Araştırma Makalesi
BibTex RIS Kaynak Göster

VERİ MADENCİLİĞİ VE MUHASEBEDE KULLANIMI: MUHASEBE DOLANDIRICILIĞININ TESPİTİNDE EN ÇOK KULLANILAN YÖNTEMLER

Yıl 2025, Cilt: 12 Sayı: 4, 318 - 345, 31.10.2025

Öz

Günümüzde teknolojinin yaygınlaşması ve gelişmesiyle birlikte işletmeler, analiz edilmesi ve yorumlanması gereken muazzam miktarda finansal veri üretmektedir. Üretilen bu büyük miktardaki verilerin analizi, geleneksel yöntemlerle mümkün olmamaktadır. Bu nedenle işletmeler, geleneksel yöntemler yerine Veri Madenciliği (VM) yöntemlerine yönelmiştir. VM, büyük veri tabanlarında istatistiksel olarak güvenilir, daha önce bilinmeyen, eyleme dönüştürülebilir içgörüler ve ilginç desenler elde etmek için istatistik, matematik, yapay zeka ve makine öğrenmesi gibi teknikleri kullanan kapsamlı bir süreçtir. İşletmelerde VM'nin kullanım alanları çok çeşitli olmakla birlikte, yoğun olarak muhasebe ve finans alanında dolandırıcılık faaliyetlerinin tespitinde kullanılmaktadır. Bu yoğun kullanım nedeniyle, verilerin analizinde seçilecek yöntem ve uygulamaların belirlenmesi büyük önem taşımaktadır.
Bu doğrultuda çalışmada, muhasebedeki veri madenciliği uygulamalarına ilişkin alan yazınını incelemek ve muhasebe dolandırıcılığının tespiti için en yaygın kullanılan veri madenciliği tekniklerine dair kavramsal bir çerçeve sunmak amaçlanmıştır. Belirlenen amaç doğrultusunda, alan yazınında yer alan sistematik literatür taramaları birleştirilerek birincil kaynaklardan toplanan veriler “Şemsiye İncelemesi (Umbrella Review)” yöntemiyle analiz edilmiştir. Yapılan analiz sonucunda, VM yöntemlerinden “Regresyon (Logit/Logistic/Probit)” yönteminin, muhasebe dolandırıcılığının tespitinde en çok kullanılan yöntem olduğu sonucuna ulaşılmıştır. En az kullanılan yöntemlerin ise Otoenkoder (Autoencoder, AE), REP (Reduced Error Pruning) ve Stokastik Gradyan İnişi (Stochastic Gradient Descent, SGD) olduğu tespit edilmiştir.

