Derleme
BibTex RIS Kaynak Göster

Gıdalardaki Antibiyotik Kalıntıları

Yıl 2021, Cilt: 3 Sayı: 1, 17 - 25, 30.06.2021

Öz

Antibiyotiklerin hayvanlara; profilaktik, kemoteröpatik ve büyümeyi teşvik gibi amaçlar için kullanıldığı bilinmektedir. Antibiyotikler, ilaç prospektüsündeki kullanım talimatlarına uygun kullanılmaması, hijyen kurallarına uyulmaması, önerilen dozajlardan fazla kullanılması, bekletme sürelerine uyulmaması gibi sebepler ile hayvan dokularında ve hayvan ürünlerinde kalıntı olarak kalabilmektedir. Gıda olarak kullanılan hayvan dokularında ve hayvansal ürünlerdeki antibiyotik kalıntıları, düşük doz maruziyet yoluyla doğrudan hastalığa neden olarak veya antibiyotik direnci yoluyla dolaylı olarak insan sağlığı üzerinde olumsuz etkilere sebep olabilmektedir. Antibiyotik kalıntıları yalnızca hayvansal kaynaklı gıdalarda bulunmamaktadır. Tarım arazilerine gübre veya çiftlik atıklarının uygulanması ile birlikte toprağa antibiyotik kalıntıları geçebilmekte ve bu durumda topraktan yetişen gıda gruplarında antibiyotik kalıntılarının saptanmasına sebep olabilmektedir. Ancak, gıdalardaki antibiyotik ekstraksiyonu ve analizi için henüz bir standart metot oluşturulmamıştır ve çeşitli gıda türlerindeki antibiyotik kalıntı durumuna ilişkin nispeten az sayıda veri bulunmaktadır. Mevcut veriler ile gıdalardaki antibiyotik kalıntılarının insan sağlığına potansiyel etkileri bilinmemekte ve oldukça çelişkili sonuçlar elde edilmektedir. Bu nedenle bu derleme çalışmada literatürde bulunan gıdalardaki antibiyotik kalıntıları ile ilgili bilgilerin derlenmesi ve değerlendirilmesi amaçlanmıştır.

