Araştırma Makalesi
BibTex RIS Kaynak Göster

İnsansız Hava Araçları İçin Batarya Yönetim Sistemi Mimarileri: Stratejik Bir Konu

Yıl 2021, Cilt: 3 Sayı: 1, 1 - 12, 30.06.2021

Öz

Elektrikli itki sistemleri, daha çevreci, maliyet etkin, güvenilir, bakım yapılabilir ve sürdürülebilir olma hedeflerine ulaşmada umut verici bir seçenektir. Daha elektrikli uçak (More electric aircraft - MEA) itki sistemleri geliştirilirken, görece daha karmaşık batarya teknolojilerinin ve diğer enerji depolama sistemlerinin geliştirilmesi gerekli olmaktadır. Bu yol haritasında bataryalar, havacılıkta daha fazla elektrikli tahrik geliştirmek için stratejik olarak kritik sistemlerdir. Bu teknolojik ilerleme insansız hava araçları (İHA) açısından da fayda sağlamaktadır. Elektrikli tahrik sistemleri, İHA'lar için daha esnek tasarım olanakları yaratır. Güç elektroniği teknolojilerindeki gelişmeler, İHA'larda elektrik gücü kullanımı için daha fazla olanak sağlamakta ve bu da batarya teknolojilerinin kullanılmasını mümkün kılmaktadır. Lityum iyon bataryalar, diğer elektrik enerjisi depolama sistemlerine göre daha yüksek özgül enerji ve enerji yoğunluğu sağlar. Ayrıca bu bataryaların güvenli ve ekonomik çalışması için yönetilmesi gerekir. Yönetim işlevi, batarya yönetim sistemleri (BYS) adı verilen elektronik devreler ve sistemler tarafından gerçekleştirilir. Havacılık uygulamaları için, daha yüksek güvenlik gereksinimleri nedeniyle BYS işlevleri kritiktir. Fonksiyonlardan bazıları dengeleme, aşırı şarj/deşarj koruması, kısa devre ve aşırı yük koruması olarak sıralanabilir. Bu işlevler, alternatif tasarım mimarileri ile tasarlanan BYS alt sistemleri ile ilgilidir. Her özel uygulama için BYS tasarımı yeniden gözden geçirilmeli ve BYS alt sistemleri uygulamaya özel gereksinimlere göre geliştirilmelidir. Ana odak batarya veya elektrik enerjisi depolama sisteminin emniyeti iken, havacılık için güvenilirlik (reliability) önemlidir. Bu yazıda, havacılık bataryaları ve BYS tasarımlarının mimari alternatifleri farklı uygulamalar için incelenmiş ve BYS tasarımı ile ilgili hususlar tartışılmıştır. BYS'nin gereksinim tabanlı parametrik tasarımının havacılık batarya yönetimi uygulamalarında önemli olduğu sonucuna varılmıştır.