Kaynakça

  • Abbott, L. J., Park, Y., & Parker, S. (2000). The effects of audit committee activity and independence on corporate fraud. Managerial Finance, 26(11), 55–67.
  • Alagöz, A., Öge, S., & Ortakarpuz, M. (2014). Bir Kurumsal Zekâ Teknolojisi Olarak Veri Madenciliği ile Muhasebe Bilgi Sistemi İlişkisi. Selçuk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, (31.1), 1-21.
  • Alsharif, M. and Alvi, A. (2021). The impact of data mining on accounting profession: evidence from emerging economies. International Journal of Emerging Markets, 16(1), pp. 129-146.
  • Amani, F. A., & Fadlalla, A. M. (2017). Data mining applications in accounting: A review of the literature and organizing framework. International Journal of Accounting Information Systems, 24, 32-58.
  • Ammar, S., Dunlap, D., & Wright, R. (2000). A neural network approach to detecting financial statement fraud. Proceedings of the International Conference on Artificial Intelligence.
  • Association of Certified Fraud Examiners. 2018. Global study on occupational fraud and abuse, available at: https://s3-us-west-2.amazonaws.com/acfepublic/2018-report-to-the-nations.pdf (accessed 16th February 2020).
  • Aslantas, M. (2024). The Effect of Talent Management Strategies on Work Engagement in the Finance Sector: A Study on Bank Employees. Avrasya Sosyal ve Ekonomi Araştırmaları Dergisi, 11(2), 290-317
  • Baesens, B., Setiono, R., Mues, C., & Vanthienen, J. (2003). Using neural network rule extraction and decision tables for credit-risk evaluation. Management science, 49(3), 312-329.
  • Bai, Y., Chen, J., & Wang, Y. (2008). A comparative study of data mining methods for financial statement fraud detection. Journal of Accounting and Finance, 12(3), 45-59.
  • Balagolla, E. M. S. R., Fernando, P. G. T., & Rathnayake, H. M. S. P. (2021). A hybrid model for financial fraud detection using machine learning techniques. Journal of Financial Crime.
  • Baran Kılıç, M., Akar, G. B., & Güzeliş, C. (2022). A comparative analysis of deep learning models for financial fraud detection. Expert Systems with Applications, 207, 117945.
  • Bartoletti, M., Carta, S., & Onnio, M. (2021). A survey on fraud detection with machine learning. ACM Computing Surveys, 54(6), 1–38.
  • Beasley, M. S. (1996). An empirical analysis of the relation between the board of director composition and financial statement fraud. The Accounting Review, 71(4), 443–465.
  • Beasley, M. S., Carcello, J. V., & Hermanson, D. R. (2000). Fraudulent financial reporting: Consideration of industry traits and corporate governance mechanisms. Accounting Horizons, 14(4), 441–454.
  • Bell, T. B., & Carcello, J. V. (2000). A decision aid for assessing the likelihood of fraudulent financial reporting. Auditing: A Journal of Practice & Theory, 19(1), 169–184.
  • Beneish, M. D. (1997). Detecting GAAP violation: Implications for assessing earnings management among firms with extreme financial performance. Journal of Accounting and Public Policy, 16(3), 271–309.
  • Beneish, M. D. (1999). The detection of earnings manipulation. Financial Analysts Journal, 55(5), 24–36.
  • Bermúdez, L., Pérez, J. M., Ayuso, M., & Gómez, E. (2008). A Bayesian dichotomous model with asymmetric link for fraud in insurance. Insurance: Mathematics and Economics, 42(2), 779–786.
  • Bhattacharyya, S., Jha, S., Tharakunnel, K., & Westland, J. C. (2011). Data mining for credit card fraud: A comparative study. Decision Support Systems, 50(3), 602–613.
  • Bose, I., & Wang, J. (2007). Data mining for detection of financial statement fraud in China. Journal of Emerging Technologies in Accounting, 4(1), 1–20.
  • Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees. Wadsworth.
  • Cecchini, M., Aytug, H., Koehler, G. J., & Pathak, P. (2010). Detecting management fraud in public companies. Management Science, 56(7), 1146–1160.
  • Cerullo, M. J., & Cerullo, V. (1999). Using neural networks to predict financial reporting fraud: Part 1. The CPA Journal, 69(5), 42–47.
  • Chahadah, A. A., Refae, G. A. E., & Qasim, A. (2018). The use of data mining techniques in accounting and finance as a corporate strategic tool: an empirical investigation on banks operating in emerging economies. International Journal of Economics and Business Research, 15(4), 442-452.
  • Chai, S., Chen, Y., & Huang, B. (2006). A fuzzy logic approach for fraud detection in financial statements. Journal of Intelligent & Fuzzy Systems, 17(4), 345–356.
  • Chaurasia, V., Pal, S., & Tiwari, B. B. (2022). A hybrid machine learning model for credit card fraud detection. International Journal of Information Technology, 14(2), 1103–1113.
  • Chen, L. D., Sakaguchi, T., & Frolick, M. N. (2000). Data mining methods, applications, and tools. Information systems management, 17(1), 65-70.
  • Chye Koh, H., & Kee Low, C. (2004). Going concern prediction using data mining techniques. Managerial Auditing Journal, 19(3), 462-476.
  • Coman, D. M., Mieilă, M., Voinea, C. M., Tănase, L. C., & Necula, A. I. (2025). Determinants of the Accounting Services’ Outsourcing Amid the Business’ Digitization in Romania: An Analytical Examination. Journal of East European Management Studies, 30(2), 39038.
  • Debreceny, R. S., & Gray, G. L. (2010). Data mining journal entries for fraud detection: An exploratory study. International Journal of Accounting Information Systems, 11(3), 157-181.
  • Deng, X. (2009). An integrated framework for financial fraud detection using data mining [Doctoral dissertation, University of Technology, Sydney].
  • Deng, X. (2017). A hybrid model for financial fraud detection: An empirical study in China. Journal of Forensic & Investigative Accounting, 9(1), 145–160.
  • Deshmukh, A., & Talluru, L. (1998). A rule-based fuzzy logic system for fraud detection in financial statements. Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics (Vol. 4, pp. 3723-3728).
  • Deshmukh, A., Romine, J., & Siegel, P.H. (1997). Measurement and combination of red flags to assess the risk of management fraud: a fuzzy set approach, Managerial Finance 23 (6) 35–48.
  • Dong, W., Liao, S., & Zhang, Z. (2014). The impact of management integrity on audit efficiency: Evidence from China. China Journal of Accounting Research, 7(1), 59–78.
  • Duman, E., & Özelçi, Ü. (2011). Detecting credit card fraud by genetic algorithm and scatter search. Expert Systems with Applications, 38(10), 13057–13063.
  • Eduardo, S., Pérez, M., & López, V. (2021). A novel ensemble method for fraud detection using machine learning. Applied Soft Computing, 100, 106991.
  • Eining, M. M., Jones, D. R., & Loebbecke, J. K. (1997). Reliance on decision aids: An examination of auditors' assessment of management fraud. Auditing: A Journal of Practice & Theory, 16(2), 1–19.
  • Elmougy, S., Tolba, A., & Hamdy, N. (2021). A hybrid feature selection model for financial fraud detection. IEEE Access, 9, 128310–128322.
  • Fanning, K. M., & Cogger, K. O. (1998). Neural network detection of management fraud using published financial data. Intelligent Systems in Accounting, Finance and Management, 7(1), 21–41.
  • Fanning, K. M., Cogger, K. O., & Srivastava, R. P. (1995). Detection of management fraud: A neural network approach. International Journal of Intelligent Systems in Accounting, Finance & Management, 4(2), 113–126.
  • Farooq Aziz. (2023). Data analytics impacts in the field of accounting. World Journal of Advanced Research and Reviews, 18(2), 946–951. doi:10.30574/wjarr.2023.18.2.0863.
  • Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge discovery in databases. AI magazine, 17(3), 37-37.
  • Feng, M., Zheng, J., Han, Y., Ren, J., & Liu, Q. (2018). Big data analytics and mining for crime data analysis, visualization and prediction. In International conference on brain inspired cognitive systems (pp. 605-614). Cham: Springer International Publishing.
  • Feroz, E. H., Kwon, T. M., Pastena, V. S., & Park, K. (2000). The efficacy of red flags in predicting the SEC's targets: An artificial neural networks approach. International Journal of Intelligent Systems in Accounting, Finance & Management, 9(3), 145–157.
  • Glancy, F. H., & Yadav, S. B. (2011). A computational model for financial reporting fraud detection. Decision Support Systems, 50(3), 595–601.
  • Gray, G. L., & Debreceny, R. S. (2014). A taxonomy to guide research on the application of data mining to fraud detection in financial statement audits. International Journal of Accounting Information Systems, 15(4), 357-380.
  • Green, B. P., & Choi, J. H. (1997). Assessing the risk of management fraud through neural network technology. Auditing: A Journal of Practice & Theory, 16(1), 14–28.
  • Guoxin, L., Hua, Z., & Wei, L. (2007). The application of data mining in financial statement fraud detection. Proceedings of the International Conference on Wireless Communications, Networking and Mobile Computing.
  • Hajek, P., & Henriques, R. (2017). Mining corporate annual reports for intelligent detection of financial statement fraud—A comparative study of machine learning methods. Knowledge-Based Systems, 128, 139–152.
  • Han, J., Kamber, M., & Mining, D. (2006). Concepts and techniques. Morgan kaufmann, 340(1), 94104-103205.
  • Hansen, J. V., McDonald, J. B., & Stice, J. D. (1996). Artificial intelligence and generalized qualitative-response models: An empirical test on two audit decision-making domains. Decision Sciences, 27(2), 229–255.
  • Hilal, W., Gadsden, S. A., & Yawney, J. (2022). Financial fraud: a review of anomaly detection techniques and recent advances. Expert systems With applications, 193, 116429.
  • Hoogs, B., Kiehl, T., Lacomb, C., & Senturk, D. (2007). A genetic algorithm approach to detecting temporal patterns indicative of financial statement fraud. Intelligent Systems in Accounting, Finance and Management, 15(1-2), 41–56.
  • Huang, S. Y. (2006). An empirical study on the detection of financial statement fraud using data mining. Journal of American Academy of Business, 9(2), 89–95.
  • Humpherys, S. L., Moffitt, K. C., Burns, M. B., Burgoon, J. K., & Felix, W. F. (2011). Identification of fraudulent financial statements using linguistic credibility analysis. Decision Support Systems, 50(3), 585–594.
  • Jain, N., & Srivastava, V. (2013). Data mining techniques: a survey paper. IJRET: International Journal of Research in Engineering and Technology, 2(11), 2319-1163.
  • Jans, M., Lybaert, N., & Vanhoof, K. (2011). A framework for internal fraud risk reduction: IT support for forensic accountants. International Journal of Digital Accounting Research, 11, 1–29.
  • Jun Lee, S., & Siau, K. (2001). A review of data mining techniques. Industrial Management & Data Systems, 101(1), 41-46.
  • Kandemir, T., & Kardeş, Z. (2025). Hileli Finansal Tabloların Tespitinde Veri Madenciliği Uygulamaları: Mevcut Araştırma Eğilimlerinin İncelenmesi (2006-2024). Denetişim (33), 333-355. https://doi.org/10.58348/denetisim.1674341.
  • Karami, M., Baber, W. W., & Ojala, A. (2022). The effectual process of business model innovation for seizing opportunities in frontier markets. Technovation, 117, 102595.
  • Kiehl, T., Hoogs, B., & LaComb, C. (2005). A genetic algorithm for detecting temporal patterns indicative of financial statement fraud. Proceedings of the Genetic and Evolutionary Computation Conference.
  • Kirkos, E., Spathis, C., & Manolopoulos, Y. (2007). Data mining techniques for the detection of fraudulent financial statements. Expert Systems with Applications, 32(4), 995–1003.
  • Koskivaara, E. (2000). Artificial neural networks for analytical review in auditing. Turku Centre for Computer Science.
  • Kotsiantis, S., Koumanakos, E., Tzelepis, D., & Tampakas, V. (2006). Forecasting fraudulent financial statements using data mining. International Journal of Computational Intelligence, 3(2), 104–110.
  • Krambia-Kapardis, M., Christodoulou, C., & Agathocleous, M. (2010). Neural networks: The panacea in fraud detection? Managerial Auditing Journal, 25(7), 659–678.
  • Kumar, M. K., & Kar, P. K. (2020). A Study on Privacy Preserving in Big Data Mining Using Fuzzy Logic Approach. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 11, 2108-2116.
  • Laourou, A. B. F. (2025). The adoption and implementation of data mining in accounting information systems (AIS) within the public sector of Nigeria. IIARD Journals. https://doi. org/10.56201/jafm, 11.
  • Lenard, M. J., & Alam, P. (2004). An evolutionary approach to data mining for fraud detection in financial statements. Journal of Emerging Technologies in Accounting, 1(1), 69–82.
  • Li, J. (2015). Financial fraud detection based on text mining and sentiment analysis [Doctoral dissertation, University of Maryland].
  • Li, J. (2021). Advanced machine learning techniques for financial fraud detection: A review. Journal of Financial Analytics, 4(1), 45-62.
  • Liang, D., & Lv, J. (2016). A fuzzy GA-BPNN model for financial fraud detection. Journal of Intelligent & Fuzzy Systems, 30(4), 2309–2318.
  • Lin, J. W., Hwang, M. I., & Becker, J. D. (2003). A fuzzy neural network for assessing the risk of fraudulent financial reporting. Managerial Auditing Journal, 18(8), 657–665.
  • Liou, F. M. (2008). Fraudulent financial reporting detection and business failure prediction models: a comparison. Managerial Auditing Journal, 23(7), 650-662.
  • Liou, F. M. (2008). Fraudulent financial reporting detection using business intelligence and data mining. Journal of Modern Accounting and Auditing, 4(11), 38–47.
  • Liu, Q., & Vasarhelyi, M. A. (2014). Big questions in AIS research: Measurement, information processing, data analysis, and reporting. Journal of information systems, 28(1), 1-17.
  • Liu, X. (2021). Empirical analysis of financial statement fraud of listed companies based on logistic regression and random forest algorithm. Journal of Mathematics, 2021(1), 9241338.
  • Martin, K., Sanders, E., & Baird, J. (2022). Deep learning for anomaly detection in financial networks. Journal of Financial Stability, 60, 100992.
  • Meenakshi, S., & Sivaranjani, S. (2016). A survey on credit card fraud detection using data mining techniques. International Journal of Advanced Research in Computer Science and Software Engineering, 6(5), 268–272.
  • Mercan, M., Kitesashvili, D., Aslantas, M. (2023). Effect of Financial Literacy on Financial Well-Being in Georgia. Journal of Business, Vol. 12 No. 2
  • Mraović, B. (2008). Relevance of data mining for accounting: social implications. Social Responsibility Journal, 4(4), 439-455.
  • Murcia, F. C. (2008). Fraud detection in financial statements: An empirical study of Brazilian public companies [Doctoral dissertation, University of São Paulo].
  • Ngai, E. W., Hu, Y., Wong, Y. H., Chen, Y., & Sun, X. (2011). The application of data mining techniques in financial fraud detection: A classification framework and an academic review of literature. Decision support systems, 50(3), 559-569.
  • Nha, B. T., & Thuan, N. D. (2022, December). Methodology Interaction by Machine Learning Model to Detect Vulnerability in Smart Contract of Blockchain. In 2022 RIVF International Conference on Computing and Communication Technologies (RIVF) (pp. 112-117). IEEE.
  • Olszewski, D. (2014). Fraud detection using self-organizing maps. Proceedings of the International Conference on Artificial Intelligence and Soft Computing.
  • Owusu-Ansah, S., Moyes, G. D., Oyelere, P. B., & Hay, D. (2002). An empirical analysis of the likelihood of detecting fraud in New Zealand. Managerial Auditing Journal, 17(4), 192–204.
  • Özekes, S. (2003). Veri madenciliği modelleri ve uygulama alanları. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, 2(3), 65-82.
  • Pacheco, R., Salgado, L., & Eining, M. (1996). The impact of decision aids on auditor's fraud risk assessments. Advances in Accounting Information Systems, 4, 141–159.
  • Page MJ, McKenzie JE, Bossuyt PM, ve ark. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372 (71):1-9. doi:10.1136/bmj.n71
  • Panigrahi, S., Kundu, A., Sural, S., & Majumdar, A. K. (2009). Credit card fraud detection: A fusion approach using Dempster–Shafer theory and Bayesian learning. Information Fusion, 10(4), 354–363.
  • Papík, M., & Papíková, L. (2022). Detecting accounting fraud in companies reporting under US GAAP through data mining. International Journal of Accounting Information Systems, 45, 100559.
  • Pathak, J., Vidyarthi, N., & Summers, S. L. (2005). A fuzzy-based algorithm for auditors to detect elements of fraud in settled insurance claims. Managerial Auditing Journal, 20(6), 632–644.
  • Perols, J. (2011). Financial statement fraud detection: An analysis of statistical and machine learning algorithms. Auditing: A Journal of Practice & Theory, 30(2), 19–50.
  • Pinquet, J., Ayuso, M., & Guillén, M. (2007). Selection bias and auditing policies for insurance claims. The Journal of Risk and Insurance, 74(2), 425–440.
  • Popat, R. R., & Chaudhary, J. (2018, May). A survey on credit card fraud detection using machine learning. In 2018 2nd international conference on trends in electronics and informatics (ICOEI) (pp. 1120-1125). IEEE.
  • Quah, J. T. S., & Sriganesh, M. (2008). Real-time credit card fraud detection using computational intelligence. Expert Systems with Applications, 35(4), 1721–1732.
  • Ramzan, M., & Ahmad, M. (2014, March). Evolution of data mining: An overview. In 2014 Conference on IT in Business, Industry and Government (CSIBIG) (pp. 1-4). IEEE.
  • Ravisankar, P., Ravi, V., Rao, G. R., & Bose, I. (2011). Detection of financial statement fraud and feature selection using data mining techniques. Decision Support Systems, 50(2), 491–500.
  • Ren, Y. (2006). An empirical study on financial fraud detection in Chinese listed companies [Doctoral dissertation, Shanghai University of Finance and Economics].
  • Ren, Y., Zhang, L., & Wang, P. (2023). A novel hybrid deep learning model for financial fraud detection in imbalanced datasets. Information Sciences, 621, 703-720.
  • Rezaee, Z. (2005). Causes, consequences, and deterence of financial statement fraud. Critical perspectives on Accounting, 16(3), 277-298.
  • Ryan, C. L., Cant, R., McAllister, M. M., Vanderburg, R., & Batty, C. (2022). Transformative learning theory applications in health professional and nursing education: An umbrella review. Nurse Education Today, 119, 105604.https://doi.org/10.1016/j.nedt.2022.105604
  • Rygielski, C., Wang, J. C., & Yen, D. C. (2002). Data mining techniques for customer relationship management. Technology in society, 24(4), 483-502.
  • Sağlar, J., & Kefe, İ. (2021). A Revıew on Data Mınıng Methods used ın Internal Audıt and External Audıt. EKEV Akademi Dergisi. (88), 259-274.
  • Sahin, Y., Bulkan, S., & Duman, E. (2013). A cost-sensitive decision tree approach for fraud detection. Expert Systems with Applications, 40(15), 5916–5923.
  • Sánchez, D., Vila, M. A., Cerda, L., & Serrano, J. M. (2009). Association rules applied to credit card fraud detection. Expert Systems with Applications, 36(2), 3630–3640.
  • Seifert, J. W. (2004). Data mining: An overview. National security issues, 201-217.
  • Seng, J. L., & Chen, T. C. (2010). An analytic approach to select data mining for business decision. Expert Systems with Applications, 37(12), 8042-8057.
  • Sharma, A., & Panigrahi, P. K. (2013). A review of financial accounting fraud detection based on data mining techniques. arXiv preprint arXiv:1309.3944.
  • Soltani Halvaiee, N., & Akbari, M. K. (2014). A novel model for credit card fraud detection using Artificial Immune Systems. Applied Soft Computing, 24, 40–49.
  • Söylemez, Y. & Türkmen, S. Y. (2017). Yapay Sinir Ağları Modeli ile Finansal Başarısızlık Tahmini. Finans Ekonomi ve Sosyal Araştırmalar Dergisi, 2(4), 270-284.
  • Spathis, C., Doumpos, M., & Zopounidis, C. (2002). Detecting falsified financial statements: A comparative study using multicriteria analysis and multivariate statistical techniques. European Accounting Review, 11(3), 509–535.
  • Summers, S. L., & Sweeney, J. T. (1998). Fraudulently misstated financial statements and insider trading: An empirical analysis. The Accounting Review, 73(1), 131–146.
  • Tan, R., Zhang, X., & Li, Y. (2021). A hybrid machine learning approach for financial fraud detection using multi-source data. Electronic Commerce Research and Applications, 48, 101070.
  • Tangod, S., & Kulkarni, S. (2015). A survey on credit card fraud detection using data mining techniques. International Journal of Computer Applications, 118(15), 31–34.
  • Theodorakopoulos, L., Thanasas, G., & Halkiopoulos, C. (2024). Implications of big data in accounting: Challenges and opportunities. Emerging Science Journal, 8(3), 1201-1214.
  • Tsai, C. F., & Yen, D. C. (2008). A comparative study of data mining techniques for corporate bankruptcy prediction. Expert Systems with Applications, 35(3), 756–763.
  • Tüzüntürk, S. (2010). Veri madenciliği ve istatistik. Uludağ Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 29(1), 65-90.
  • Vasarhelyi, M. A., Kogan, A., & Tuttle, B. M. (2015). Big data in accounting: An overview. Accounting Horizons, 29(2), 381-396.
  • Viaene, S., Ayuso, M., Guillen, M., Gheel, D. V., & Dedene, G. (2004). Strategies for detecting fraudulent claims in the automobile insurance industry. European Journal of Operational Research, 176(1), 565–583.
  • Virdhagriswaran, S. (2006). Data mining for insurance fraud detection [Doctoral dissertation, University of Texas at Arlington].
  • Warren, J. D., Moffitt, K. C., & Byrnes, P. (2015). How big data will change accounting. Accounting horizons, 29(2), 397-407.
  • Welch, J. R., Reeves, T. P., & Welch, S. A. (1998). Using genetic algorithms to create a network for detecting management fraud. Intelligent Systems in Accounting, Finance and Management, 7(3), 161–174.
  • West, J., & Bhattacharya, M. (2016). Intelligent financial fraud detection: a comprehensive review. Computers & security, 57, 47-66.
  • Whitrow, C., Hand, D. J., Juszczak, P., Weston, D., & Adams, N. M. (2009). Transaction aggregation as a strategy for credit card fraud detection. Data Mining and Knowledge Discovery, 18(1), 30–55.
  • Wong, N., Ray, P., Stephens, G., & Lewis, L. (2012). Artificial immune systems for the detection of credit card fraud: An assessment. International Journal of Computer Applications, 42(17), 26–32.
  • Wu, S. X., & Banzhaf, W. (2008). A hybrid method for credit card fraud detection based on evolutionary computation. Proceedings of the 10th annual conference on Genetic and evolutionary computation.
  • Wu, X., Zhu, X., Wu, G. Q., & Ding, W. (2013). Data mining with big data. IEEE transactions on knowledge and data engineering, 26(1), 97-107.
  • Xiao, M., Xiaoli, H., & Gaojin, L. (2010). Research on application of data mining technology in financial decision support system. In 2010 3rd International Conference on Information Management, Innovation Management and Industrial Engineering (Vol. 4, pp. 381-384). IEEE.
  • Yang, Z., Liu, Y., & Chen, X. (2022). Financial fraud detection using graph neural networks on transaction data. Knowledge-Based Systems, 240, 108079.
  • Yong Ren, V., Zhang, L., & Wang, P. (2023). A novel hybrid deep learning model for financial fraud detection in imbalanced datasets. Information Sciences, 621, 703-720. (Not: Bu kaynak "Ren vd. (2023)" ile aynı olabilir, kontrol edilmelidir)
  • Yuan, L., Chen, Y., & Zhang, S. (2008). The application of data mining in financial fraud detection: Evidence from China. China Economic Review, 19(4), 693–700.
  • Yue, D., Wu, X., & Wang, Y. (2007). A review of data mining-based financial fraud detection research. International Conference on Wireless Communications, Networking and Mobile Computing.
  • Zaki, M. J., & Theodoulidis, B. (2013). Fraud detection in financial statements using meta-learning. Intelligent Data Analysis, 17(4), 689–704.
  • Zhang, J., Li, T., & Chen, H. (2014). Composite rough sets for dynamic data mining. Information Sciences, 257, 81-100.
  • Zhang, Y., & Zhou, J. (2004). A novel model for credit card fraud detection using ensemble learning. Proceedings of the International Conference on Machine Learning and Cybernetics.
  • Zhou, W., & Kapoor, G. (2011). Detecting evolutionary financial statement fraud. Decision Support Systems, 50(3), 570–575.

