph Equilibria 372: 15-20. https://doi.org/10.1016/j.fluid.2014.03.023.
  • [27] Hosseini SA, Akbari M (2016) ZnO/Mg-Al Layered double hydroxides as a photocatalytic bleaching of methylene orange - A Black box modeling by artificial neural network. Bull Chem React Eng Catal 11:299-315. http://doi.org/10.9767/bcrec.11.3.570.299-315
  • [28] Yasin Y, Ahmad FBH, Moghaddam MG, Khajeh M (2014) Application of a hybrid artificial neural network–genetic algorithm approach to optimize the lead ions removal from aqueous solutions using intercalated tartrate-Mg–Al layered double hydroxides. Environ Nanotechnol Monit Manag 2: 2-7. https://doi.org/10.1016/j.enmm.2014.03.001.
  • [29] Kalavathy H, Regupathi MI, Pillai MG, Miranda LR (2009) Modelling, analysis and optimization of adsorption parameters for H3PO4 activated rubber wood sawdust using response surface methodology (RSM). Colloids Surf B 70:35–45. https://doi.org/10.1016/j.colsurfb.2008.12.007.
  • [30] Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA (2008) Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta. 76:965–977. https://doi.org/10.1016/j.talanta.2008.05.019.
  • [31] Seron A, Delorme F (2008) Synthesis of layered double hydroxides (LDHs) with varying pH: A valuable contribution to the study of Mg/Al LDH formation mechanism. J Phys Chem Solids 69:1088-1090. https://doi.org/10.1016/j.jpcs.2007.10.054.
  • [32] Chao YF, Chen PC, Wang SL (2008) Adsorption of 2,4-D on Mg/Al–NO3 layered double hydroxides with varying layer charge density. Appl Clay Sci 40:193-200. https://doi.org/10.1016/j.clay.2007.09.003
  • [33] Ho Y, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465. https://doi.org/10.1016/S0032-9592(98)00112-5.
  • [34] Azizian S (2004) Kinetic models of sorption: a theoretical analysis. J Colloid Interface Sci 276:47–52. https://doi.org/10.1016/j.jcis.2004.03.048.
  • [35] Aharoni C, Tompkins FC (1970) Kinetics of adsorption and desorption and the Elovich equation. Adv Catal 21:1-49. https://doi.org/10.1016/S0360-0564(08)60563-5.
  • [36] Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156:2–10. https://doi.org/10.1016/j.cej.2009.09.013.
  • [37] Bashir MJK, Aziz HA, Yusoff MS, Adlan MN (2010) Application of response surface methodology (RSM) for optimization of ammoniacal nitrogen removal from semi-aerobic landfill leachate using ion exchange resin. Desalination 254:154–161. https://doi.org/10.1016/j.desal.2009.12.002.
  • [38] Muhamad MH, Abdullah SRS, Mohamad AB, Rahman RA, Kadhum AAH (2013) Application of response surface methodology (RSM) for optimisation of COD, NH3-N and 2,4-DCP removal from recycled paper wastewater in a pilot-scale granular activated carbon sequencing batch biofilm reactor (GAC-SBBR). J Environ Manage 121:179-190. https://doi.org/10.1016/j.jenvman.2013.02.016.
  • [39] Garson GD (1991) Interpreting neural-network connection weights. AI Expert 6:47-51.

Modelling and Optimization of Oxalic Acid Removal by Layered Double Hydroxide

Yıl 2024, Cilt: 6 Sayı: 1, 80 - 95, 30.04.2024
https://doi.org/10.46740/alku.1370584

Öz

The main purpose of this study is the investigation of the optimization of the conditions of oxalic acid (OxA) adsorption using layered double hydroxide (LDH), modeling the adsorption with both the response surface methodology (RSM) and an artificial neural network (ANN). Mg-Al LDH was synthesized via the co-precipitation method and characterized by Fourier transform infrared spectroscopy (FTIR), inductively coupled plasma mass spectrometry (ICP-MS) and X-ray diffraction (XRD) techniques. The equilibrium time and kinetic model data required to realize the adsorption process design were examined. The process time, initial acid concentration, temperature, and adsorbent dosage as the independent variables were chosen while measuring the percentage of OxA removal. Modeling these results with both RSM and ANN techniques resulted in an ANN model showing a slightly better coefficient of determination than the RSM model. The models yielded consistent results for the optimal conditions of the process.