Kaynakça

  • Aarestrup F. 2012. Get pigs off antibiotics. Nature, 486(7404): 465-466.
  • Aga DS, Lenczewski M, Snow D, Muurinen J, Sallach JB, Wallace JS. 2016. Challenges in the Measurement of Antibiotics and in Evaluating Their Impacts in Agroecosystems: A Critical Review. Journal of Environmental Quality, 45(2): 407-419.
  • Almakki A, Esteves K, Vanhove AS, Mosser T, Aujoulat F, Marchandin H, . . . Licznar-Fajardo P. 2017. A new methodology to assess antimicrobial resistance of bacteria in coastal waters; pilot study in a Mediterranean hydrosystem. Comptes Rendus Geoscience, 349(6-7): 310-318.
  • Andersson DI, Hughes D. 2014. Microbiological effects of sublethal levels of antibiotics. Nat Rev Microbiol, 12(7): 465-478.
  • Aydemir M, Altun S, Durmaz H. 2019. Şanlıurfa İlinde Satışa Sunulan Kıymalarda Premi®Test ile Antibiyotik İlaç Kalıntılarının Tespiti . Harran Üniversitesi Veteriner Fakültesi Dergisi, 8 (2): 128-131.
  • Baghani A, Mesdaghinia A, Rafieiyan M, Soltan Dallal MM, Douraghi M. 2019. Tetracycline and ciprofloxacin multiresidues in beef and chicken meat samples using indirect competitive ELISA. J Immunoassay Immunochem, 40(3): 328-342.
  • Bengtsson-Palme J, Larsson DG. 2016. Concentrations of antibiotics predicted to select for resistant bacteria: Proposed limits for environmental regulation. Environment International, 86: 140-149.
  • Bengtsson B, Greko C. 2014. Antibiotic resistance--consequences for animal health, welfare, and food production. Ups J Med Sci, 119(2): 96-102.
  • Butaye P, Devriese LA, Haesebrouck F. 2003. Antimicrobial growth promoters used in animal feed: effects of less well known antibiotics on gram-positive bacteria. Clin Microbiol Rev, 16(2): 175-188.
  • Chen H, Liu S, Xu XR, Diao ZH, Sun KF, Hao QW, . . . Ying GG. 2018. Tissue distribution, bioaccumulation characteristics and health risk of antibiotics in cultured fish from a typical aquaculture area. Journal of Hazardous Materials, 343: 140-148.
  • Chen J, Sun R, Pan C, Sun Y, Mai B, Li QX. 2020. Antibiotics and Food Safety in Aquaculture. Journal of Agricultural and Food Chemistry, 68(43): 11908-11919.
  • Chen J, Ying GG, Deng WJ. 2019. Antibiotic Residues in Food: Extraction, Analysis, and Human Health Concerns. Journal of Agricultural and Food Chemistry, 67(27): 7569-7586.
  • Commission E. 2009. Commission staff working document on the implementation of national residue monitoring plans in the member states in 2009 ( 96/23/EC).
  • De la Huebra MJG & Vincent U. 2005. Analysis of macrolide antibiotics by liquid chromatography. Journal of Pharmaceutical and Biomedical Analysis, 39(3-4): 376-398.
  • Dibner JJ, Richards JD. 2005. Antibiotic growth promoters in agriculture: history and mode of action. Poult Sci, 84(4): 634-643.
  • Elnasri A, Salman M, Rade SAE. 2014. Screening of Antibiotic Residues in Poultry Liver, Kidney and Muscle in Khartoum State, Sudan.
  • Er B, Onurdag FK, Demirhan B, Ozgacar S, Oktem AB, Abbasoglu U. 2013. Screening of quinolone antibiotic residues in chicken meat and beef sold in the markets of Ankara, Turkey. Poult Sci, 92(8): 2212-2215.
  • Falowo A, Akinmoladun O. 2019. Veterinary Drug Residues in Meat and Meat Products: Occurrence, Detection and Implications.
  • Garg N, Vallejo D, Boyle D, Nanayakkara I, Teng A, Pablo J, . . . Felgner PJ 2016. Integrated on-chip microfluidic immunoassay for rapid biomarker detection. Procedia Engineering, 159: 53-57.