DATA MINING AND ITS USE IN ACCOUNTING: THE MOST COMMONLY USED METHODS IN DETECTING ACCOUNTING FRAUD

Yıl 2025, Cilt: 12 Sayı: 4, 318 - 345, 31.10.2025

Öz

In today's world, businesses generate large amounts of financial data that must be analyzed and interpreted due to technological advances and proliferation. Traditional methods cannot analyze this massive data set. As a result, businesses have turned to data mining (DM) techniques. DM is an extensive process that employs methods such as statistics, mathematics, artificial intelligence, and machine learning to extract reliable, previously unknown insights and patterns from large databases, informing decision-making. While DM has various applications in business, it is especially prevalent in accounting and finance for fraud detection. Due to this widespread use, selecting the right data analysis methods and applications is crucial.
Against this backdrop, the present study aims to review the literature on data mining applications in accounting and to present a conceptual framework for the most commonly used data mining techniques for detecting accounting fraud. To achieve this, a systematic review of the literature was conducted, and data collected from primary sources were analyzed using the 'umbrella review' method. The analysis found that the 'Regression (Logit/Logistic/Probit)' method is the most frequently used for this purpose. The least common methods identified were Autoencoder (AE), Reduced Error Pruning (REP), and Stochastic Gradient Descent (SGD).

