Derleme
BibTex RIS Kaynak Göster

Gıdalarda Çözücü Olarak Kullanılan Etil Alkol: Alternatif Yöntemler ve Kaynaklar

Yıl 2024, , 32 - 39, 30.06.2024
https://doi.org/10.53569/apjhls.1504259

Öz

Etil alkol, gıdalarda aroma ve gıda katkı maddelerini çözündürmek ve bitkilerde bulunan fenolik asitler, flavonoidler, karotenoidler, alkoloidler vb biyoaktif bileşenleri özütlemek gibi çeşitli amaçlar için kullanılan polar organik bir alkol çeşididir. Diğer metanol gibi çözücülere göre toksik olmaması, kullanım kolaylığı, maliyetinin düşük olması ve çözücü olarak uygun fiziksel ve kimyasal özelliklere sahip olmasından dolayı çokça tercih edilmektedir. Etil alkol İslam inancına göre tüketilmesi yasaklanmıştır. Gıdalarda kullanılan aroma maddelerini çözündürmek ve vanilya gibi doğal aromaların etkisini artırmak amacıyla kullanılan etil alkol aromalarla birlikte gıdalarında yapısına dahil olmalarından dolayı İslam inancına sahip bireylerin bu gıdaları tüketmelerinde şüpheler oluşturmaktadır. Aynı zamanda bitkilerden etken maddeler ekstrakte edildikten sonra her ne kadar çözücü olarak etil alkol evaporatif ve süblimatif yöntemlerle uzaklaştırıldığı düşünülse de bir miktar kalıntı olarak kaldığı yapılan araştırmalarda tespit edilmiş durumdadır. Bu açıdan yukarıda sayılan çeşitli amaçlar için kullanılan etil alkole toksik olmayan uygun bir alternatif çözücü arayışlarına girilmiş ve aynı zamanda bitkilerdeki biyoaktif maddelerin ekstraksiyonunda çözücü kullanılmayan yeni tekniklerin arayışları başlamıştır. Aroma çözücü olarak etil alkole alternatif propilen glikol gibi bazı çözücüler zayıf etkilerine rağmen günümüzde kullanılmaktadır. Bu gibi çözücüler zayıf etkilerinden ve insan sağlığı üzerine olumsuz etkilerinden ve kullanımı sınırlı düzeyde olmasından dolayı çözücü kullanılmadan etkili olabilecek alternatif yöntemler araştırılmaktadır. Aroma ve bazı gıda katkı maddelerinin gıdalarda emülsiye formatında kullanımı yaygınlaşmıştır. Bitkilerden sağlık amaçlı biyoaktif bileşenlerin çıkarılmasında ise suyu ve karbondioksiti etkili şekilde kullanan yeni ekstraksiyon teknikleri veya herhangi bir çözgen kullanımına gerek duyulmayan ekstraksiyon teknikleri kullanılabilmektedir. Ultrason destekli ekstraksiyon, süperkritik akışkan ekstraksiyonu, mikrodalga destekli ekstraksiyon, subkritik su ekstraksiyonu ve enzim destekli ekstraksiyon teknikleri bu amaçla günümüzde laboratuvar ve endüstriyel ölçekte başarılı bir şekilde kullanılmaya başlamıştır. Sonuç olarak, bazı katkı maddelerinin çözündürülmesinde ve bitkilerden biyoaktif bileşenlerin çıkarılmasında etil alkol alternatifi çözücüler ve ekstraksiyon teknikleri bulunmaktadır.