  • Gaurav A, Gill JPS, Aulakh R, Bedi J. 2014. ELISA based monitoring and analysis of tetracycline residues in cattle milk in various districts of Punjab. Veterinary World, 7: 26-29.
  • Grote M, Schwake-Anduschus C, Michel R, Stevens H, Heyser W, Lan-Genkämper G, . . . Freitag M. 2007. Incorporation of veterinary antibiotics into crops from manured soil. Freitag / Landbauforschung Völkenrode, 1: 25-32.
  • Holmes AH, Moore LS, Sundsfjord A, Steinbakk M, Regmi S, Karkey A, . . . Piddock LJ. 2016. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet, 387(10014): 176-187.
  • Jank L, Martins M, Arsand J, Motta T, Feijó T, Castilhos T, . . . Pizzolato T. 2017. Liquid Chromatography–Tandem Mass Spectrometry Multiclass Method for 46 Antibiotics Residues in Milk and Meat: Development and Validation. Food Analytical Methods, 10. doi:10.1007/s12161-016-0755-4.
  • Kalunke RM, Grasso G, D'Ovidio R, Dragone R, Frazzoli CJMJ. 2018. Detection of ciprofloxacin residues in cow milk: a novel and rapid optical β-galactosidase-based screening assay. Microchemical Journal 136: 128-132.
  • Kang DH, Gupta S, Rosen C, Fritz V, Singh A, Chander Y, . . . Rohwer C. 2013. Antibiotic uptake by vegetable crops from manure-applied soils. J Agric Food Chem, 61(42): 9992-10001.
  • Kebede G, Zenebe T, Disassa H, Tolosa T. 2014. Review on Detection of Antimicrobial Residues in Raw Bulk Milk in Dairy Farms. AJBAS, 6.
  • Klimek L, Aderhold C, Sperl A, Trautmann A. 2017. Allergic reactions to antibiotics – two sides of the same coin: clearly diagnose or reliably rule out. Allergo Journal International, 26(6): 212-218.
  • Kümmerer & Witschel. 2001. Pharmaceuticals in the environment: Springer Berlin Heidelberg.
  • Le Page G, Gunnarsson L, Snape J, Tyler CR. 2017. Integrating human and environmental health in antibiotic risk assessment: A critical analysis of protection goals, species sensitivity and antimicrobial resistance. Environment International, 109: 155-169.
  • Lee MH, & Lee HJ. 2001. Public Health Risks: Chemical and Antibiotic Residues-Review. Asian-Aust J Anim Sci, 14(3): 402-403.
  • Li N, Ho KWK, Ying GG, Deng WJ. 2017. Veterinary antibiotics in food, drinking water, and the urine of preschool children in Hong Kong. Environment International, 108: 246-252.
  • Liu X, Steele JC, Meng XZ. 2017. Usage, residue, and human health risk of antibiotics in Chinese aquaculture: A review. Environ Pollut, 223: 161-169.
  • Monteiro S, Moura Andrade G, Garcia F, Pilarski F. 2018. Antibiotic Residues and Resistant Bacteria in Aquaculture. The Pharmaceutical and Chemical Journal, 5(4): 127-147.
  • Muaz K, Riaz M, Akhtar S, Park S, Ismail A. 2018. Antibiotic Residues in Chicken Meat: Global Prevalence, Threats, and Decontamination Strategies: A Review. J Food Prot, 81(4): 619-627.
  • Niewold TA. 2007. The nonantibiotic anti-inflammatory effect of antimicrobial growth promoters, the real mode of action? A hypothesis. Poult Sci, 86(4), 605-609.
  • Normanno G, La Salandra G, Dambrosio A, Quaglia NC, Corrente M, Parisi A, . . . Celano GV. 2007. Occurrence, characterization and antimicrobial resistance of enterotoxigenic Staphylococcus aureus isolated from meat and dairy products. Int J Food Microbiol, 115(3): 290-296.
  • Okocha RC, Olatoye IO, Adedeji OB. 2018. Food safety impacts of antimicrobial use and their residues in aquaculture. Public Health Rev, 39: 21.
  • Parthasarathy R, Monette CE, Bracero S, Saha M. 2018. Methods for field measurement of antibiotic concentrations: limitations and outlook. FEMS Microbiology Ecology, 94(8): 105.