Kaynakça

  • Abbott, L. J., Park, Y., & Parker, S. (2000). The effects of audit committee activity and independence on corporate fraud. Managerial Finance, 26(11), 55–67.
  • Alagöz, A., Öge, S., & Ortakarpuz, M. (2014). Bir Kurumsal Zekâ Teknolojisi Olarak Veri Madenciliği ile Muhasebe Bilgi Sistemi İlişkisi. Selçuk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, (31.1), 1-21.
  • Alsharif, M. and Alvi, A. (2021). The impact of data mining on accounting profession: evidence from emerging economies. International Journal of Emerging Markets, 16(1), pp. 129-146.
  • Amani, F. A., & Fadlalla, A. M. (2017). Data mining applications in accounting: A review of the literature and organizing framework. International Journal of Accounting Information Systems, 24, 32-58.
  • Ammar, S., Dunlap, D., & Wright, R. (2000). A neural network approach to detecting financial statement fraud. Proceedings of the International Conference on Artificial Intelligence.
  • Association of Certified Fraud Examiners. 2018. Global study on occupational fraud and abuse, available at: https://s3-us-west-2.amazonaws.com/acfepublic/2018-report-to-the-nations.pdf (accessed 16th February 2020).
  • Aslantas, M. (2024). The Effect of Talent Management Strategies on Work Engagement in the Finance Sector: A Study on Bank Employees. Avrasya Sosyal ve Ekonomi Araştırmaları Dergisi, 11(2), 290-317
  • Baesens, B., Setiono, R., Mues, C., & Vanthienen, J. (2003). Using neural network rule extraction and decision tables for credit-risk evaluation. Management science, 49(3), 312-329.
  • Bai, Y., Chen, J., & Wang, Y. (2008). A comparative study of data mining methods for financial statement fraud detection. Journal of Accounting and Finance, 12(3), 45-59.
  • Balagolla, E. M. S. R., Fernando, P. G. T., & Rathnayake, H. M. S. P. (2021). A hybrid model for financial fraud detection using machine learning techniques. Journal of Financial Crime.
  • Baran Kılıç, M., Akar, G. B., & Güzeliş, C. (2022). A comparative analysis of deep learning models for financial fraud detection. Expert Systems with Applications, 207, 117945.
  • Bartoletti, M., Carta, S., & Onnio, M. (2021). A survey on fraud detection with machine learning. ACM Computing Surveys, 54(6), 1–38.
  • Beasley, M. S. (1996). An empirical analysis of the relation between the board of director composition and financial statement fraud. The Accounting Review, 71(4), 443–465.
  • Beasley, M. S., Carcello, J. V., & Hermanson, D. R. (2000). Fraudulent financial reporting: Consideration of industry traits and corporate governance mechanisms. Accounting Horizons, 14(4), 441–454.
  • Bell, T. B., & Carcello, J. V. (2000). A decision aid for assessing the likelihood of fraudulent financial reporting. Auditing: A Journal of Practice & Theory, 19(1), 169–184.
  • Beneish, M. D. (1997). Detecting GAAP violation: Implications for assessing earnings management among firms with extreme financial performance. Journal of Accounting and Public Policy, 16(3), 271–309.
  • Beneish, M. D. (1999). The detection of earnings manipulation. Financial Analysts Journal, 55(5), 24–36.
  • Bermúdez, L., Pérez, J. M., Ayuso, M., & Gómez, E. (2008). A Bayesian dichotomous model with asymmetric link for fraud in insurance. Insurance: Mathematics and Economics, 42(2), 779–786.
  • Bhattacharyya, S., Jha, S., Tharakunnel, K., & Westland, J. C. (2011). Data mining for credit card fraud: A comparative study. Decision Support Systems, 50(3), 602–613.
  • Bose, I., & Wang, J. (2007). Data mining for detection of financial statement fraud in China. Journal of Emerging Technologies in Accounting, 4(1), 1–20.
  • Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees. Wadsworth.
  • Cecchini, M., Aytug, H., Koehler, G. J., & Pathak, P. (2010). Detecting management fraud in public companies. Management Science, 56(7), 1146–1160.
  • Cerullo, M. J., & Cerullo, V. (1999). Using neural networks to predict financial reporting fraud: Part 1. The CPA Journal, 69(5), 42–47.
  • Chahadah, A. A., Refae, G. A. E., & Qasim, A. (2018). The use of data mining techniques in accounting and finance as a corporate strategic tool: an empirical investigation on banks operating in emerging economies. International Journal of Economics and Business Research, 15(4), 442-452.
  • Chai, S., Chen, Y., & Huang, B. (2006). A fuzzy logic approach for fraud detection in financial statements. Journal of Intelligent & Fuzzy Systems, 17(4), 345–356.
  • Chaurasia, V., Pal, S., & Tiwari, B. B. (2022). A hybrid machine learning model for credit card fraud detection. International Journal of Information Technology, 14(2), 1103–1113.
  • Chen, L. D., Sakaguchi, T., & Frolick, M. N. (2000). Data mining methods, applications, and tools. Information systems management, 17(1), 65-70.
  • Chye Koh, H., & Kee Low, C. (2004). Going concern prediction using data mining techniques. Managerial Auditing Journal, 19(3), 462-476.
  • Coman, D. M., Mieilă, M., Voinea, C. M., Tănase, L. C., & Necula, A. I. (2025). Determinants of the Accounting Services’ Outsourcing Amid the Business’ Digitization in Romania: An Analytical Examination. Journal of East European Management Studies, 30(2), 39038.
  • Debreceny, R. S., & Gray, G. L. (2010). Data mining journal entries for fraud detection: An exploratory study. International Journal of Accounting Information Systems, 11(3), 157-181.
  • Deng, X. (2009). An integrated framework for financial fraud detection using data mining [Doctoral dissertation, University of Technology, Sydney].
  • Deng, X. (2017). A hybrid model for financial fraud detection: An empirical study in China. Journal of Forensic & Investigative Accounting, 9(1), 145–160.
  • Deshmukh, A., & Talluru, L. (1998). A rule-based fuzzy logic system for fraud detection in financial statements. Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics (Vol. 4, pp. 3723-3728).
  • Deshmukh, A., Romine, J., & Siegel, P.H. (1997). Measurement and combination of red flags to assess the risk of management fraud: a fuzzy set approach, Managerial Finance 23 (6) 35–48.
  • Dong, W., Liao, S., & Zhang, Z. (2014). The impact of management integrity on audit efficiency: Evidence from China. China Journal of Accounting Research, 7(1), 59–78.
  • Duman, E., & Özelçi, Ü. (2011). Detecting credit card fraud by genetic algorithm and scatter search. Expert Systems with Applications, 38(10), 13057–13063.
  • Eduardo, S., Pérez, M., & López, V. (2021). A novel ensemble method for fraud detection using machine learning. Applied Soft Computing, 100, 106991.
  • Eining, M. M., Jones, D. R., & Loebbecke, J. K. (1997). Reliance on decision aids: An examination of auditors' assessment of management fraud. Auditing: A Journal of Practice & Theory, 16(2), 1–19.
  • Elmougy, S., Tolba, A., & Hamdy, N. (2021). A hybrid feature selection model for financial fraud detection. IEEE Access, 9, 128310–128322.
  • Fanning, K. M., & Cogger, K. O. (1998). Neural network detection of management fraud using published financial data. Intelligent Systems in Accounting, Finance and Management, 7(1), 21–41.
  • Fanning, K. M., Cogger, K. O., & Srivastava, R. P. (1995). Detection of management fraud: A neural network approach. International Journal of Intelligent Systems in Accounting, Finance & Management, 4(2), 113–126.
  • Farooq Aziz. (2023). Data analytics impacts in the field of accounting. World Journal of Advanced Research and Reviews, 18(2), 946–951. doi:10.30574/wjarr.2023.18.2.0863.
  • Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge discovery in databases. AI magazine, 17(3), 37-37.
  • Feng, M., Zheng, J., Han, Y., Ren, J., & Liu, Q. (2018). Big data analytics and mining for crime data analysis, visualization and prediction. In International conference on brain inspired cognitive systems (pp. 605-614). Cham: Springer International Publishing.
  • Feroz, E. H., Kwon, T. M., Pastena, V. S., & Park, K. (2000). The efficacy of red flags in predicting the SEC's targets: An artificial neural networks approach. International Journal of Intelligent Systems in Accounting, Finance & Management, 9(3), 145–157.
  • Glancy, F. H., & Yadav, S. B. (2011). A computational model for financial reporting fraud detection. Decision Support Systems, 50(3), 595–601.
  • Gray, G. L., & Debreceny, R. S. (2014). A taxonomy to guide research on the application of data mining to fraud detection in financial statement audits. International Journal of Accounting Information Systems, 15(4), 357-380.
  • Green, B. P., & Choi, J. H. (1997). Assessing the risk of management fraud through neural network technology. Auditing: A Journal of Practice & Theory, 16(1), 14–28.
  • Guoxin, L., Hua, Z., & Wei, L. (2007). The application of data mining in financial statement fraud detection. Proceedings of the International Conference on Wireless Communications, Networking and Mobile Computing.
  • Hajek, P., & Henriques, R. (2017). Mining corporate annual reports for intelligent detection of financial statement fraud—A comparative study of machine learning methods. Knowledge-Based Systems, 128, 139–152.
  • Han, J., Kamber, M., & Mining, D. (2006). Concepts and techniques. Morgan kaufmann, 340(1), 94104-103205.
  • Hansen, J. V., McDonald, J. B., & Stice, J. D. (1996). Artificial intelligence and generalized qualitative-response models: An empirical test on two audit decision-making domains. Decision Sciences, 27(2), 229–255.
  • Hilal, W., Gadsden, S. A., & Yawney, J. (2022). Financial fraud: a review of anomaly detection techniques and recent advances. Expert systems With applications, 193, 116429.
  • Hoogs, B., Kiehl, T., Lacomb, C., & Senturk, D. (2007). A genetic algorithm approach to detecting temporal patterns indicative of financial statement fraud. Intelligent Systems in Accounting, Finance and Management, 15(1-2), 41–56.
  • Huang, S. Y. (2006). An empirical study on the detection of financial statement fraud using data mining. Journal of American Academy of Business, 9(2), 89–95.
  • Humpherys, S. L., Moffitt, K. C., Burns, M. B., Burgoon, J. K., & Felix, W. F. (2011). Identification of fraudulent financial statements using linguistic credibility analysis. Decision Support Systems, 50(3), 585–594.
  • Jain, N., & Srivastava, V. (2013). Data mining techniques: a survey paper. IJRET: International Journal of Research in Engineering and Technology, 2(11), 2319-1163.
  • Jans, M., Lybaert, N., & Vanhoof, K. (2011). A framework for internal fraud risk reduction: IT support for forensic accountants. International Journal of Digital Accounting Research, 11, 1–29.
  • Jun Lee, S., & Siau, K. (2001). A review of data mining techniques. Industrial Management & Data Systems, 101(1), 41-46.
  • Kandemir, T., & Kardeş, Z. (2025). Hileli Finansal Tabloların Tespitinde Veri Madenciliği Uygulamaları: Mevcut Araştırma Eğilimlerinin İncelenmesi (2006-2024). Denetişim (33), 333-355. https://doi.org/10.58348/denetisim.1674341.
  • Karami, M., Baber, W. W., & Ojala, A. (2022). The effectual process of business model innovation for seizing opportunities in frontier markets. Technovation, 117, 102595.
  • Kiehl, T., Hoogs, B., & LaComb, C. (2005). A genetic algorithm for detecting temporal patterns indicative of financial statement fraud. Proceedings of the Genetic and Evolutionary Computation Conference.
  • Kirkos, E., Spathis, C., & Manolopoulos, Y. (2007). Data mining techniques for the detection of fraudulent financial statements. Expert Systems with Applications, 32(4), 995–1003.
  • Koskivaara, E. (2000). Artificial neural networks for analytical review in auditing. Turku Centre for Computer Science.
  • Kotsiantis, S., Koumanakos, E., Tzelepis, D., & Tampakas, V. (2006). Forecasting fraudulent financial statements using data mining. International Journal of Computational Intelligence, 3(2), 104–110.
  • Krambia-Kapardis, M., Christodoulou, C., & Agathocleous, M. (2010). Neural networks: The panacea in fraud detection? Managerial Auditing Journal, 25(7), 659–678.
  • Kumar, M. K., & Kar, P. K. (2020). A Study on Privacy Preserving in Big Data Mining Using Fuzzy Logic Approach. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 11, 2108-2116.