Kaynakça

  • Abdelhafez, A., & Forsyth, A. J. (2009). A Review of More-Electric Aircraft. Aerospace Sciences & Aviation Technology, 1–13.
  • Andrea, D. (2010). Battery Management Systems for Large Lithium-ion Battery Packs. Artech House.
  • Borthomieu, Y. (2014). Satellite Lithium-Ion Batteries. In Lithium-Ion Batteries (pp. 311–344). Elsevier. https://doi.org/10.1016/B978-0-444-59513-3.00014-5
  • Bozzano, M., & Villafiorita, A. (2011). Design and safety assessment of critical systems. Auerbach Publications.
  • Hauser, A., & Kuhn, R. (2015a). Cell balancing, battery state estimation, and safety aspects of battery management systems for electric vehicles. In Advances in Battery Technologies for Electric Vehicles (Vol. 26262, pp. 283–326). Elsevier. https://doi.org/10.1016/B978-1-78242-377-5.00012-1
  • Hauser, A., & Kuhn, R. (2015b). High-voltage battery management systems (BMS) for electric vehicles. In Advances in Battery Technologies for Electric Vehicles (pp. 265–282). Elsevier. https://doi.org/10.1016/B978-1-78242-377-5.00011-X
  • Lu, L., Han, X., Li, J., Hua, J., & Ouyang, M. (2013). A review on the key issues for lithium-ion battery management in electric vehicles. Journal of Power Sources, 226, 272–288. https://doi.org/10.1016/j.jpowsour.2012.10.060
  • Mcloughlin, A. (2009). More Electric – Ready for take off ? 13th European Conference on Power Electronics and Applications, 1–7.
  • Pals, C. R., & Newman, J. (1995). Thermal Modeling of the Lithium/Polymer Battery I. Discharge Behavior of a Single Cell. Journal of The Electrochemical Society, 142(10), 3282. https://doi.org/10.1149/1.2049975
  • Pesaran, A. (2001). Battery Thermal Management in EVs and HEVs : Issues and Solutions. Advanced Automotive Battery Conference, 10.
  • Pesaran, A., Burch, S. D., & Keyser, M. (1999). An approach for designing thermal management systems for electric and hybrid vehicle battery packs. Fourth Vehicle Thermal Management Systems Conference and Exhibition. http://www.nrel.gov/docs/fy99osti/25992.pdf
  • Pesaran, A., Vlahinos, A., & Burch, S. D. (1997). Thermal Performance of EV and HEV Battery Modules and Packs. Fourteenth International Electric Vehicle Symposium.
  • Rahn. D., C., & Wang, C.-Y. (2013). Battery Systems Engineering. Wiley.
  • Reid, C. M. (2015). Batteries at NASA – Today and Beyond. Undergraduate Seminar for Xavier University of New Orleans.
  • Technology, A. (2001). Advances in more-electric aircraft technologies. Aircraft Engineering and Aerospace Technology, 73(3).
  • Vutetakis, D. (2013). Applications - Transportation | Aviation: Battery. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. https://doi.org/10.1016/B978-0-12-409547-2.01114-8
  • Wheeler, P., & Bozhko, S. (2014). The More Electric Aircraft: Technology and challenges. IEEE Electrification Magazine, 2(4), 6–12. https://doi.org/10.1109/MELE.2014.2360720
  • Williard, N., He, W., Hendricks, C., & Pecht, M. (2013). Lessons learned from the 787 dreamliner issue on Lithium-Ion Battery reliability. Energies, 6(9), 4682–4695. https://doi.org/10.3390/en6094682

Battery Management System Architectures For Unmanned Air Vehicles: A Strategic Issue

Yıl 2021, Cilt: 3 Sayı: 1, 1 - 12, 30.06.2021

Öz

Among all of the industrial emissions 3% is produced by aviation. Electric propulsion is a promising option in achieving targets of better environment and sustainability. New concepts of power systems for more electric aircraft (MEA) are being developed, which requires developing demanding battery technologies and other types of energy storage systems. In this roadmap, batteries are strategically critical systems for developing further electric propulsion in aviation. This development also provides benefit to unmanned air vehicles. Using electric propulsion creates more flexible design possibilities for UAVs. Advances in power electronics technologies provide more possibilities for electric power use in UVAs, which also making it possible to use battery technologies. Lithium-ion batteries compared to other electric energy storage systems, provides higher specific energy and energy density. Besides these batteries require to be managed for safe and economic operation. The management function is performed by electronic circuits and systems called battery management systems (BMS). For aviation applications, BMS functions are critical because of the higher safety requirements. Some of the functions can be listed as balancing, over charge/discharge protection, short and overload protection. These functions are related to BMS subsystems which are designed through alternative design architectures. For each specific application, BMS design shall be revisited and BMS subsystems shall be decided according to application specific requirements. While the main focus is safety of the battery or electric energy storage system, reliability is also important for aviation. In this paper, requirements are reviewed for aviation batteries and architecture alternatives and aspects related to BMS design are discussed. It is concluded that, requirement based parametric design of the BMS is essential in aviation battery management applications.