Kaynakça

  • Akbulut, H. F., & Akbulut, M. (2023). Mineral composition, the profile of phenolic compounds, organic acids, sugar and in vitro antioxidant capacity, and antimicrobial activity of organic extracts of Juniperus drupacea fruits. Food Science & Nutrition, 11(10), 6435-6446. https://doi.org/10.1002/fsn3.3586
  • Akbulut, H. F., Almaghrebi, E., Obali, I., Vatansev, H., Vatansev, H., & Akbulut, M. (2024). Evaluation the organic acid, tocopherol and phenolic profiles of Dracaena cinnabari resin extracts obtained by different solvent extraction. Latin American Applied Research 54(2), 195-200. https://doi.org/10.52292/j.laar.2024.2865
  • Arslan, D., Aydın, M., & Türker, S. (2021). Tıbbi ve Aromatik Bitkilerin Ekstraksiyon Yöntemleri, Gıdalarda Kullanımı ve Takviye Edici Gıda Alanında Değerlendirilmesi. Turkish Journal of Agriculture-Food Science and Technology, 9(5), 926-936. https://doi.org/10.24925/turjaf.v9i5.926-936.4399
  • Chemat, F., Rombaut, N., Sicaire, A. G., Meullemiestre, A., Fabiano-Tixier, A. S., & Abert-Vian, M. (2017). Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrasonics Sonochemistry, 34, 540-560. doi: 10.1016/j.ultsonch.2016.06.035
  • Cheng, Y., Xue, F., Yu, S., Du, S., & Yang, Y. (2021). Subcritical water extraction of natural products. Molecules, 26(13), 4004. https://doi.org/10.3390/molecules26134004
  • Ćujić, N., Šavikin, K., Janković, T., Pljevljakušić, D., Zdunić, G., & Ibrić, S. (2016). Optimization of polyphenols extraction from dried chokeberry using maceration as traditional technique. Food Chemistry, 194, 135-142. https://doi.org/10.1016/j.foodchem.2015.08.008
  • da Rosa, G. S., Vanga, S. K., Gariepy, Y., & Raghavan, V. (2019). Comparison of microwave, ultrasonic and conventional techniques for extraction of bioactive compounds from olive leaves (Olea europaea L.). Innovative Food Science & Emerging Technologies, 58, 102234. https://doi.org/10.1016/j.ifset.2019.102234
  • Du G, Zhao HY, Song YL, Zhang QW, Wang YT. (2011). Rapid simultaneous determination of isofavones in Radix puerariae using high-perfor- mance liquid chromatography-triple quadrupole mass spectrometry with novel shell-type column. J Sep Sci. 34(19), 2576–2585. https://doi.org/10.1002/jssc.201100295
  • Filly, A., Fernandez, X., Minuti, M., Visinoni, F., Cravotto, G., & Chemat, F. (2014). Solvent-free microwave extraction of essential oil from aromatic herbs: From laboratory to pilot and industrial scale. Food chemistry, 150, 193-198. https://doi.org/10.1016/j.foodchem.2013.10.139
  • Joshi, D. R., & Adhikari, N. (2019). An overview on common organic solvents and their toxicity. Journal of Pharmaceutical Research International, 28(3), 1-18. https://doi.org/10.9734/jpri/2019/v28i330203
  • King, J. W. (2002). Supercritical fluid extraction: present status and prospects. Grasas y Aceites, 53(1), 8-21. https://doi.org/10.3989/gya.2002.v53.i1.286
  • Lezoul, N. E. H., Belkadi, M., Habibi, F., & Guillén, F. (2020). Extraction processes with several solvents on total bioactive compounds in different organs of three medicinal plants. Molecules, 25(20), 4672. https://doi.org/10.3390/molecules25204672
  • Li P, Xu G, Li SP, Wang YT, Fan TP, Zhao QS, Zhang QW. (2008). Optimizing ultra performance liquid chromatographic analysis of 10 diterpenoid com- pounds in Salvia miltiorrhiza using central composite design. J Agric Food Chem. 56(4),1164–1171. https://doi.org/10.1021/jf073020u
  • Li P, Yin ZQ, Li SL, Huang XJ, Ye WC, Zhang QW. (2014). Simultaneous deter- mination of eight favonoids and pogostone in Pogostemon cablin by high performance liquid chromatography. J Liq Chromatogr Relat Technol. 37(12), 1771–1784. https://doi.org/10.1080/10826076.2013.809545
  • López-Bascón, M. A., & De Castro, M. L. (2020). Soxhlet extraction. In Liquid-phase extraction (pp. 327-354). Elsevier.
  • McHugh, M., & Krukonis, V. (2013). Supercritical fluid extraction: principles and practice. Elsevier.
  • Oroian M, Dranca F, Ursachi F. 2020. Comparative evaluation of maceration, microwave and ultrasonic-assisted extraction of phenolic compounds from propolis. Journal of Food Science and Technology, 57(1): 70-78. https://doi.org/10.1007/s13197-019-04031-x
  • Petigny, L., Özel, M. Z., Périno, S., Wajsman, J., & Chemat, F. (2015). Water as green solvent for extraction of natural products. Green extraction of natural products: Theory and practice, Wiley Online Library, pp 237-264. https://doi.org/10.1002/9783527676828.ch7
  • Reverchon, E., & De Marco, I. (2006). Supercritical fluid extraction and fractionation of natural matter. The Journal of Supercritical Fluids, 38(2), 146-166. https://doi.org/10.1016/j.supflu.2006.03.020
  • Sanjeewa, K. A., Herath, K. H. I. N. M., Kim, Y. S., Jeon, Y. J., & Kim, S. K. (2023). Enzyme-assisted extraction of bioactive compounds from seaweeds and microalgae. TrAC Trends in Analytical Chemistry, 117266. https://doi.org/10.1016/j.trac.2023.117266
  • Sezer, Y. Ç., Süfer, Ö., & Sezer, G. (2017). Extraction of phenolic compounds from oven and microwave dried mushrooms (Agaricus bisporus and Pleurotus ostreatus) by using methanol, ethanol and aceton as solvents. Indian J. Pharm. Educ. Res, 51(3), S393-S397. doi: 10.5530/ijper.51.3s.55
  • Shi, J., Kassama, L. S., & Kakuda, Y. (2007). Supercritical fluid technology for extraction of bioactive components. In Functional food ingredients and nutraceuticals processing technologies. CRP Press.
  • Sivagnanam, S. P., Alaydi, H., Cabral, E. M., Poojary, M. M., Karuppusamy, S., & Tiwari, B. K. (2024). Ultrasound, microwave and enzyme-assisted multiproduct biorefinery of Ascophyllum nodosum. Food Chemistry, 433, 137259. https://doi.org/10.1016/j.foodchem.2023.137259
  • Yi Y, Zhang QW, Li SL, Wang Y, Ye WC, Zhao J, Wang YT. (2012). Simultaneous quantifcation of major favonoids in “Bawanghua”, the edible fower of Hylocereus undatus using pressurised liquid extraction and high performance liquid chromatography. Food Chem. 135(2), 528–533. https://doi.org/10.1016/j.foodchem.2012.05.010
  • Zhang, QW., Lin, LG., Ye, WC. (2018). Techniques for extraction and isolation of natural products: A comprehensive review. Chinese medicine, 13, 1-26. https://doi.org/10.1186/s13020-018-0177-x
  • Zhou YQ, Zhang QW, Li SL, Yin ZQ, Zhang XQ, Ye WC. (2012). Quality evaluation of semen oroxyli through simultaneous quantifcation of 13 compo- nents by high performance liquid chromatography. Curr Pharm Anal. 8(2), 206–213.
  • Zuorro, A., Lavecchia, R., González-Delgado, Á. D., García-Martinez, J. B., & L’Abbate, P. (2019). Optimization of enzyme-assisted extraction of flavonoids from corn husks. Processes, 7(11), 804. https://doi.org/10.3390/pr7110804