  • Laourou, A. B. F. (2025). The adoption and implementation of data mining in accounting information systems (AIS) within the public sector of Nigeria. IIARD Journals. https://doi. org/10.56201/jafm, 11.
  • Lenard, M. J., & Alam, P. (2004). An evolutionary approach to data mining for fraud detection in financial statements. Journal of Emerging Technologies in Accounting, 1(1), 69–82.
  • Li, J. (2015). Financial fraud detection based on text mining and sentiment analysis [Doctoral dissertation, University of Maryland].
  • Li, J. (2021). Advanced machine learning techniques for financial fraud detection: A review. Journal of Financial Analytics, 4(1), 45-62.
  • Liang, D., & Lv, J. (2016). A fuzzy GA-BPNN model for financial fraud detection. Journal of Intelligent & Fuzzy Systems, 30(4), 2309–2318.
  • Lin, J. W., Hwang, M. I., & Becker, J. D. (2003). A fuzzy neural network for assessing the risk of fraudulent financial reporting. Managerial Auditing Journal, 18(8), 657–665.
  • Liou, F. M. (2008). Fraudulent financial reporting detection and business failure prediction models: a comparison. Managerial Auditing Journal, 23(7), 650-662.
  • Liou, F. M. (2008). Fraudulent financial reporting detection using business intelligence and data mining. Journal of Modern Accounting and Auditing, 4(11), 38–47.
  • Liu, Q., & Vasarhelyi, M. A. (2014). Big questions in AIS research: Measurement, information processing, data analysis, and reporting. Journal of information systems, 28(1), 1-17.
  • Liu, X. (2021). Empirical analysis of financial statement fraud of listed companies based on logistic regression and random forest algorithm. Journal of Mathematics, 2021(1), 9241338.
  • Martin, K., Sanders, E., & Baird, J. (2022). Deep learning for anomaly detection in financial networks. Journal of Financial Stability, 60, 100992.
  • Meenakshi, S., & Sivaranjani, S. (2016). A survey on credit card fraud detection using data mining techniques. International Journal of Advanced Research in Computer Science and Software Engineering, 6(5), 268–272.
  • Mercan, M., Kitesashvili, D., Aslantas, M. (2023). Effect of Financial Literacy on Financial Well-Being in Georgia. Journal of Business, Vol. 12 No. 2
  • Mraović, B. (2008). Relevance of data mining for accounting: social implications. Social Responsibility Journal, 4(4), 439-455.
  • Murcia, F. C. (2008). Fraud detection in financial statements: An empirical study of Brazilian public companies [Doctoral dissertation, University of São Paulo].
  • Ngai, E. W., Hu, Y., Wong, Y. H., Chen, Y., & Sun, X. (2011). The application of data mining techniques in financial fraud detection: A classification framework and an academic review of literature. Decision support systems, 50(3), 559-569.
  • Nha, B. T., & Thuan, N. D. (2022, December). Methodology Interaction by Machine Learning Model to Detect Vulnerability in Smart Contract of Blockchain. In 2022 RIVF International Conference on Computing and Communication Technologies (RIVF) (pp. 112-117). IEEE.
  • Olszewski, D. (2014). Fraud detection using self-organizing maps. Proceedings of the International Conference on Artificial Intelligence and Soft Computing.
  • Owusu-Ansah, S., Moyes, G. D., Oyelere, P. B., & Hay, D. (2002). An empirical analysis of the likelihood of detecting fraud in New Zealand. Managerial Auditing Journal, 17(4), 192–204.
  • Özekes, S. (2003). Veri madenciliği modelleri ve uygulama alanları. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, 2(3), 65-82.
  • Pacheco, R., Salgado, L., & Eining, M. (1996). The impact of decision aids on auditor's fraud risk assessments. Advances in Accounting Information Systems, 4, 141–159.
  • Page MJ, McKenzie JE, Bossuyt PM, ve ark. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372 (71):1-9. doi:10.1136/bmj.n71
  • Panigrahi, S., Kundu, A., Sural, S., & Majumdar, A. K. (2009). Credit card fraud detection: A fusion approach using Dempster–Shafer theory and Bayesian learning. Information Fusion, 10(4), 354–363.
  • Papík, M., & Papíková, L. (2022). Detecting accounting fraud in companies reporting under US GAAP through data mining. International Journal of Accounting Information Systems, 45, 100559.
  • Pathak, J., Vidyarthi, N., & Summers, S. L. (2005). A fuzzy-based algorithm for auditors to detect elements of fraud in settled insurance claims. Managerial Auditing Journal, 20(6), 632–644.
  • Perols, J. (2011). Financial statement fraud detection: An analysis of statistical and machine learning algorithms. Auditing: A Journal of Practice & Theory, 30(2), 19–50.
  • Pinquet, J., Ayuso, M., & Guillén, M. (2007). Selection bias and auditing policies for insurance claims. The Journal of Risk and Insurance, 74(2), 425–440.
  • Popat, R. R., & Chaudhary, J. (2018, May). A survey on credit card fraud detection using machine learning. In 2018 2nd international conference on trends in electronics and informatics (ICOEI) (pp. 1120-1125). IEEE.
  • Quah, J. T. S., & Sriganesh, M. (2008). Real-time credit card fraud detection using computational intelligence. Expert Systems with Applications, 35(4), 1721–1732.
  • Ramzan, M., & Ahmad, M. (2014, March). Evolution of data mining: An overview. In 2014 Conference on IT in Business, Industry and Government (CSIBIG) (pp. 1-4). IEEE.
  • Ravisankar, P., Ravi, V., Rao, G. R., & Bose, I. (2011). Detection of financial statement fraud and feature selection using data mining techniques. Decision Support Systems, 50(2), 491–500.
  • Ren, Y. (2006). An empirical study on financial fraud detection in Chinese listed companies [Doctoral dissertation, Shanghai University of Finance and Economics].
  • Ren, Y., Zhang, L., & Wang, P. (2023). A novel hybrid deep learning model for financial fraud detection in imbalanced datasets. Information Sciences, 621, 703-720.
  • Rezaee, Z. (2005). Causes, consequences, and deterence of financial statement fraud. Critical perspectives on Accounting, 16(3), 277-298.
  • Ryan, C. L., Cant, R., McAllister, M. M., Vanderburg, R., & Batty, C. (2022). Transformative learning theory applications in health professional and nursing education: An umbrella review. Nurse Education Today, 119, 105604.https://doi.org/10.1016/j.nedt.2022.105604
  • Rygielski, C., Wang, J. C., & Yen, D. C. (2002). Data mining techniques for customer relationship management. Technology in society, 24(4), 483-502.
  • Sağlar, J., & Kefe, İ. (2021). A Revıew on Data Mınıng Methods used ın Internal Audıt and External Audıt. EKEV Akademi Dergisi. (88), 259-274.
  • Sahin, Y., Bulkan, S., & Duman, E. (2013). A cost-sensitive decision tree approach for fraud detection. Expert Systems with Applications, 40(15), 5916–5923.
  • Sánchez, D., Vila, M. A., Cerda, L., & Serrano, J. M. (2009). Association rules applied to credit card fraud detection. Expert Systems with Applications, 36(2), 3630–3640.
  • Seifert, J. W. (2004). Data mining: An overview. National security issues, 201-217.
  • Seng, J. L., & Chen, T. C. (2010). An analytic approach to select data mining for business decision. Expert Systems with Applications, 37(12), 8042-8057.
  • Sharma, A., & Panigrahi, P. K. (2013). A review of financial accounting fraud detection based on data mining techniques. arXiv preprint arXiv:1309.3944.
  • Soltani Halvaiee, N., & Akbari, M. K. (2014). A novel model for credit card fraud detection using Artificial Immune Systems. Applied Soft Computing, 24, 40–49.
  • Söylemez, Y. & Türkmen, S. Y. (2017). Yapay Sinir Ağları Modeli ile Finansal Başarısızlık Tahmini. Finans Ekonomi ve Sosyal Araştırmalar Dergisi, 2(4), 270-284.
  • Spathis, C., Doumpos, M., & Zopounidis, C. (2002). Detecting falsified financial statements: A comparative study using multicriteria analysis and multivariate statistical techniques. European Accounting Review, 11(3), 509–535.
  • Summers, S. L., & Sweeney, J. T. (1998). Fraudulently misstated financial statements and insider trading: An empirical analysis. The Accounting Review, 73(1), 131–146.
  • Tan, R., Zhang, X., & Li, Y. (2021). A hybrid machine learning approach for financial fraud detection using multi-source data. Electronic Commerce Research and Applications, 48, 101070.
  • Tangod, S., & Kulkarni, S. (2015). A survey on credit card fraud detection using data mining techniques. International Journal of Computer Applications, 118(15), 31–34.
  • Theodorakopoulos, L., Thanasas, G., & Halkiopoulos, C. (2024). Implications of big data in accounting: Challenges and opportunities. Emerging Science Journal, 8(3), 1201-1214.
  • Tsai, C. F., & Yen, D. C. (2008). A comparative study of data mining techniques for corporate bankruptcy prediction. Expert Systems with Applications, 35(3), 756–763.
  • Tüzüntürk, S. (2010). Veri madenciliği ve istatistik. Uludağ Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 29(1), 65-90.
  • Vasarhelyi, M. A., Kogan, A., & Tuttle, B. M. (2015). Big data in accounting: An overview. Accounting Horizons, 29(2), 381-396.
  • Viaene, S., Ayuso, M., Guillen, M., Gheel, D. V., & Dedene, G. (2004). Strategies for detecting fraudulent claims in the automobile insurance industry. European Journal of Operational Research, 176(1), 565–583.
  • Virdhagriswaran, S. (2006). Data mining for insurance fraud detection [Doctoral dissertation, University of Texas at Arlington].
  • Warren, J. D., Moffitt, K. C., & Byrnes, P. (2015). How big data will change accounting. Accounting horizons, 29(2), 397-407.
  • Welch, J. R., Reeves, T. P., & Welch, S. A. (1998). Using genetic algorithms to create a network for detecting management fraud. Intelligent Systems in Accounting, Finance and Management, 7(3), 161–174.
  • West, J., & Bhattacharya, M. (2016). Intelligent financial fraud detection: a comprehensive review. Computers & security, 57, 47-66.
  • Whitrow, C., Hand, D. J., Juszczak, P., Weston, D., & Adams, N. M. (2009). Transaction aggregation as a strategy for credit card fraud detection. Data Mining and Knowledge Discovery, 18(1), 30–55.
  • Wong, N., Ray, P., Stephens, G., & Lewis, L. (2012). Artificial immune systems for the detection of credit card fraud: An assessment. International Journal of Computer Applications, 42(17), 26–32.
  • Wu, S. X., & Banzhaf, W. (2008). A hybrid method for credit card fraud detection based on evolutionary computation. Proceedings of the 10th annual conference on Genetic and evolutionary computation.
  • Wu, X., Zhu, X., Wu, G. Q., & Ding, W. (2013). Data mining with big data. IEEE transactions on knowledge and data engineering, 26(1), 97-107.
  • Xiao, M., Xiaoli, H., & Gaojin, L. (2010). Research on application of data mining technology in financial decision support system. In 2010 3rd International Conference on Information Management, Innovation Management and Industrial Engineering (Vol. 4, pp. 381-384). IEEE.
  • Yang, Z., Liu, Y., & Chen, X. (2022). Financial fraud detection using graph neural networks on transaction data. Knowledge-Based Systems, 240, 108079.
  • Yong Ren, V., Zhang, L., & Wang, P. (2023). A novel hybrid deep learning model for financial fraud detection in imbalanced datasets. Information Sciences, 621, 703-720. (Not: Bu kaynak "Ren vd. (2023)" ile aynı olabilir, kontrol edilmelidir)
  • Yuan, L., Chen, Y., & Zhang, S. (2008). The application of data mining in financial fraud detection: Evidence from China. China Economic Review, 19(4), 693–700.
  • Yue, D., Wu, X., & Wang, Y. (2007). A review of data mining-based financial fraud detection research. International Conference on Wireless Communications, Networking and Mobile Computing.
  • Zaki, M. J., & Theodoulidis, B. (2013). Fraud detection in financial statements using meta-learning. Intelligent Data Analysis, 17(4), 689–704.
  • Zhang, J., Li, T., & Chen, H. (2014). Composite rough sets for dynamic data mining. Information Sciences, 257, 81-100.
  • Zhang, Y., & Zhou, J. (2004). A novel model for credit card fraud detection using ensemble learning. Proceedings of the International Conference on Machine Learning and Cybernetics.
  • Zhou, W., & Kapoor, G. (2011). Detecting evolutionary financial statement fraud. Decision Support Systems, 50(3), 570–575.