  • Ramatla T, Ngoma L, Adetunji M, Mwanza M. 2017. Evaluation of Antibiotic Residues in Raw Meat Using Different Analytical Methods. Antibiotics (Basel, Switzerland), 6(4): 34.
  • Rico A, Tran Minh P, Satapornvanit K, Min J, Shahabuddin AM, Henriksson PJG, . . . Brink PJ. 2013. Use of veterinary medicines, feed additives and probiotics in four major internationally traded aquaculture species farmed in Asia. Aquaculture, 412-413: 231-243.
  • Rossi R, Saluti G, Moretti S, Diamanti I, Giusepponi D, Galarini R. 2018. Multiclass methods for the analysis of antibiotic residues in milk by liquid chromatography coupled to mass spectrometry: A review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess, 35(2): 241-257.
  • Sachi S, Ferdous J, Sikder MH, Azizul Karim Hussani SM. 2019. Antibiotic residues in milk: Past, present, and future. Journal of Advanced Veterinary and Animal Research, 6(3): 315-332.
  • Sarmah AK, Meyer MT, Boxall AB. 2006. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere, 65(5): 725-759.
  • Smith-Spangler C, Brandeau M, Hunter G, Bavinger J, Pearson M, Eschbach P, . . . Bravata D. 2012. Are Organic Foods Safer or Healthier Than Conventional Alternatives? Annals of internal medicine, 157: 348-366.
  • Tufa T. 2015. Veterinary Drug Residues in Food-animal Products: Its Risk Factors and Potential Effects on Public Health. Journal of Veterinary Science & Technology, 07: 1.
  • Uchida K, Konishi Y, Harada K, Okihashi M, Yamaguchi T, Do, MH, . . . Yamamoto Y. 2016. Monitoring of Antibiotic Residues in Aquatic Products in Urban and Rural Areas of Vietnam. Journal of Agricultural and Food Chemistry, 64(31): 6133-6138.
  • Van Boeckel TP, Brower C, Gilbert M, Grenfell BT, Levin SA, Robinson TP, . . . Laxminarayan R. 2015. Global trends in antimicrobial use in food animals. Proceedings of the National Academy of Sciences of the United States of America, 112(18): 5649-5654.
  • Vishnuraj MR, Kandeepan G, Rao KH, Chand S, Kumbhar V. 2016. Occurrence, public health hazards and detection methods of antibiotic residues in foods of animal origin: A comprehensive review. Cogent Food & Agriculture, 2(1), 1235458.
  • Wang YL, Liu ZM, Ren J, Guo BH. 2015. Development of a Method for the Analysis of Multiclass Antibiotic Residues in Milk Using QuEChERS and Liquid Chromatography-Tandem Mass Spectrometry. Foodborne Pathog Dis, 12(8): 693-703.
  • White DG, Zhao S, Sudler R, Ayers S, Friedman S, Chen S, . . . Meng J. 2001. The isolation of antibiotic-resistant salmonella from retail ground meats. N Engl J Med, 345(16): 1147-1154.
  • Xu F, Ren K, Yang YZ, Guo JP, Ma, GP, Liu YM, . . . Li X. 2015. Immunoassay of chemical contaminants in milk: A review. Journal of Integrative Agriculture, 14: 2282-2295.
  • Yu X, Liu H, Pu C, Chen J, Sun Y, Hu L. 2018. Determination of multiple antibiotics in leafy vegetables using QuEChERS–UHPLC–MS/MS. J Sep Sci, 41(3): 713-722.
  • Yuanmin M, Liangliang H, Mingxing D, Jian H, Saeed R. 2017. A Review of Antibiotic Residue Determination in Aquatic Products. In: International Conference on Material Science, Energy and Environmental Engineering (MSEEE 2017). Yüksek N. 2000. Etlerde Antibiyotik Kalıntılarının Aranması Üzerinde Çalışmalar. J Fac Vet Med, 20: 85-90.
  • Zhang H, Zhou Y, Huang Y, Wu L, Liu X, Luo Y. 2016. Residues and risks of veterinary antibiotics in protected vegetable soils following application of different manures. Chemosphere, 152: 229-237.