Ethyl Alcohol Used as a Solvent in Foods: Alternative Methods and Sources

Yıl 2024, , 32 - 39, 30.06.2024
https://doi.org/10.53569/apjhls.1504259

Öz

Ethyl alcohol is a type of polar organic alcohol used for various purposes such as dissolving flavorings and food additives in foods and extracting bioactive components such as phenolic acids, flavonoids, carotenoids, alkaloids, etc. found in plants. It is widely preferred because it is non-toxic compared to other solvents such as methanol, easy to use, low cost and has suitable physical and chemical properties as a solvent. Consumption of ethyl alcohol is prohibited according to Islamic belief. Ethyl alcohol, which is used to dissolve flavoring substances used in foods and to increase the effect of natural flavors such as vanilla, creates doubts in the consumption of these foods by individuals of Islamic faith because it is included in the structure of foods along with flavors. At the same time, although ethyl alcohol as a solvent is thought to be removed by evaporative and sublimative methods after the active ingredients are extracted from the plants, it has been determined in research that it remains as a residue. In this respect, a search has been made for a suitable non-toxic alternative solvent to ethyl alcohol, which is used for various purposes listed above, and at the same time, searches have begun for new techniques that do not use solvents in the extraction of bioactive substances in plants. Some solvents such as propylene glycol, which are alternatives to ethyl alcohol as flavor solvents, are used today despite their weak effects. Since the use of such solvents is limited due to their weak effects and negative effects on human health, alternative methods that can be effective without the use of solvents are being investigated. The use of flavors and some food additives in emulsion format in foods has become widespread. New extraction techniques that use water and carbon dioxide effectively or extraction techniques that do not require the use of any solvents can be used to extract bioactive compounds from plants for health purposes. Ultrasound-assisted extraction, supercritical fluid extraction, microwave-assisted extraction, subcritical water extraction and enzyme-assisted extraction techniques have now begun to be used successfully for this purpose on a laboratory and industrial scale. As a result, ethyl alcohol alternative solvents and extraction techniques are available to dissolve some additives and extract bioactive components from plants.