Yıl 2025, Cilt: 12 Sayı: 4, 318 - 345, 31.10.2025

Öz

Kaynakça

  • Abbott, L. J., Park, Y., & Parker, S. (2000). The effects of audit committee activity and independence on corporate fraud. Managerial Finance, 26(11), 55–67.
  • Alagöz, A., Öge, S., & Ortakarpuz, M. (2014). Bir Kurumsal Zekâ Teknolojisi Olarak Veri Madenciliği ile Muhasebe Bilgi Sistemi İlişkisi. Selçuk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, (31.1), 1-21.
  • Alsharif, M. and Alvi, A. (2021). The impact of data mining on accounting profession: evidence from emerging economies. International Journal of Emerging Markets, 16(1), pp. 129-146.
  • Amani, F. A., & Fadlalla, A. M. (2017). Data mining applications in accounting: A review of the literature and organizing framework. International Journal of Accounting Information Systems, 24, 32-58.
  • Ammar, S., Dunlap, D., & Wright, R. (2000). A neural network approach to detecting financial statement fraud. Proceedings of the International Conference on Artificial Intelligence.
  • Association of Certified Fraud Examiners. 2018. Global study on occupational fraud and abuse, available at: https://s3-us-west-2.amazonaws.com/acfepublic/2018-report-to-the-nations.pdf (accessed 16th February 2020).
  • Aslantas, M. (2024). The Effect of Talent Management Strategies on Work Engagement in the Finance Sector: A Study on Bank Employees. Avrasya Sosyal ve Ekonomi Araştırmaları Dergisi, 11(2), 290-317
  • Baesens, B., Setiono, R., Mues, C., & Vanthienen, J. (2003). Using neural network rule extraction and decision tables for credit-risk evaluation. Management science, 49(3), 312-329.
  • Bai, Y., Chen, J., & Wang, Y. (2008). A comparative study of data mining methods for financial statement fraud detection. Journal of Accounting and Finance, 12(3), 45-59.
  • Balagolla, E. M. S. R., Fernando, P. G. T., & Rathnayake, H. M. S. P. (2021). A hybrid model for financial fraud detection using machine learning techniques. Journal of Financial Crime.
  • Baran Kılıç, M., Akar, G. B., & Güzeliş, C. (2022). A comparative analysis of deep learning models for financial fraud detection. Expert Systems with Applications, 207, 117945.
  • Bartoletti, M., Carta, S., & Onnio, M. (2021). A survey on fraud detection with machine learning. ACM Computing Surveys, 54(6), 1–38.
  • Beasley, M. S. (1996). An empirical analysis of the relation between the board of director composition and financial statement fraud. The Accounting Review, 71(4), 443–465.
  • Beasley, M. S., Carcello, J. V., & Hermanson, D. R. (2000). Fraudulent financial reporting: Consideration of industry traits and corporate governance mechanisms. Accounting Horizons, 14(4), 441–454.
  • Bell, T. B., & Carcello, J. V. (2000). A decision aid for assessing the likelihood of fraudulent financial reporting. Auditing: A Journal of Practice & Theory, 19(1), 169–184.
  • Beneish, M. D. (1997). Detecting GAAP violation: Implications for assessing earnings management among firms with extreme financial performance. Journal of Accounting and Public Policy, 16(3), 271–309.
  • Beneish, M. D. (1999). The detection of earnings manipulation. Financial Analysts Journal, 55(5), 24–36.
  • Bermúdez, L., Pérez, J. M., Ayuso, M., & Gómez, E. (2008). A Bayesian dichotomous model with asymmetric link for fraud in insurance. Insurance: Mathematics and Economics, 42(2), 779–786.
  • Bhattacharyya, S., Jha, S., Tharakunnel, K., & Westland, J. C. (2011). Data mining for credit card fraud: A comparative study. Decision Support Systems, 50(3), 602–613.
  • Bose, I., & Wang, J. (2007). Data mining for detection of financial statement fraud in China. Journal of Emerging Technologies in Accounting, 4(1), 1–20.
  • Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees. Wadsworth.
  • Cecchini, M., Aytug, H., Koehler, G. J., & Pathak, P. (2010). Detecting management fraud in public companies. Management Science, 56(7), 1146–1160.
  • Cerullo, M. J., & Cerullo, V. (1999). Using neural networks to predict financial reporting fraud: Part 1. The CPA Journal, 69(5), 42–47.
  • Chahadah, A. A., Refae, G. A. E., & Qasim, A. (2018). The use of data mining techniques in accounting and finance as a corporate strategic tool: an empirical investigation on banks operating in emerging economies. International Journal of Economics and Business Research, 15(4), 442-452.
  • Chai, S., Chen, Y., & Huang, B. (2006). A fuzzy logic approach for fraud detection in financial statements. Journal of Intelligent & Fuzzy Systems, 17(4), 345–356.
  • Chaurasia, V., Pal, S., & Tiwari, B. B. (2022). A hybrid machine learning model for credit card fraud detection. International Journal of Information Technology, 14(2), 1103–1113.
  • Chen, L. D., Sakaguchi, T., & Frolick, M. N. (2000). Data mining methods, applications, and tools. Information systems management, 17(1), 65-70.
  • Chye Koh, H., & Kee Low, C. (2004). Going concern prediction using data mining techniques. Managerial Auditing Journal, 19(3), 462-476.
  • Coman, D. M., Mieilă, M., Voinea, C. M., Tănase, L. C., & Necula, A. I. (2025). Determinants of the Accounting Services’ Outsourcing Amid the Business’ Digitization in Romania: An Analytical Examination. Journal of East European Management Studies, 30(2), 39038.
  • Debreceny, R. S., & Gray, G. L. (2010). Data mining journal entries for fraud detection: An exploratory study. International Journal of Accounting Information Systems, 11(3), 157-181.
  • Deng, X. (2009). An integrated framework for financial fraud detection using data mining [Doctoral dissertation, University of Technology, Sydney].
  • Deng, X. (2017). A hybrid model for financial fraud detection: An empirical study in China. Journal of Forensic & Investigative Accounting, 9(1), 145–160.
  • Deshmukh, A., & Talluru, L. (1998). A rule-based fuzzy logic system for fraud detection in financial statements. Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics (Vol. 4, pp. 3723-3728).
  • Deshmukh, A., Romine, J., & Siegel, P.H. (1997). Measurement and combination of red flags to assess the risk of management fraud: a fuzzy set approach, Managerial Finance 23 (6) 35–48.
  • Dong, W., Liao, S., & Zhang, Z. (2014). The impact of management integrity on audit efficiency: Evidence from China. China Journal of Accounting Research, 7(1), 59–78.
  • Duman, E., & Özelçi, Ü. (2011). Detecting credit card fraud by genetic algorithm and scatter search. Expert Systems with Applications, 38(10), 13057–13063.
  • Eduardo, S., Pérez, M., & López, V. (2021). A novel ensemble method for fraud detection using machine learning. Applied Soft Computing, 100, 106991.
  • Eining, M. M., Jones, D. R., & Loebbecke, J. K. (1997). Reliance on decision aids: An examination of auditors' assessment of management fraud. Auditing: A Journal of Practice & Theory, 16(2), 1–19.
  • Elmougy, S., Tolba, A., & Hamdy, N. (2021). A hybrid feature selection model for financial fraud detection. IEEE Access, 9, 128310–128322.
  • Fanning, K. M., & Cogger, K. O. (1998). Neural network detection of management fraud using published financial data. Intelligent Systems in Accounting, Finance and Management, 7(1), 21–41.
  • Fanning, K. M., Cogger, K. O., & Srivastava, R. P. (1995). Detection of management fraud: A neural network approach. International Journal of Intelligent Systems in Accounting, Finance & Management, 4(2), 113–126.
  • Farooq Aziz. (2023). Data analytics impacts in the field of accounting. World Journal of Advanced Research and Reviews, 18(2), 946–951. doi:10.30574/wjarr.2023.18.2.0863.
  • Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge discovery in databases. AI magazine, 17(3), 37-37.
  • Feng, M., Zheng, J., Han, Y., Ren, J., & Liu, Q. (2018). Big data analytics and mining for crime data analysis, visualization and prediction. In International conference on brain inspired cognitive systems (pp. 605-614). Cham: Springer International Publishing.
  • Feroz, E. H., Kwon, T. M., Pastena, V. S., & Park, K. (2000). The efficacy of red flags in predicting the SEC's targets: An artificial neural networks approach. International Journal of Intelligent Systems in Accounting, Finance & Management, 9(3), 145–157.
  • Glancy, F. H., & Yadav, S. B. (2011). A computational model for financial reporting fraud detection. Decision Support Systems, 50(3), 595–601.
  • Gray, G. L., & Debreceny, R. S. (2014). A taxonomy to guide research on the application of data mining to fraud detection in financial statement audits. International Journal of Accounting Information Systems, 15(4), 357-380.
  • Green, B. P., & Choi, J. H. (1997). Assessing the risk of management fraud through neural network technology. Auditing: A Journal of Practice & Theory, 16(1), 14–28.
  • Guoxin, L., Hua, Z., & Wei, L. (2007). The application of data mining in financial statement fraud detection. Proceedings of the International Conference on Wireless Communications, Networking and Mobile Computing.
  • Hajek, P., & Henriques, R. (2017). Mining corporate annual reports for intelligent detection of financial statement fraud—A comparative study of machine learning methods. Knowledge-Based Systems, 128, 139–152.
  • Han, J., Kamber, M., & Mining, D. (2006). Concepts and techniques. Morgan kaufmann, 340(1), 94104-103205.
  • Hansen, J. V., McDonald, J. B., & Stice, J. D. (1996). Artificial intelligence and generalized qualitative-response models: An empirical test on two audit decision-making domains. Decision Sciences, 27(2), 229–255.
  • Hilal, W., Gadsden, S. A., & Yawney, J. (2022). Financial fraud: a review of anomaly detection techniques and recent advances. Expert systems With applications, 193, 116429.
  • Hoogs, B., Kiehl, T., Lacomb, C., & Senturk, D. (2007). A genetic algorithm approach to detecting temporal patterns indicative of financial statement fraud. Intelligent Systems in Accounting, Finance and Management, 15(1-2), 41–56.
  • Huang, S. Y. (2006). An empirical study on the detection of financial statement fraud using data mining. Journal of American Academy of Business, 9(2), 89–95.
  • Humpherys, S. L., Moffitt, K. C., Burns, M. B., Burgoon, J. K., & Felix, W. F. (2011). Identification of fraudulent financial statements using linguistic credibility analysis. Decision Support Systems, 50(3), 585–594.
  • Jain, N., & Srivastava, V. (2013). Data mining techniques: a survey paper. IJRET: International Journal of Research in Engineering and Technology, 2(11), 2319-1163.
  • Jans, M., Lybaert, N., & Vanhoof, K. (2011). A framework for internal fraud risk reduction: IT support for forensic accountants. International Journal of Digital Accounting Research, 11, 1–29.
  • Jun Lee, S., & Siau, K. (2001). A review of data mining techniques. Industrial Management & Data Systems, 101(1), 41-46.
  • Kandemir, T., & Kardeş, Z. (2025). Hileli Finansal Tabloların Tespitinde Veri Madenciliği Uygulamaları: Mevcut Araştırma Eğilimlerinin İncelenmesi (2006-2024). Denetişim (33), 333-355. https://doi.org/10.58348/denetisim.1674341.
  • Karami, M., Baber, W. W., & Ojala, A. (2022). The effectual process of business model innovation for seizing opportunities in frontier markets. Technovation, 117, 102595.
  • Kiehl, T., Hoogs, B., & LaComb, C. (2005). A genetic algorithm for detecting temporal patterns indicative of financial statement fraud. Proceedings of the Genetic and Evolutionary Computation Conference.
  • Kirkos, E., Spathis, C., & Manolopoulos, Y. (2007). Data mining techniques for the detection of fraudulent financial statements. Expert Systems with Applications, 32(4), 995–1003.
  • Koskivaara, E. (2000). Artificial neural networks for analytical review in auditing. Turku Centre for Computer Science.
  • Kotsiantis, S., Koumanakos, E., Tzelepis, D., & Tampakas, V. (2006). Forecasting fraudulent financial statements using data mining. International Journal of Computational Intelligence, 3(2), 104–110.
  • Krambia-Kapardis, M., Christodoulou, C., & Agathocleous, M. (2010). Neural networks: The panacea in fraud detection? Managerial Auditing Journal, 25(7), 659–678.
  • Kumar, M. K., & Kar, P. K. (2020). A Study on Privacy Preserving in Big Data Mining Using Fuzzy Logic Approach. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 11, 2108-2116.