Kaynakça

  • [1] Skwarek E. (2015) Thermal analysis of hydroxyapatite with adsorbed oxalic acid. J Therm Anal Calorim 122: 33-45. https://doi.org/10.1007/s10973-015-4692-z.
  • [2] Jung YH, Kim KH (2015)Acidic pretreatment, Pretreatment of Biomass, in: A. Pandey, P. Binod, S. Negi, C. Larroche (Eds), Elsevier, 27-50. https://doi.org/10.1016/B978-0-12-800080-9.00003-7.
  • [3] Sun J, Bostick BC, Mailloux BJ, Ross JM, Chillrud SN (2016) Effect of oxalic acid treatment on sediment arsenic concentrations and lability under reducing conditions. J Hazard Mater 311: 125-133. https://doi.org/10.1016/j.jhazmat.2016.02.060.
  • [4] Lee JW, Rodrigues RC, Jeffries TW (2009) Simultaneous saccharification and ethanol fermentation of oxalic acid pretreated corncob assessed with response surface methodology, Bioresour Technol 100:6307-6311. https://doi.org/10.1016/j.biortech.2009.06.088.
  • [5] Abollino O, Aceto M, Malandrino M, Sarzanini C, Mentasti E (2003) Adsorption of heavy metals on Na-montmorillonite. Effect of pH and organic substances. Water Res 37:1619-1627. https://doi.org/ 10.1016/S0043-1354(02)00524-9.
  • [6] Adamu H, Anderson JA (2015) Insights into competitive adsorption between nitrate and oxalic acid over TiO2 and consequences for photocatalytic remediation, Proceedings of the World Congress on New Technologies (NewTech 2015), Barcelona, Spain, p. 17.
  • [7] Wu J, Wang J, Li H, Li Y, Du Y, Yang Y, Jia X (2017) Surface activation of MnNb2O6 nanosheets by oxalic acid for enhanced photocatalysis. Appl Surf Sci 403:314-325. https://doi.org/ 10.1016/j.apsusc.2017.01.170.
  • [8] Manzak A, Inal M (2014) The 2014 World Congress on Advances in Civil, Enviromental, and Materials Research (ACEM14) August, Busan, pp 24−28.
  • [9] Crahan KK, Hegg D, Covert DS, Jonsson H (2004) An exploration of aqueous oxalic acid production in the coastal marine atmosphere. Atmos Environ 38:3757-3764. https://doi.org/10.1016/j.atmosenv.2004.04.009.
  • [10] Oke OL (1969) Oxalic acid in plants and in nutrition. World Rev Nutr Diet 10:262-303. https://doi.org/10.1159/000387569.
  • [11] Baylan N, Çehreli S (2020) Experimental and modeling study for the removal of formic acid through bulk ionic liquid membrane using response surface methodology. Chem Eng Commun 207:1426-1439. https://doi.org/10.1080/00986445.2019.1656076
  • [12] Liu F, Peng C, Wilson BP, Lundström M (2019) Oxalic acid recovery from high iron oxalate waste solution by a combination of ultrasound-assisted conversion and cooling crystallization. ACS Sustainable Chem Eng 20:17372-17378. https://doi.org/10.1021/acssuschemeng.9b04351
  • [13] Kirsch T, Maurer G (1996) Distribution of oxalic acid between water and organic solutions of tri-n-octylamine. Ind Eng Chem Res 35:1722-1735. https://doi.org/10.1021/ie9505827.
  • [14] Uslu H, Baykal E, Gök A, Kırbaşlar Şİ, Santos D (2020) Study on Oxalic Acid Extraction by Tripropylamine: Equilibrium and Computational COSMO-SAC Analysis. J Chem Eng Data, 65:4347-4353. https://doi.org/10.1021/acs.jced.9b01150. [15] Hasret E, Kırbaslar Şİ, Uslu H (2019) Comparison of extractability of oxalic acid from dilute aqueous solutions using dioctylamine and trioctylphosphine oxide. J Chem Eng Data 64:1275−1280. https://doi.org/10.1021/acs.jced.8b01155.
  • [16] Sarı SK, Özmen D (2018) Design of optimum response surface experiments for the adsorption of acetic, butyric, and oxalic acids on Amberlyst A21. J Disper Sci Technol 39:305-309. https://doi.org/10.1080/01932691.2017.1316208.
  • [17] Özcan Ö, İnci İ, Aşçı YS, Bayazit ŞS (2017) Oxalic acid removal from wastewater using multi-walled carbon nanotubes: Kinetic and equilibrium analysis. J Disper Sci Technol 38:65–69. https://doi.org/10.1080/01932691.2016.1141688.
  • [18] Jain KK, Vishwa GP, Singh N (1979) Application of flyash instead of activated carbon for oxalic acid removal. J Chem Technol Biotechnol 29:36-38. https://doi.org/10.1002/jctb.503290107.
  • [19] Singh T, Sharma V, Chandrawat U, Rani A (2005) Studies on adsorption of oxalic acid on pure activated carbon, power plant flyash and their mixed blends-A kinetic approach. Indian Journal of Environmental Protection 25:839-847.
  • [20] Ikram M, Rehman AU, Ali S, Bakhtiar SUH, Alam S (2016) The adsorptive potential of chicken egg shells for the removal of oxalic acid from wastewater. Journal of Biomedical Engineering and Informatics 2:118-130. https://doi.org/10.5430/jbei.v2n2p118.