Kaynakça

  • Akbulut, H. F., & Akbulut, M. (2023). Mineral composition, the profile of phenolic compounds, organic acids, sugar and in vitro antioxidant capacity, and antimicrobial activity of organic extracts of Juniperus drupacea fruits. Food Science & Nutrition, 11(10), 6435-6446. https://doi.org/10.1002/fsn3.3586
  • Akbulut, H. F., Almaghrebi, E., Obali, I., Vatansev, H., Vatansev, H., & Akbulut, M. (2024). Evaluation the organic acid, tocopherol and phenolic profiles of Dracaena cinnabari resin extracts obtained by different solvent extraction. Latin American Applied Research 54(2), 195-200. https://doi.org/10.52292/j.laar.2024.2865
  • Arslan, D., Aydın, M., & Türker, S. (2021). Tıbbi ve Aromatik Bitkilerin Ekstraksiyon Yöntemleri, Gıdalarda Kullanımı ve Takviye Edici Gıda Alanında Değerlendirilmesi. Turkish Journal of Agriculture-Food Science and Technology, 9(5), 926-936. https://doi.org/10.24925/turjaf.v9i5.926-936.4399
  • Chemat, F., Rombaut, N., Sicaire, A. G., Meullemiestre, A., Fabiano-Tixier, A. S., & Abert-Vian, M. (2017). Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrasonics Sonochemistry, 34, 540-560. doi: 10.1016/j.ultsonch.2016.06.035
  • Cheng, Y., Xue, F., Yu, S., Du, S., & Yang, Y. (2021). Subcritical water extraction of natural products. Molecules, 26(13), 4004. https://doi.org/10.3390/molecules26134004
  • Ćujić, N., Šavikin, K., Janković, T., Pljevljakušić, D., Zdunić, G., & Ibrić, S. (2016). Optimization of polyphenols extraction from dried chokeberry using maceration as traditional technique. Food Chemistry, 194, 135-142. https://doi.org/10.1016/j.foodchem.2015.08.008
  • da Rosa, G. S., Vanga, S. K., Gariepy, Y., & Raghavan, V. (2019). Comparison of microwave, ultrasonic and conventional techniques for extraction of bioactive compounds from olive leaves (Olea europaea L.). Innovative Food Science & Emerging Technologies, 58, 102234. https://doi.org/10.1016/j.ifset.2019.102234
  • Du G, Zhao HY, Song YL, Zhang QW, Wang YT. (2011). Rapid simultaneous determination of isofavones in Radix puerariae using high-perfor- mance liquid chromatography-triple quadrupole mass spectrometry with novel shell-type column. J Sep Sci. 34(19), 2576–2585. https://doi.org/10.1002/jssc.201100295
  • Filly, A., Fernandez, X., Minuti, M., Visinoni, F., Cravotto, G., & Chemat, F. (2014). Solvent-free microwave extraction of essential oil from aromatic herbs: From laboratory to pilot and industrial scale. Food chemistry, 150, 193-198. https://doi.org/10.1016/j.foodchem.2013.10.139
  • Joshi, D. R., & Adhikari, N. (2019). An overview on common organic solvents and their toxicity. Journal of Pharmaceutical Research International, 28(3), 1-18. https://doi.org/10.9734/jpri/2019/v28i330203
  • King, J. W. (2002). Supercritical fluid extraction: present status and prospects. Grasas y Aceites, 53(1), 8-21. https://doi.org/10.3989/gya.2002.v53.i1.286
  • Lezoul, N. E. H., Belkadi, M., Habibi, F., & Guillén, F. (2020). Extraction processes with several solvents on total bioactive compounds in different organs of three medicinal plants. Molecules, 25(20), 4672. https://doi.org/10.3390/molecules25204672
  • Li P, Xu G, Li SP, Wang YT, Fan TP, Zhao QS, Zhang QW. (2008). Optimizing ultra performance liquid chromatographic analysis of 10 diterpenoid com- pounds in Salvia miltiorrhiza using central composite design. J Agric Food Chem. 56(4),1164–1171. https://doi.org/10.1021/jf073020u
  • Li P, Yin ZQ, Li SL, Huang XJ, Ye WC, Zhang QW. (2014). Simultaneous deter- mination of eight favonoids and pogostone in Pogostemon cablin by high performance liquid chromatography. J Liq Chromatogr Relat Technol. 37(12), 1771–1784. https://doi.org/10.1080/10826076.2013.809545