Antibiotic Residues in Food

Yıl 2021, Cilt: 3 Sayı: 1, 17 - 25, 30.06.2021

Öz

Antibiotics to animals; it is known to be used for purposes such as prophylactic, chemotherapeutic and growth stimulation. Antibiotics may remain as residues in animal tissues and animal products due to reasons such as not being used in accordance with the instructions for use in the drug insert, not complying with the hygiene rules, using more than the recommended dosages, not complying with the waiting times. Antibiotic residues in animal tissues and animal products used as food can cause adverse effects on human health directly by causing disease through low dose exposure or indirectly through antibiotic resistance. Antibiotic residues are not only found in foods of animal origin. With the application of fertilizer or farm wastes to the agricultural land, antibiotic residues can pass into the soil and in this case, it may cause the detection of antibiotic residues in food groups grown from the soil. However, a standard method for antibiotic extraction and analysis in foods has not yet been established and relatively few data are available on antibiotic residue status in various food types. With the existing data, the potential effects of antibiotic residues in foods on human health are unknown and quite contradictory results are obtained. Therefore, in this review study, it was aimed to compile and evaluate the information about antibiotic residues in foods in the literature.

Kaynakça

  • Aarestrup F. 2012. Get pigs off antibiotics. Nature, 486(7404): 465-466.
  • Aga DS, Lenczewski M, Snow D, Muurinen J, Sallach JB, Wallace JS. 2016. Challenges in the Measurement of Antibiotics and in Evaluating Their Impacts in Agroecosystems: A Critical Review. Journal of Environmental Quality, 45(2): 407-419.
  • Almakki A, Esteves K, Vanhove AS, Mosser T, Aujoulat F, Marchandin H, . . . Licznar-Fajardo P. 2017. A new methodology to assess antimicrobial resistance of bacteria in coastal waters; pilot study in a Mediterranean hydrosystem. Comptes Rendus Geoscience, 349(6-7): 310-318.
  • Andersson DI, Hughes D. 2014. Microbiological effects of sublethal levels of antibiotics. Nat Rev Microbiol, 12(7): 465-478.
  • Aydemir M, Altun S, Durmaz H. 2019. Şanlıurfa İlinde Satışa Sunulan Kıymalarda Premi®Test ile Antibiyotik İlaç Kalıntılarının Tespiti . Harran Üniversitesi Veteriner Fakültesi Dergisi, 8 (2): 128-131.
  • Baghani A, Mesdaghinia A, Rafieiyan M, Soltan Dallal MM, Douraghi M. 2019. Tetracycline and ciprofloxacin multiresidues in beef and chicken meat samples using indirect competitive ELISA. J Immunoassay Immunochem, 40(3): 328-342.
  • Bengtsson-Palme J, Larsson DG. 2016. Concentrations of antibiotics predicted to select for resistant bacteria: Proposed limits for environmental regulation. Environment International, 86: 140-149.
  • Bengtsson B, Greko C. 2014. Antibiotic resistance--consequences for animal health, welfare, and food production. Ups J Med Sci, 119(2): 96-102.
  • Butaye P, Devriese LA, Haesebrouck F. 2003. Antimicrobial growth promoters used in animal feed: effects of less well known antibiotics on gram-positive bacteria. Clin Microbiol Rev, 16(2): 175-188.
  • Chen H, Liu S, Xu XR, Diao ZH, Sun KF, Hao QW, . . . Ying GG. 2018. Tissue distribution, bioaccumulation characteristics and health risk of antibiotics in cultured fish from a typical aquaculture area. Journal of Hazardous Materials, 343: 140-148.
  • Chen J, Sun R, Pan C, Sun Y, Mai B, Li QX. 2020. Antibiotics and Food Safety in Aquaculture. Journal of Agricultural and Food Chemistry, 68(43): 11908-11919.
  • Chen J, Ying GG, Deng WJ. 2019. Antibiotic Residues in Food: Extraction, Analysis, and Human Health Concerns. Journal of Agricultural and Food Chemistry, 67(27): 7569-7586.
  • Commission E. 2009. Commission staff working document on the implementation of national residue monitoring plans in the member states in 2009 ( 96/23/EC).
  • De la Huebra MJG & Vincent U. 2005. Analysis of macrolide antibiotics by liquid chromatography. Journal of Pharmaceutical and Biomedical Analysis, 39(3-4): 376-398.
  • Dibner JJ, Richards JD. 2005. Antibiotic growth promoters in agriculture: history and mode of action. Poult Sci, 84(4): 634-643.