Kaynakça

  • Abdelhafez, A., & Forsyth, A. J. (2009). A Review of More-Electric Aircraft. Aerospace Sciences & Aviation Technology, 1–13.
  • Andrea, D. (2010). Battery Management Systems for Large Lithium-ion Battery Packs. Artech House.
  • Borthomieu, Y. (2014). Satellite Lithium-Ion Batteries. In Lithium-Ion Batteries (pp. 311–344). Elsevier. https://doi.org/10.1016/B978-0-444-59513-3.00014-5
  • Bozzano, M., & Villafiorita, A. (2011). Design and safety assessment of critical systems. Auerbach Publications.
  • Hauser, A., & Kuhn, R. (2015a). Cell balancing, battery state estimation, and safety aspects of battery management systems for electric vehicles. In Advances in Battery Technologies for Electric Vehicles (Vol. 26262, pp. 283–326). Elsevier. https://doi.org/10.1016/B978-1-78242-377-5.00012-1
  • Hauser, A., & Kuhn, R. (2015b). High-voltage battery management systems (BMS) for electric vehicles. In Advances in Battery Technologies for Electric Vehicles (pp. 265–282). Elsevier. https://doi.org/10.1016/B978-1-78242-377-5.00011-X
  • Lu, L., Han, X., Li, J., Hua, J., & Ouyang, M. (2013). A review on the key issues for lithium-ion battery management in electric vehicles. Journal of Power Sources, 226, 272–288. https://doi.org/10.1016/j.jpowsour.2012.10.060
  • Mcloughlin, A. (2009). More Electric – Ready for take off ? 13th European Conference on Power Electronics and Applications, 1–7.
  • Pals, C. R., & Newman, J. (1995). Thermal Modeling of the Lithium/Polymer Battery I. Discharge Behavior of a Single Cell. Journal of The Electrochemical Society, 142(10), 3282. https://doi.org/10.1149/1.2049975
  • Pesaran, A. (2001). Battery Thermal Management in EVs and HEVs : Issues and Solutions. Advanced Automotive Battery Conference, 10.
  • Pesaran, A., Burch, S. D., & Keyser, M. (1999). An approach for designing thermal management systems for electric and hybrid vehicle battery packs. Fourth Vehicle Thermal Management Systems Conference and Exhibition. http://www.nrel.gov/docs/fy99osti/25992.pdf
  • Pesaran, A., Vlahinos, A., & Burch, S. D. (1997). Thermal Performance of EV and HEV Battery Modules and Packs. Fourteenth International Electric Vehicle Symposium.
  • Rahn. D., C., & Wang, C.-Y. (2013). Battery Systems Engineering. Wiley.
  • Reid, C. M. (2015). Batteries at NASA – Today and Beyond. Undergraduate Seminar for Xavier University of New Orleans.
  • Technology, A. (2001). Advances in more-electric aircraft technologies. Aircraft Engineering and Aerospace Technology, 73(3).
  • Vutetakis, D. (2013). Applications - Transportation | Aviation: Battery. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. https://doi.org/10.1016/B978-0-12-409547-2.01114-8
  • Wheeler, P., & Bozhko, S. (2014). The More Electric Aircraft: Technology and challenges. IEEE Electrification Magazine, 2(4), 6–12. https://doi.org/10.1109/MELE.2014.2360720
  • Williard, N., He, W., Hendricks, C., & Pecht, M. (2013). Lessons learned from the 787 dreamliner issue on Lithium-Ion Battery reliability. Energies, 6(9), 4682–4695. https://doi.org/10.3390/en6094682
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makaleleri
Yazarlar

Melih Yıldız Bu kişi benim 0000-0002-7546-4462

Yayımlanma Tarihi 30 Haziran 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 3 Sayı: 1

Kaynak Göster

APA Yıldız, M. (2021). Battery Management System Architectures For Unmanned Air Vehicles: A Strategic Issue. Anadolu Strateji Dergisi, 3(1), 1-12.

ANADOLU STRATEJİ DERGİSİ / JOURNAL OF ANATOLIAN STRATEGY e-ISSN: 2687-5721