  • López-Bascón, M. A., & De Castro, M. L. (2020). Soxhlet extraction. In Liquid-phase extraction (pp. 327-354). Elsevier.
  • McHugh, M., & Krukonis, V. (2013). Supercritical fluid extraction: principles and practice. Elsevier.
  • Oroian M, Dranca F, Ursachi F. 2020. Comparative evaluation of maceration, microwave and ultrasonic-assisted extraction of phenolic compounds from propolis. Journal of Food Science and Technology, 57(1): 70-78. https://doi.org/10.1007/s13197-019-04031-x
  • Petigny, L., Özel, M. Z., Périno, S., Wajsman, J., & Chemat, F. (2015). Water as green solvent for extraction of natural products. Green extraction of natural products: Theory and practice, Wiley Online Library, pp 237-264. https://doi.org/10.1002/9783527676828.ch7
  • Reverchon, E., & De Marco, I. (2006). Supercritical fluid extraction and fractionation of natural matter. The Journal of Supercritical Fluids, 38(2), 146-166. https://doi.org/10.1016/j.supflu.2006.03.020
  • Sanjeewa, K. A., Herath, K. H. I. N. M., Kim, Y. S., Jeon, Y. J., & Kim, S. K. (2023). Enzyme-assisted extraction of bioactive compounds from seaweeds and microalgae. TrAC Trends in Analytical Chemistry, 117266. https://doi.org/10.1016/j.trac.2023.117266
  • Sezer, Y. Ç., Süfer, Ö., & Sezer, G. (2017). Extraction of phenolic compounds from oven and microwave dried mushrooms (Agaricus bisporus and Pleurotus ostreatus) by using methanol, ethanol and aceton as solvents. Indian J. Pharm. Educ. Res, 51(3), S393-S397. doi: 10.5530/ijper.51.3s.55
  • Shi, J., Kassama, L. S., & Kakuda, Y. (2007). Supercritical fluid technology for extraction of bioactive components. In Functional food ingredients and nutraceuticals processing technologies. CRP Press.
  • Sivagnanam, S. P., Alaydi, H., Cabral, E. M., Poojary, M. M., Karuppusamy, S., & Tiwari, B. K. (2024). Ultrasound, microwave and enzyme-assisted multiproduct biorefinery of Ascophyllum nodosum. Food Chemistry, 433, 137259. https://doi.org/10.1016/j.foodchem.2023.137259
  • Yi Y, Zhang QW, Li SL, Wang Y, Ye WC, Zhao J, Wang YT. (2012). Simultaneous quantifcation of major favonoids in “Bawanghua”, the edible fower of Hylocereus undatus using pressurised liquid extraction and high performance liquid chromatography. Food Chem. 135(2), 528–533. https://doi.org/10.1016/j.foodchem.2012.05.010
  • Zhang, QW., Lin, LG., Ye, WC. (2018). Techniques for extraction and isolation of natural products: A comprehensive review. Chinese medicine, 13, 1-26. https://doi.org/10.1186/s13020-018-0177-x
  • Zhou YQ, Zhang QW, Li SL, Yin ZQ, Zhang XQ, Ye WC. (2012). Quality evaluation of semen oroxyli through simultaneous quantifcation of 13 compo- nents by high performance liquid chromatography. Curr Pharm Anal. 8(2), 206–213.
  • Zuorro, A., Lavecchia, R., González-Delgado, Á. D., García-Martinez, J. B., & L’Abbate, P. (2019). Optimization of enzyme-assisted extraction of flavonoids from corn husks. Processes, 7(11), 804. https://doi.org/10.3390/pr7110804
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Gıda Mühendisliği
Bölüm Makaleler
Yazarlar

Hatice Feyza Akbulut 0000-0001-6798-0953

Mehmet Akbulut 0000-0001-5621-8293

Yayımlanma Tarihi 30 Haziran 2024
Gönderilme Tarihi 24 Haziran 2024
Kabul Tarihi 27 Haziran 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Akbulut, H. F., & Akbulut, M. (2024). Gıdalarda Çözücü Olarak Kullanılan Etil Alkol: Alternatif Yöntemler ve Kaynaklar. Academic Platform Journal of Halal Lifestyle, 6(1), 32-39. https://doi.org/10.53569/apjhls.1504259

26650 26648      26647      26649         26642    

26651       266522528025281    25282


25283      25284     25288      25286       25287


Akademik Platform Helal Yaşam Dergisi