  • Elnasri A, Salman M, Rade SAE. 2014. Screening of Antibiotic Residues in Poultry Liver, Kidney and Muscle in Khartoum State, Sudan.
  • Er B, Onurdag FK, Demirhan B, Ozgacar S, Oktem AB, Abbasoglu U. 2013. Screening of quinolone antibiotic residues in chicken meat and beef sold in the markets of Ankara, Turkey. Poult Sci, 92(8): 2212-2215.
  • Falowo A, Akinmoladun O. 2019. Veterinary Drug Residues in Meat and Meat Products: Occurrence, Detection and Implications.
  • Garg N, Vallejo D, Boyle D, Nanayakkara I, Teng A, Pablo J, . . . Felgner PJ 2016. Integrated on-chip microfluidic immunoassay for rapid biomarker detection. Procedia Engineering, 159: 53-57.
  • Gaurav A, Gill JPS, Aulakh R, Bedi J. 2014. ELISA based monitoring and analysis of tetracycline residues in cattle milk in various districts of Punjab. Veterinary World, 7: 26-29.
  • Grote M, Schwake-Anduschus C, Michel R, Stevens H, Heyser W, Lan-Genkämper G, . . . Freitag M. 2007. Incorporation of veterinary antibiotics into crops from manured soil. Freitag / Landbauforschung Völkenrode, 1: 25-32.
  • Holmes AH, Moore LS, Sundsfjord A, Steinbakk M, Regmi S, Karkey A, . . . Piddock LJ. 2016. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet, 387(10014): 176-187.
  • Jank L, Martins M, Arsand J, Motta T, Feijó T, Castilhos T, . . . Pizzolato T. 2017. Liquid Chromatography–Tandem Mass Spectrometry Multiclass Method for 46 Antibiotics Residues in Milk and Meat: Development and Validation. Food Analytical Methods, 10. doi:10.1007/s12161-016-0755-4.
  • Kalunke RM, Grasso G, D'Ovidio R, Dragone R, Frazzoli CJMJ. 2018. Detection of ciprofloxacin residues in cow milk: a novel and rapid optical β-galactosidase-based screening assay. Microchemical Journal 136: 128-132.
  • Kang DH, Gupta S, Rosen C, Fritz V, Singh A, Chander Y, . . . Rohwer C. 2013. Antibiotic uptake by vegetable crops from manure-applied soils. J Agric Food Chem, 61(42): 9992-10001.
  • Kebede G, Zenebe T, Disassa H, Tolosa T. 2014. Review on Detection of Antimicrobial Residues in Raw Bulk Milk in Dairy Farms. AJBAS, 6.
  • Klimek L, Aderhold C, Sperl A, Trautmann A. 2017. Allergic reactions to antibiotics – two sides of the same coin: clearly diagnose or reliably rule out. Allergo Journal International, 26(6): 212-218.
  • Kümmerer & Witschel. 2001. Pharmaceuticals in the environment: Springer Berlin Heidelberg.
  • Le Page G, Gunnarsson L, Snape J, Tyler CR. 2017. Integrating human and environmental health in antibiotic risk assessment: A critical analysis of protection goals, species sensitivity and antimicrobial resistance. Environment International, 109: 155-169.
  • Lee MH, & Lee HJ. 2001. Public Health Risks: Chemical and Antibiotic Residues-Review. Asian-Aust J Anim Sci, 14(3): 402-403.
  • Li N, Ho KWK, Ying GG, Deng WJ. 2017. Veterinary antibiotics in food, drinking water, and the urine of preschool children in Hong Kong. Environment International, 108: 246-252.
  • Liu X, Steele JC, Meng XZ. 2017. Usage, residue, and human health risk of antibiotics in Chinese aquaculture: A review. Environ Pollut, 223: 161-169.
  • Monteiro S, Moura Andrade G, Garcia F, Pilarski F. 2018. Antibiotic Residues and Resistant Bacteria in Aquaculture. The Pharmaceutical and Chemical Journal, 5(4): 127-147.
  • Muaz K, Riaz M, Akhtar S, Park S, Ismail A. 2018. Antibiotic Residues in Chicken Meat: Global Prevalence, Threats, and Decontamination Strategies: A Review. J Food Prot, 81(4): 619-627.
  • Niewold TA. 2007. The nonantibiotic anti-inflammatory effect of antimicrobial growth promoters, the real mode of action? A hypothesis. Poult Sci, 86(4), 605-609.
  • Normanno G, La Salandra G, Dambrosio A, Quaglia NC, Corrente M, Parisi A, . . . Celano GV. 2007. Occurrence, characterization and antimicrobial resistance of enterotoxigenic Staphylococcus aureus isolated from meat and dairy products. Int J Food Microbiol, 115(3): 290-296.
  • Okocha RC, Olatoye IO, Adedeji OB. 2018. Food safety impacts of antimicrobial use and their residues in aquaculture. Public Health Rev, 39: 21.
  • Parthasarathy R, Monette CE, Bracero S, Saha M. 2018. Methods for field measurement of antibiotic concentrations: limitations and outlook. FEMS Microbiology Ecology, 94(8): 105.