  • [21] Preocanin T, Majic Z, Kovaˇcevi´c D, Kallay N (2007) Adsorption of oxalic acid onto hematite: Application of surface potential measurements. Adsorption Science & Technology 25:429-437. https://doi.org/10.1260/026361707783908300
  • [22] Zhang X, Zhang L, Zou X, Han F, Yan Z, Li Z, Hu S (2018) Semi-quantitative analysis of microbial production of oxalic acid by montmorillonite sorption and ATR-IR. Applied Clay Science 162:518-523. https://doi.org/10.1016/j.clay.2018.07.006.
  • [23] Xue X, Wang W, Fan H, Xu Z, Pedruzzi I, Lil P, Yu J (2019) Adsorption behavior of oxalic acid at water–feldspar interface: experiments and molecular simulation. Adsorption 25:1191–1204. https://doi.org/10.1007/s10450-019-00111-8.
  • [24] Li C, Wei M, Evans DG, Duan X (2014) Layered double hydroxide-based nanomaterials as highly efficient catalysts and adsorbents. Small 10:4469–4486. https://doi.org/10.1002/smll.201401464.
  • [25] Vreysen S, Maes A (2008) Adsorption mechanism of humic and fulvic acid onto Mg/Al layered double hydroxides. Appl Clay Sci 38:237–249. https://doi.org/10.1016/j.clay.2007.02.010.
  • [26] Gök A, Gök MK, Aşçı YS, Lalikoğlu M (2014) Equilibrium, kinetics and thermodynamic studies for separation of malic acid on layered double hydroxide (LDH). Fluid Ph Equilibria 372: 15-20. https://doi.org/10.1016/j.fluid.2014.03.023.
  • [27] Hosseini SA, Akbari M (2016) ZnO/Mg-Al Layered double hydroxides as a photocatalytic bleaching of methylene orange - A Black box modeling by artificial neural network. Bull Chem React Eng Catal 11:299-315. http://doi.org/10.9767/bcrec.11.3.570.299-315
  • [28] Yasin Y, Ahmad FBH, Moghaddam MG, Khajeh M (2014) Application of a hybrid artificial neural network–genetic algorithm approach to optimize the lead ions removal from aqueous solutions using intercalated tartrate-Mg–Al layered double hydroxides. Environ Nanotechnol Monit Manag 2: 2-7. https://doi.org/10.1016/j.enmm.2014.03.001.
  • [29] Kalavathy H, Regupathi MI, Pillai MG, Miranda LR (2009) Modelling, analysis and optimization of adsorption parameters for H3PO4 activated rubber wood sawdust using response surface methodology (RSM). Colloids Surf B 70:35–45. https://doi.org/10.1016/j.colsurfb.2008.12.007.
  • [30] Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA (2008) Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta. 76:965–977. https://doi.org/10.1016/j.talanta.2008.05.019.
  • [31] Seron A, Delorme F (2008) Synthesis of layered double hydroxides (LDHs) with varying pH: A valuable contribution to the study of Mg/Al LDH formation mechanism. J Phys Chem Solids 69:1088-1090. https://doi.org/10.1016/j.jpcs.2007.10.054.
  • [32] Chao YF, Chen PC, Wang SL (2008) Adsorption of 2,4-D on Mg/Al–NO3 layered double hydroxides with varying layer charge density. Appl Clay Sci 40:193-200. https://doi.org/10.1016/j.clay.2007.09.003
  • [33] Ho Y, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465. https://doi.org/10.1016/S0032-9592(98)00112-5.
  • [34] Azizian S (2004) Kinetic models of sorption: a theoretical analysis. J Colloid Interface Sci 276:47–52. https://doi.org/10.1016/j.jcis.2004.03.048.
  • [35] Aharoni C, Tompkins FC (1970) Kinetics of adsorption and desorption and the Elovich equation. Adv Catal 21:1-49. https://doi.org/10.1016/S0360-0564(08)60563-5.
  • [36] Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156:2–10. https://doi.org/10.1016/j.cej.2009.09.013.
  • [37] Bashir MJK, Aziz HA, Yusoff MS, Adlan MN (2010) Application of response surface methodology (RSM) for optimization of ammoniacal nitrogen removal from semi-aerobic landfill leachate using ion exchange resin. Desalination 254:154–161. https://doi.org/10.1016/j.desal.2009.12.002.
  • [38] Muhamad MH, Abdullah SRS, Mohamad AB, Rahman RA, Kadhum AAH (2013) Application of response surface methodology (RSM) for optimisation of COD, NH3-N and 2,4-DCP removal from recycled paper wastewater in a pilot-scale granular activated carbon sequencing batch biofilm reactor (GAC-SBBR). J Environ Manage 121:179-190. https://doi.org/10.1016/j.jenvman.2013.02.016.
  • [39] Garson GD (1991) Interpreting neural-network connection weights. AI Expert 6:47-51.
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kimyasal Termodinamik ve Enerji Bilimi, İnorganik Malzemeler, Atıksu Arıtma Süreçleri, Malzeme Bilimi ve Teknolojileri
Bölüm Makaleler
Yazarlar