  • Laourou, A. B. F. (2025). The adoption and implementation of data mining in accounting information systems (AIS) within the public sector of Nigeria. IIARD Journals. https://doi. org/10.56201/jafm, 11.
  • Lenard, M. J., & Alam, P. (2004). An evolutionary approach to data mining for fraud detection in financial statements. Journal of Emerging Technologies in Accounting, 1(1), 69–82.
  • Li, J. (2015). Financial fraud detection based on text mining and sentiment analysis [Doctoral dissertation, University of Maryland].
  • Li, J. (2021). Advanced machine learning techniques for financial fraud detection: A review. Journal of Financial Analytics, 4(1), 45-62.
  • Liang, D., & Lv, J. (2016). A fuzzy GA-BPNN model for financial fraud detection. Journal of Intelligent & Fuzzy Systems, 30(4), 2309–2318.
  • Lin, J. W., Hwang, M. I., & Becker, J. D. (2003). A fuzzy neural network for assessing the risk of fraudulent financial reporting. Managerial Auditing Journal, 18(8), 657–665.
  • Liou, F. M. (2008). Fraudulent financial reporting detection and business failure prediction models: a comparison. Managerial Auditing Journal, 23(7), 650-662.
  • Liou, F. M. (2008). Fraudulent financial reporting detection using business intelligence and data mining. Journal of Modern Accounting and Auditing, 4(11), 38–47.
  • Liu, Q., & Vasarhelyi, M. A. (2014). Big questions in AIS research: Measurement, information processing, data analysis, and reporting. Journal of information systems, 28(1), 1-17.
  • Liu, X. (2021). Empirical analysis of financial statement fraud of listed companies based on logistic regression and random forest algorithm. Journal of Mathematics, 2021(1), 9241338.
  • Martin, K., Sanders, E., & Baird, J. (2022). Deep learning for anomaly detection in financial networks. Journal of Financial Stability, 60, 100992.
  • Meenakshi, S., & Sivaranjani, S. (2016). A survey on credit card fraud detection using data mining techniques. International Journal of Advanced Research in Computer Science and Software Engineering, 6(5), 268–272.
  • Mercan, M., Kitesashvili, D., Aslantas, M. (2023). Effect of Financial Literacy on Financial Well-Being in Georgia. Journal of Business, Vol. 12 No. 2
  • Mraović, B. (2008). Relevance of data mining for accounting: social implications. Social Responsibility Journal, 4(4), 439-455.
  • Murcia, F. C. (2008). Fraud detection in financial statements: An empirical study of Brazilian public companies [Doctoral dissertation, University of São Paulo].
  • Ngai, E. W., Hu, Y., Wong, Y. H., Chen, Y., & Sun, X. (2011). The application of data mining techniques in financial fraud detection: A classification framework and an academic review of literature. Decision support systems, 50(3), 559-569.
  • Nha, B. T., & Thuan, N. D. (2022, December). Methodology Interaction by Machine Learning Model to Detect Vulnerability in Smart Contract of Blockchain. In 2022 RIVF International Conference on Computing and Communication Technologies (RIVF) (pp. 112-117). IEEE.
  • Olszewski, D. (2014). Fraud detection using self-organizing maps. Proceedings of the International Conference on Artificial Intelligence and Soft Computing.
  • Owusu-Ansah, S., Moyes, G. D., Oyelere, P. B., & Hay, D. (2002). An empirical analysis of the likelihood of detecting fraud in New Zealand. Managerial Auditing Journal, 17(4), 192–204.
  • Özekes, S. (2003). Veri madenciliği modelleri ve uygulama alanları. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, 2(3), 65-82.
  • Pacheco, R., Salgado, L., & Eining, M. (1996). The impact of decision aids on auditor's fraud risk assessments. Advances in Accounting Information Systems, 4, 141–159.
  • Page MJ, McKenzie JE, Bossuyt PM, ve ark. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372 (71):1-9. doi:10.1136/bmj.n71
  • Panigrahi, S., Kundu, A., Sural, S., & Majumdar, A. K. (2009). Credit card fraud detection: A fusion approach using Dempster–Shafer theory and Bayesian learning. Information Fusion, 10(4), 354–363.
  • Papík, M., & Papíková, L. (2022). Detecting accounting fraud in companies reporting under US GAAP through data mining. International Journal of Accounting Information Systems, 45, 100559.
  • Pathak, J., Vidyarthi, N., & Summers, S. L. (2005). A fuzzy-based algorithm for auditors to detect elements of fraud in settled insurance claims. Managerial Auditing Journal, 20(6), 632–644.
  • Perols, J. (2011). Financial statement fraud detection: An analysis of statistical and machine learning algorithms. Auditing: A Journal of Practice & Theory, 30(2), 19–50.
  • Pinquet, J., Ayuso, M., & Guillén, M. (2007). Selection bias and auditing policies for insurance claims. The Journal of Risk and Insurance, 74(2), 425–440.
  • Popat, R. R., & Chaudhary, J. (2018, May). A survey on credit card fraud detection using machine learning. In 2018 2nd international conference on trends in electronics and informatics (ICOEI) (pp. 1120-1125). IEEE.
  • Quah, J. T. S., & Sriganesh, M. (2008). Real-time credit card fraud detection using computational intelligence. Expert Systems with Applications, 35(4), 1721–1732.
  • Ramzan, M., & Ahmad, M. (2014, March). Evolution of data mining: An overview. In 2014 Conference on IT in Business, Industry and Government (CSIBIG) (pp. 1-4). IEEE.
  • Ravisankar, P., Ravi, V., Rao, G. R., & Bose, I. (2011). Detection of financial statement fraud and feature selection using data mining techniques. Decision Support Systems, 50(2), 491–500.
  • Ren, Y. (2006). An empirical study on financial fraud detection in Chinese listed companies [Doctoral dissertation, Shanghai University of Finance and Economics].
  • Ren, Y., Zhang, L., & Wang, P. (2023). A novel hybrid deep learning model for financial fraud detection in imbalanced datasets. Information Sciences, 621, 703-720.
  • Rezaee, Z. (2005). Causes, consequences, and deterence of financial statement fraud. Critical perspectives on Accounting, 16(3), 277-298.
  • Ryan, C. L., Cant, R., McAllister, M. M., Vanderburg, R., & Batty, C. (2022). Transformative learning theory applications in health professional and nursing education: An umbrella review. Nurse Education Today, 119, 105604.https://doi.org/10.1016/j.nedt.2022.105604
  • Rygielski, C., Wang, J. C., & Yen, D. C. (2002). Data mining techniques for customer relationship management. Technology in society, 24(4), 483-502.
  • Sağlar, J., & Kefe, İ. (2021). A Revıew on Data Mınıng Methods used ın Internal Audıt and External Audıt. EKEV Akademi Dergisi. (88), 259-274.
  • Sahin, Y., Bulkan, S., & Duman, E. (2013). A cost-sensitive decision tree approach for fraud detection. Expert Systems with Applications, 40(15), 5916–5923.
  • Sánchez, D., Vila, M. A., Cerda, L., & Serrano, J. M. (2009). Association rules applied to credit card fraud detection. Expert Systems with Applications, 36(2), 3630–3640.
  • Seifert, J. W. (2004). Data mining: An overview. National security issues, 201-217.
  • Seng, J. L., & Chen, T. C. (2010). An analytic approach to select data mining for business decision. Expert Systems with Applications, 37(12), 8042-8057.
  • Sharma, A., & Panigrahi, P. K. (2013). A review of financial accounting fraud detection based on data mining techniques. arXiv preprint arXiv:1309.3944.
  • Soltani Halvaiee, N., & Akbari, M. K. (2014). A novel model for credit card fraud detection using Artificial Immune Systems. Applied Soft Computing, 24, 40–49.
  • Söylemez, Y. & Türkmen, S. Y. (2017). Yapay Sinir Ağları Modeli ile Finansal Başarısızlık Tahmini. Finans Ekonomi ve Sosyal Araştırmalar Dergisi, 2(4), 270-284.
  • Spathis, C., Doumpos, M., & Zopounidis, C. (2002). Detecting falsified financial statements: A comparative study using multicriteria analysis and multivariate statistical techniques. European Accounting Review, 11(3), 509–535.
  • Summers, S. L., & Sweeney, J. T. (1998). Fraudulently misstated financial statements and insider trading: An empirical analysis. The Accounting Review, 73(1), 131–146.
  • Tan, R., Zhang, X., & Li, Y. (2021). A hybrid machine learning approach for financial fraud detection using multi-source data. Electronic Commerce Research and Applications, 48, 101070.
  • Tangod, S., & Kulkarni, S. (2015). A survey on credit card fraud detection using data mining techniques. International Journal of Computer Applications, 118(15), 31–34.
  • Theodorakopoulos, L., Thanasas, G., & Halkiopoulos, C. (2024). Implications of big data in accounting: Challenges and opportunities. Emerging Science Journal, 8(3), 1201-1214.
  • Tsai, C. F., & Yen, D. C. (2008). A comparative study of data mining techniques for corporate bankruptcy prediction. Expert Systems with Applications, 35(3), 756–763.
  • Tüzüntürk, S. (2010). Veri madenciliği ve istatistik. Uludağ Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 29(1), 65-90.
  • Vasarhelyi, M. A., Kogan, A., & Tuttle, B. M. (2015). Big data in accounting: An overview. Accounting Horizons, 29(2), 381-396.
  • Viaene, S., Ayuso, M., Guillen, M., Gheel, D. V., & Dedene, G. (2004). Strategies for detecting fraudulent claims in the automobile insurance industry. European Journal of Operational Research, 176(1), 565–583.
  • Virdhagriswaran, S. (2006). Data mining for insurance fraud detection [Doctoral dissertation, University of Texas at Arlington].
  • Warren, J. D., Moffitt, K. C., & Byrnes, P. (2015). How big data will change accounting. Accounting horizons, 29(2), 397-407.
  • Welch, J. R., Reeves, T. P., & Welch, S. A. (1998). Using genetic algorithms to create a network for detecting management fraud. Intelligent Systems in Accounting, Finance and Management, 7(3), 161–174.
  • West, J., & Bhattacharya, M. (2016). Intelligent financial fraud detection: a comprehensive review. Computers & security, 57, 47-66.
  • Whitrow, C., Hand, D. J., Juszczak, P., Weston, D., & Adams, N. M. (2009). Transaction aggregation as a strategy for credit card fraud detection. Data Mining and Knowledge Discovery, 18(1), 30–55.
  • Wong, N., Ray, P., Stephens, G., & Lewis, L. (2012). Artificial immune systems for the detection of credit card fraud: An assessment. International Journal of Computer Applications, 42(17), 26–32.
  • Wu, S. X., & Banzhaf, W. (2008). A hybrid method for credit card fraud detection based on evolutionary computation. Proceedings of the 10th annual conference on Genetic and evolutionary computation.
  • Wu, X., Zhu, X., Wu, G. Q., & Ding, W. (2013). Data mining with big data. IEEE transactions on knowledge and data engineering, 26(1), 97-107.
  • Xiao, M., Xiaoli, H., & Gaojin, L. (2010). Research on application of data mining technology in financial decision support system. In 2010 3rd International Conference on Information Management, Innovation Management and Industrial Engineering (Vol. 4, pp. 381-384). IEEE.
  • Yang, Z., Liu, Y., & Chen, X. (2022). Financial fraud detection using graph neural networks on transaction data. Knowledge-Based Systems, 240, 108079.
  • Yong Ren, V., Zhang, L., & Wang, P. (2023). A novel hybrid deep learning model for financial fraud detection in imbalanced datasets. Information Sciences, 621, 703-720. (Not: Bu kaynak "Ren vd. (2023)" ile aynı olabilir, kontrol edilmelidir)
  • Yuan, L., Chen, Y., & Zhang, S. (2008). The application of data mining in financial fraud detection: Evidence from China. China Economic Review, 19(4), 693–700.
  • Yue, D., Wu, X., & Wang, Y. (2007). A review of data mining-based financial fraud detection research. International Conference on Wireless Communications, Networking and Mobile Computing.
  • Zaki, M. J., & Theodoulidis, B. (2013). Fraud detection in financial statements using meta-learning. Intelligent Data Analysis, 17(4), 689–704.
  • Zhang, J., Li, T., & Chen, H. (2014). Composite rough sets for dynamic data mining. Information Sciences, 257, 81-100.
  • Zhang, Y., & Zhou, J. (2004). A novel model for credit card fraud detection using ensemble learning. Proceedings of the International Conference on Machine Learning and Cybernetics.
  • Zhou, W., & Kapoor, G. (2011). Detecting evolutionary financial statement fraud. Decision Support Systems, 50(3), 570–575.