  • Ramatla T, Ngoma L, Adetunji M, Mwanza M. 2017. Evaluation of Antibiotic Residues in Raw Meat Using Different Analytical Methods. Antibiotics (Basel, Switzerland), 6(4): 34.
  • Rico A, Tran Minh P, Satapornvanit K, Min J, Shahabuddin AM, Henriksson PJG, . . . Brink PJ. 2013. Use of veterinary medicines, feed additives and probiotics in four major internationally traded aquaculture species farmed in Asia. Aquaculture, 412-413: 231-243.
  • Rossi R, Saluti G, Moretti S, Diamanti I, Giusepponi D, Galarini R. 2018. Multiclass methods for the analysis of antibiotic residues in milk by liquid chromatography coupled to mass spectrometry: A review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess, 35(2): 241-257.
  • Sachi S, Ferdous J, Sikder MH, Azizul Karim Hussani SM. 2019. Antibiotic residues in milk: Past, present, and future. Journal of Advanced Veterinary and Animal Research, 6(3): 315-332.
  • Sarmah AK, Meyer MT, Boxall AB. 2006. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere, 65(5): 725-759.
  • Smith-Spangler C, Brandeau M, Hunter G, Bavinger J, Pearson M, Eschbach P, . . . Bravata D. 2012. Are Organic Foods Safer or Healthier Than Conventional Alternatives? Annals of internal medicine, 157: 348-366.
  • Tufa T. 2015. Veterinary Drug Residues in Food-animal Products: Its Risk Factors and Potential Effects on Public Health. Journal of Veterinary Science & Technology, 07: 1.
  • Uchida K, Konishi Y, Harada K, Okihashi M, Yamaguchi T, Do, MH, . . . Yamamoto Y. 2016. Monitoring of Antibiotic Residues in Aquatic Products in Urban and Rural Areas of Vietnam. Journal of Agricultural and Food Chemistry, 64(31): 6133-6138.
  • Van Boeckel TP, Brower C, Gilbert M, Grenfell BT, Levin SA, Robinson TP, . . . Laxminarayan R. 2015. Global trends in antimicrobial use in food animals. Proceedings of the National Academy of Sciences of the United States of America, 112(18): 5649-5654.
  • Vishnuraj MR, Kandeepan G, Rao KH, Chand S, Kumbhar V. 2016. Occurrence, public health hazards and detection methods of antibiotic residues in foods of animal origin: A comprehensive review. Cogent Food & Agriculture, 2(1), 1235458.
  • Wang YL, Liu ZM, Ren J, Guo BH. 2015. Development of a Method for the Analysis of Multiclass Antibiotic Residues in Milk Using QuEChERS and Liquid Chromatography-Tandem Mass Spectrometry. Foodborne Pathog Dis, 12(8): 693-703.
  • White DG, Zhao S, Sudler R, Ayers S, Friedman S, Chen S, . . . Meng J. 2001. The isolation of antibiotic-resistant salmonella from retail ground meats. N Engl J Med, 345(16): 1147-1154.
  • Xu F, Ren K, Yang YZ, Guo JP, Ma, GP, Liu YM, . . . Li X. 2015. Immunoassay of chemical contaminants in milk: A review. Journal of Integrative Agriculture, 14: 2282-2295.
  • Yu X, Liu H, Pu C, Chen J, Sun Y, Hu L. 2018. Determination of multiple antibiotics in leafy vegetables using QuEChERS–UHPLC–MS/MS. J Sep Sci, 41(3): 713-722.
  • Yuanmin M, Liangliang H, Mingxing D, Jian H, Saeed R. 2017. A Review of Antibiotic Residue Determination in Aquatic Products. In: International Conference on Material Science, Energy and Environmental Engineering (MSEEE 2017). Yüksek N. 2000. Etlerde Antibiyotik Kalıntılarının Aranması Üzerinde Çalışmalar. J Fac Vet Med, 20: 85-90.
  • Zhang H, Zhou Y, Huang Y, Wu L, Liu X, Luo Y. 2016. Residues and risks of veterinary antibiotics in protected vegetable soils following application of different manures. Chemosphere, 152: 229-237.
Toplam 54 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sağlık Kurumları Yönetimi
Bölüm Gıda Bilimleri / Food Science
Yazarlar

Büşra Demirer 0000-0003-1945-0485

Mehmet Özdemir 0000-0002-9506-0131

Yayımlanma Tarihi 30 Haziran 2021
Kabul Tarihi 19 Mayıs 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 3 Sayı: 1

Kaynak Göster

APA Demirer, B., & Özdemir, M. (2021). Gıdalardaki Antibiyotik Kalıntıları. Academic Platform Journal of Halal Lifestyle, 3(1), 17-25.

30007     26648        26647       26649        26642     

26650     26651        26652 25280 25281     25282

25283      25284      25288      25286      25287


Academic Platform Journal of Halal Lifestyle