Sema Şentürk 0000-0002-4125-1506

Halil Gamsızkan 0000-0002-2578-6295

Mehmet Koray Gök 0000-0003-2497-9359

Yavuz Selim Aşçı 0000-0003-1517-6810

Aslı Gök 0000-0001-5388-5445

Yayımlanma Tarihi 30 Nisan 2024
Gönderilme Tarihi 4 Ekim 2023
Kabul Tarihi 24 Ekim 2023
Yayımlandığı Sayı Yıl 2024 Cilt: 6 Sayı: 1

Kaynak Göster

APA Şentürk, S., Gamsızkan, H., Gök, M. K., Aşçı, Y. S., vd. (2024). Modelling and Optimization of Oxalic Acid Removal by Layered Double Hydroxide. ALKÜ Fen Bilimleri Dergisi, 6(1), 80-95. https://doi.org/10.46740/alku.1370584
AMA Şentürk S, Gamsızkan H, Gök MK, Aşçı YS, Gök A. Modelling and Optimization of Oxalic Acid Removal by Layered Double Hydroxide. ALKÜ Fen Bilimleri Dergisi. Nisan 2024;6(1):80-95. doi:10.46740/alku.1370584
Chicago Şentürk, Sema, Halil Gamsızkan, Mehmet Koray Gök, Yavuz Selim Aşçı, ve Aslı Gök. “Modelling and Optimization of Oxalic Acid Removal by Layered Double Hydroxide”. ALKÜ Fen Bilimleri Dergisi 6, sy. 1 (Nisan 2024): 80-95. https://doi.org/10.46740/alku.1370584.
EndNote Şentürk S, Gamsızkan H, Gök MK, Aşçı YS, Gök A (01 Nisan 2024) Modelling and Optimization of Oxalic Acid Removal by Layered Double Hydroxide. ALKÜ Fen Bilimleri Dergisi 6 1 80–95.
IEEE S. Şentürk, H. Gamsızkan, M. K. Gök, Y. S. Aşçı, ve A. Gök, “Modelling and Optimization of Oxalic Acid Removal by Layered Double Hydroxide”, ALKÜ Fen Bilimleri Dergisi, c. 6, sy. 1, ss. 80–95, 2024, doi: 10.46740/alku.1370584.
ISNAD Şentürk, Sema vd. “Modelling and Optimization of Oxalic Acid Removal by Layered Double Hydroxide”. ALKÜ Fen Bilimleri Dergisi 6/1 (Nisan 2024), 80-95. https://doi.org/10.46740/alku.1370584.
JAMA Şentürk S, Gamsızkan H, Gök MK, Aşçı YS, Gök A. Modelling and Optimization of Oxalic Acid Removal by Layered Double Hydroxide. ALKÜ Fen Bilimleri Dergisi. 2024;6:80–95.
MLA Şentürk, Sema vd. “Modelling and Optimization of Oxalic Acid Removal by Layered Double Hydroxide”. ALKÜ Fen Bilimleri Dergisi, c. 6, sy. 1, 2024, ss. 80-95, doi:10.46740/alku.1370584.
Vancouver Şentürk S, Gamsızkan H, Gök MK, Aşçı YS, Gök A. Modelling and Optimization of Oxalic Acid Removal by Layered Double Hydroxide. ALKÜ Fen Bilimleri Dergisi. 2024;6(1):80-95.