Yıl 2025, Cilt: 12 Sayı: 4, 318 - 345, 31.10.2025

Öz

Kaynakça

  • Abbott, L. J., Park, Y., & Parker, S. (2000). The effects of audit committee activity and independence on corporate fraud. Managerial Finance, 26(11), 55–67.
  • Alagöz, A., Öge, S., & Ortakarpuz, M. (2014). Bir Kurumsal Zekâ Teknolojisi Olarak Veri Madenciliği ile Muhasebe Bilgi Sistemi İlişkisi. Selçuk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, (31.1), 1-21.
  • Alsharif, M. and Alvi, A. (2021). The impact of data mining on accounting profession: evidence from emerging economies. International Journal of Emerging Markets, 16(1), pp. 129-146.
  • Amani, F. A., & Fadlalla, A. M. (2017). Data mining applications in accounting: A review of the literature and organizing framework. International Journal of Accounting Information Systems, 24, 32-58.
  • Ammar, S., Dunlap, D., & Wright, R. (2000). A neural network approach to detecting financial statement fraud. Proceedings of the International Conference on Artificial Intelligence.
  • Association of Certified Fraud Examiners. 2018. Global study on occupational fraud and abuse, available at: https://s3-us-west-2.amazonaws.com/acfepublic/2018-report-to-the-nations.pdf (accessed 16th February 2020).
  • Aslantas, M. (2024). The Effect of Talent Management Strategies on Work Engagement in the Finance Sector: A Study on Bank Employees. Avrasya Sosyal ve Ekonomi Araştırmaları Dergisi, 11(2), 290-317
  • Baesens, B., Setiono, R., Mues, C., & Vanthienen, J. (2003). Using neural network rule extraction and decision tables for credit-risk evaluation. Management science, 49(3), 312-329.
  • Bai, Y., Chen, J., & Wang, Y. (2008). A comparative study of data mining methods for financial statement fraud detection. Journal of Accounting and Finance, 12(3), 45-59.
  • Balagolla, E. M. S. R., Fernando, P. G. T., & Rathnayake, H. M. S. P. (2021). A hybrid model for financial fraud detection using machine learning techniques. Journal of Financial Crime.
  • Baran Kılıç, M., Akar, G. B., & Güzeliş, C. (2022). A comparative analysis of deep learning models for financial fraud detection. Expert Systems with Applications, 207, 117945.
  • Bartoletti, M., Carta, S., & Onnio, M. (2021). A survey on fraud detection with machine learning. ACM Computing Surveys, 54(6), 1–38.
  • Beasley, M. S. (1996). An empirical analysis of the relation between the board of director composition and financial statement fraud. The Accounting Review, 71(4), 443–465.
  • Beasley, M. S., Carcello, J. V., & Hermanson, D. R. (2000). Fraudulent financial reporting: Consideration of industry traits and corporate governance mechanisms. Accounting Horizons, 14(4), 441–454.
  • Bell, T. B., & Carcello, J. V. (2000). A decision aid for assessing the likelihood of fraudulent financial reporting. Auditing: A Journal of Practice & Theory, 19(1), 169–184.
  • Beneish, M. D. (1997). Detecting GAAP violation: Implications for assessing earnings management among firms with extreme financial performance. Journal of Accounting and Public Policy, 16(3), 271–309.
  • Beneish, M. D. (1999). The detection of earnings manipulation. Financial Analysts Journal, 55(5), 24–36.
  • Bermúdez, L., Pérez, J. M., Ayuso, M., & Gómez, E. (2008). A Bayesian dichotomous model with asymmetric link for fraud in insurance. Insurance: Mathematics and Economics, 42(2), 779–786.
  • Bhattacharyya, S., Jha, S., Tharakunnel, K., & Westland, J. C. (2011). Data mining for credit card fraud: A comparative study. Decision Support Systems, 50(3), 602–613.
  • Bose, I., & Wang, J. (2007). Data mining for detection of financial statement fraud in China. Journal of Emerging Technologies in Accounting, 4(1), 1–20.
  • Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees. Wadsworth.
  • Cecchini, M., Aytug, H., Koehler, G. J., & Pathak, P. (2010). Detecting management fraud in public companies. Management Science, 56(7), 1146–1160.
  • Cerullo, M. J., & Cerullo, V. (1999). Using neural networks to predict financial reporting fraud: Part 1. The CPA Journal, 69(5), 42–47.
  • Chahadah, A. A., Refae, G. A. E., & Qasim, A. (2018). The use of data mining techniques in accounting and finance as a corporate strategic tool: an empirical investigation on banks operating in emerging economies. International Journal of Economics and Business Research, 15(4), 442-452.
  • Chai, S., Chen, Y., & Huang, B. (2006). A fuzzy logic approach for fraud detection in financial statements. Journal of Intelligent & Fuzzy Systems, 17(4), 345–356.
  • Chaurasia, V., Pal, S., & Tiwari, B. B. (2022). A hybrid machine learning model for credit card fraud detection. International Journal of Information Technology, 14(2), 1103–1113.
  • Chen, L. D., Sakaguchi, T., & Frolick, M. N. (2000). Data mining methods, applications, and tools. Information systems management, 17(1), 65-70.
  • Chye Koh, H., & Kee Low, C. (2004). Going concern prediction using data mining techniques. Managerial Auditing Journal, 19(3), 462-476.
  • Coman, D. M., Mieilă, M., Voinea, C. M., Tănase, L. C., & Necula, A. I. (2025). Determinants of the Accounting Services’ Outsourcing Amid the Business’ Digitization in Romania: An Analytical Examination. Journal of East European Management Studies, 30(2), 39038.
  • Debreceny, R. S., & Gray, G. L. (2010). Data mining journal entries for fraud detection: An exploratory study. International Journal of Accounting Information Systems, 11(3), 157-181.
  • Deng, X. (2009). An integrated framework for financial fraud detection using data mining [Doctoral dissertation, University of Technology, Sydney].
  • Deng, X. (2017). A hybrid model for financial fraud detection: An empirical study in China. Journal of Forensic & Investigative Accounting, 9(1), 145–160.
  • Deshmukh, A., & Talluru, L. (1998). A rule-based fuzzy logic system for fraud detection in financial statements. Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics (Vol. 4, pp. 3723-3728).
  • Deshmukh, A., Romine, J., & Siegel, P.H. (1997). Measurement and combination of red flags to assess the risk of management fraud: a fuzzy set approach, Managerial Finance 23 (6) 35–48.
  • Dong, W., Liao, S., & Zhang, Z. (2014). The impact of management integrity on audit efficiency: Evidence from China. China Journal of Accounting Research, 7(1), 59–78.
  • Duman, E., & Özelçi, Ü. (2011). Detecting credit card fraud by genetic algorithm and scatter search. Expert Systems with Applications, 38(10), 13057–13063.
  • Eduardo, S., Pérez, M., & López, V. (2021). A novel ensemble method for fraud detection using machine learning. Applied Soft Computing, 100, 106991.
  • Eining, M. M., Jones, D. R., & Loebbecke, J. K. (1997). Reliance on decision aids: An examination of auditors' assessment of management fraud. Auditing: A Journal of Practice & Theory, 16(2), 1–19.
  • Elmougy, S., Tolba, A., & Hamdy, N. (2021). A hybrid feature selection model for financial fraud detection. IEEE Access, 9, 128310–128322.
  • Fanning, K. M., & Cogger, K. O. (1998). Neural network detection of management fraud using published financial data. Intelligent Systems in Accounting, Finance and Management, 7(1), 21–41.
  • Fanning, K. M., Cogger, K. O., & Srivastava, R. P. (1995). Detection of management fraud: A neural network approach. International Journal of Intelligent Systems in Accounting, Finance & Management, 4(2), 113–126.
  • Farooq Aziz. (2023). Data analytics impacts in the field of accounting. World Journal of Advanced Research and Reviews, 18(2), 946–951. doi:10.30574/wjarr.2023.18.2.0863.
  • Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge discovery in databases. AI magazine, 17(3), 37-37.
  • Feng, M., Zheng, J., Han, Y., Ren, J., & Liu, Q. (2018). Big data analytics and mining for crime data analysis, visualization and prediction. In International conference on brain inspired cognitive systems (pp. 605-614). Cham: Springer International Publishing.
  • Feroz, E. H., Kwon, T. M., Pastena, V. S., & Park, K. (2000). The efficacy of red flags in predicting the SEC's targets: An artificial neural networks approach. International Journal of Intelligent Systems in Accounting, Finance & Management, 9(3), 145–157.
  • Glancy, F. H., & Yadav, S. B. (2011). A computational model for financial reporting fraud detection. Decision Support Systems, 50(3), 595–601.
  • Gray, G. L., & Debreceny, R. S. (2014). A taxonomy to guide research on the application of data mining to fraud detection in financial statement audits. International Journal of Accounting Information Systems, 15(4), 357-380.
  • Green, B. P., & Choi, J. H. (1997). Assessing the risk of management fraud through neural network technology. Auditing: A Journal of Practice & Theory, 16(1), 14–28.
  • Guoxin, L., Hua, Z., & Wei, L. (2007). The application of data mining in financial statement fraud detection. Proceedings of the International Conference on Wireless Communications, Networking and Mobile Computing.
  • Hajek, P., & Henriques, R. (2017). Mining corporate annual reports for intelligent detection of financial statement fraud—A comparative study of machine learning methods. Knowledge-Based Systems, 128, 139–152.
  • Han, J., Kamber, M., & Mining, D. (2006). Concepts and techniques. Morgan kaufmann, 340(1), 94104-103205.
  • Hansen, J. V., McDonald, J. B., & Stice, J. D. (1996). Artificial intelligence and generalized qualitative-response models: An empirical test on two audit decision-making domains. Decision Sciences, 27(2), 229–255.
  • Hilal, W., Gadsden, S. A., & Yawney, J. (2022). Financial fraud: a review of anomaly detection techniques and recent advances. Expert systems With applications, 193, 116429.
  • Hoogs, B., Kiehl, T., Lacomb, C., & Senturk, D. (2007). A genetic algorithm approach to detecting temporal patterns indicative of financial statement fraud. Intelligent Systems in Accounting, Finance and Management, 15(1-2), 41–56.
  • Huang, S. Y. (2006). An empirical study on the detection of financial statement fraud using data mining. Journal of American Academy of Business, 9(2), 89–95.
  • Humpherys, S. L., Moffitt, K. C., Burns, M. B., Burgoon, J. K., & Felix, W. F. (2011). Identification of fraudulent financial statements using linguistic credibility analysis. Decision Support Systems, 50(3), 585–594.
  • Jain, N., & Srivastava, V. (2013). Data mining techniques: a survey paper. IJRET: International Journal of Research in Engineering and Technology, 2(11), 2319-1163.
  • Jans, M., Lybaert, N., & Vanhoof, K. (2011). A framework for internal fraud risk reduction: IT support for forensic accountants. International Journal of Digital Accounting Research, 11, 1–29.
  • Jun Lee, S., & Siau, K. (2001). A review of data mining techniques. Industrial Management & Data Systems, 101(1), 41-46.
  • Kandemir, T., & Kardeş, Z. (2025). Hileli Finansal Tabloların Tespitinde Veri Madenciliği Uygulamaları: Mevcut Araştırma Eğilimlerinin İncelenmesi (2006-2024). Denetişim (33), 333-355. https://doi.org/10.58348/denetisim.1674341.
  • Karami, M., Baber, W. W., & Ojala, A. (2022). The effectual process of business model innovation for seizing opportunities in frontier markets. Technovation, 117, 102595.
  • Kiehl, T., Hoogs, B., & LaComb, C. (2005). A genetic algorithm for detecting temporal patterns indicative of financial statement fraud. Proceedings of the Genetic and Evolutionary Computation Conference.
  • Kirkos, E., Spathis, C., & Manolopoulos, Y. (2007). Data mining techniques for the detection of fraudulent financial statements. Expert Systems with Applications, 32(4), 995–1003.
  • Koskivaara, E. (2000). Artificial neural networks for analytical review in auditing. Turku Centre for Computer Science.
  • Kotsiantis, S., Koumanakos, E., Tzelepis, D., & Tampakas, V. (2006). Forecasting fraudulent financial statements using data mining. International Journal of Computational Intelligence, 3(2), 104–110.
  • Krambia-Kapardis, M., Christodoulou, C., & Agathocleous, M. (2010). Neural networks: The panacea in fraud detection? Managerial Auditing Journal, 25(7), 659–678.
  • Kumar, M. K., & Kar, P. K. (2020). A Study on Privacy Preserving in Big Data Mining Using Fuzzy Logic Approach. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 11, 2108-2116.
  • Laourou, A. B. F. (2025). The adoption and implementation of data mining in accounting information systems (AIS) within the public sector of Nigeria. IIARD Journals. https://doi. org/10.56201/jafm, 11.
  • Lenard, M. J., & Alam, P. (2004). An evolutionary approach to data mining for fraud detection in financial statements. Journal of Emerging Technologies in Accounting, 1(1), 69–82.
  • Li, J. (2015). Financial fraud detection based on text mining and sentiment analysis [Doctoral dissertation, University of Maryland].
  • Li, J. (2021). Advanced machine learning techniques for financial fraud detection: A review. Journal of Financial Analytics, 4(1), 45-62.
  • Liang, D., & Lv, J. (2016). A fuzzy GA-BPNN model for financial fraud detection. Journal of Intelligent & Fuzzy Systems, 30(4), 2309–2318.
  • Lin, J. W., Hwang, M. I., & Becker, J. D. (2003). A fuzzy neural network for assessing the risk of fraudulent financial reporting. Managerial Auditing Journal, 18(8), 657–665.
  • Liou, F. M. (2008). Fraudulent financial reporting detection and business failure prediction models: a comparison. Managerial Auditing Journal, 23(7), 650-662.
  • Liou, F. M. (2008). Fraudulent financial reporting detection using business intelligence and data mining. Journal of Modern Accounting and Auditing, 4(11), 38–47.
  • Liu, Q., & Vasarhelyi, M. A. (2014). Big questions in AIS research: Measurement, information processing, data analysis, and reporting. Journal of information systems, 28(1), 1-17.
  • Liu, X. (2021). Empirical analysis of financial statement fraud of listed companies based on logistic regression and random forest algorithm. Journal of Mathematics, 2021(1), 9241338.
  • Martin, K., Sanders, E., & Baird, J. (2022). Deep learning for anomaly detection in financial networks. Journal of Financial Stability, 60, 100992.
  • Meenakshi, S., & Sivaranjani, S. (2016). A survey on credit card fraud detection using data mining techniques. International Journal of Advanced Research in Computer Science and Software Engineering, 6(5), 268–272.
  • Mercan, M., Kitesashvili, D., Aslantas, M. (2023). Effect of Financial Literacy on Financial Well-Being in Georgia. Journal of Business, Vol. 12 No. 2
  • Mraović, B. (2008). Relevance of data mining for accounting: social implications. Social Responsibility Journal, 4(4), 439-455.
  • Murcia, F. C. (2008). Fraud detection in financial statements: An empirical study of Brazilian public companies [Doctoral dissertation, University of São Paulo].
  • Ngai, E. W., Hu, Y., Wong, Y. H., Chen, Y., & Sun, X. (2011). The application of data mining techniques in financial fraud detection: A classification framework and an academic review of literature. Decision support systems, 50(3), 559-569.
  • Nha, B. T., & Thuan, N. D. (2022, December). Methodology Interaction by Machine Learning Model to Detect Vulnerability in Smart Contract of Blockchain. In 2022 RIVF International Conference on Computing and Communication Technologies (RIVF) (pp. 112-117). IEEE.
  • Olszewski, D. (2014). Fraud detection using self-organizing maps. Proceedings of the International Conference on Artificial Intelligence and Soft Computing.
  • Owusu-Ansah, S., Moyes, G. D., Oyelere, P. B., & Hay, D. (2002). An empirical analysis of the likelihood of detecting fraud in New Zealand. Managerial Auditing Journal, 17(4), 192–204.
  • Özekes, S. (2003). Veri madenciliği modelleri ve uygulama alanları. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, 2(3), 65-82.
  • Pacheco, R., Salgado, L., & Eining, M. (1996). The impact of decision aids on auditor's fraud risk assessments. Advances in Accounting Information Systems, 4, 141–159.
  • Page MJ, McKenzie JE, Bossuyt PM, ve ark. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372 (71):1-9. doi:10.1136/bmj.n71
  • Panigrahi, S., Kundu, A., Sural, S., & Majumdar, A. K. (2009). Credit card fraud detection: A fusion approach using Dempster–Shafer theory and Bayesian learning. Information Fusion, 10(4), 354–363.
  • Papík, M., & Papíková, L. (2022). Detecting accounting fraud in companies reporting under US GAAP through data mining. International Journal of Accounting Information Systems, 45, 100559.
  • Pathak, J., Vidyarthi, N., & Summers, S. L. (2005). A fuzzy-based algorithm for auditors to detect elements of fraud in settled insurance claims. Managerial Auditing Journal, 20(6), 632–644.
  • Perols, J. (2011). Financial statement fraud detection: An analysis of statistical and machine learning algorithms. Auditing: A Journal of Practice & Theory, 30(2), 19–50.
  • Pinquet, J., Ayuso, M., & Guillén, M. (2007). Selection bias and auditing policies for insurance claims. The Journal of Risk and Insurance, 74(2), 425–440.
  • Popat, R. R., & Chaudhary, J. (2018, May). A survey on credit card fraud detection using machine learning. In 2018 2nd international conference on trends in electronics and informatics (ICOEI) (pp. 1120-1125). IEEE.
  • Quah, J. T. S., & Sriganesh, M. (2008). Real-time credit card fraud detection using computational intelligence. Expert Systems with Applications, 35(4), 1721–1732.
  • Ramzan, M., & Ahmad, M. (2014, March). Evolution of data mining: An overview. In 2014 Conference on IT in Business, Industry and Government (CSIBIG) (pp. 1-4). IEEE.
  • Ravisankar, P., Ravi, V., Rao, G. R., & Bose, I. (2011). Detection of financial statement fraud and feature selection using data mining techniques. Decision Support Systems, 50(2), 491–500.
  • Ren, Y. (2006). An empirical study on financial fraud detection in Chinese listed companies [Doctoral dissertation, Shanghai University of Finance and Economics].
  • Ren, Y., Zhang, L., & Wang, P. (2023). A novel hybrid deep learning model for financial fraud detection in imbalanced datasets. Information Sciences, 621, 703-720.
  • Rezaee, Z. (2005). Causes, consequences, and deterence of financial statement fraud. Critical perspectives on Accounting, 16(3), 277-298.
  • Ryan, C. L., Cant, R., McAllister, M. M., Vanderburg, R., & Batty, C. (2022). Transformative learning theory applications in health professional and nursing education: An umbrella review. Nurse Education Today, 119, 105604.https://doi.org/10.1016/j.nedt.2022.105604
  • Rygielski, C., Wang, J. C., & Yen, D. C. (2002). Data mining techniques for customer relationship management. Technology in society, 24(4), 483-502.
  • Sağlar, J., & Kefe, İ. (2021). A Revıew on Data Mınıng Methods used ın Internal Audıt and External Audıt. EKEV Akademi Dergisi. (88), 259-274.
  • Sahin, Y., Bulkan, S., & Duman, E. (2013). A cost-sensitive decision tree approach for fraud detection. Expert Systems with Applications, 40(15), 5916–5923.
  • Sánchez, D., Vila, M. A., Cerda, L., & Serrano, J. M. (2009). Association rules applied to credit card fraud detection. Expert Systems with Applications, 36(2), 3630–3640.
  • Seifert, J. W. (2004). Data mining: An overview. National security issues, 201-217.
  • Seng, J. L., & Chen, T. C. (2010). An analytic approach to select data mining for business decision. Expert Systems with Applications, 37(12), 8042-8057.
  • Sharma, A., & Panigrahi, P. K. (2013). A review of financial accounting fraud detection based on data mining techniques. arXiv preprint arXiv:1309.3944.
  • Soltani Halvaiee, N., & Akbari, M. K. (2014). A novel model for credit card fraud detection using Artificial Immune Systems. Applied Soft Computing, 24, 40–49.
  • Söylemez, Y. & Türkmen, S. Y. (2017). Yapay Sinir Ağları Modeli ile Finansal Başarısızlık Tahmini. Finans Ekonomi ve Sosyal Araştırmalar Dergisi, 2(4), 270-284.
  • Spathis, C., Doumpos, M., & Zopounidis, C. (2002). Detecting falsified financial statements: A comparative study using multicriteria analysis and multivariate statistical techniques. European Accounting Review, 11(3), 509–535.
  • Summers, S. L., & Sweeney, J. T. (1998). Fraudulently misstated financial statements and insider trading: An empirical analysis. The Accounting Review, 73(1), 131–146.
  • Tan, R., Zhang, X., & Li, Y. (2021). A hybrid machine learning approach for financial fraud detection using multi-source data. Electronic Commerce Research and Applications, 48, 101070.
  • Tangod, S., & Kulkarni, S. (2015). A survey on credit card fraud detection using data mining techniques. International Journal of Computer Applications, 118(15), 31–34.
  • Theodorakopoulos, L., Thanasas, G., & Halkiopoulos, C. (2024). Implications of big data in accounting: Challenges and opportunities. Emerging Science Journal, 8(3), 1201-1214.
  • Tsai, C. F., & Yen, D. C. (2008). A comparative study of data mining techniques for corporate bankruptcy prediction. Expert Systems with Applications, 35(3), 756–763.
  • Tüzüntürk, S. (2010). Veri madenciliği ve istatistik. Uludağ Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 29(1), 65-90.
  • Vasarhelyi, M. A., Kogan, A., & Tuttle, B. M. (2015). Big data in accounting: An overview. Accounting Horizons, 29(2), 381-396.
  • Viaene, S., Ayuso, M., Guillen, M., Gheel, D. V., & Dedene, G. (2004). Strategies for detecting fraudulent claims in the automobile insurance industry. European Journal of Operational Research, 176(1), 565–583.
  • Virdhagriswaran, S. (2006). Data mining for insurance fraud detection [Doctoral dissertation, University of Texas at Arlington].
  • Warren, J. D., Moffitt, K. C., & Byrnes, P. (2015). How big data will change accounting. Accounting horizons, 29(2), 397-407.
  • Welch, J. R., Reeves, T. P., & Welch, S. A. (1998). Using genetic algorithms to create a network for detecting management fraud. Intelligent Systems in Accounting, Finance and Management, 7(3), 161–174.
  • West, J., & Bhattacharya, M. (2016). Intelligent financial fraud detection: a comprehensive review. Computers & security, 57, 47-66.
  • Whitrow, C., Hand, D. J., Juszczak, P., Weston, D., & Adams, N. M. (2009). Transaction aggregation as a strategy for credit card fraud detection. Data Mining and Knowledge Discovery, 18(1), 30–55.
  • Wong, N., Ray, P., Stephens, G., & Lewis, L. (2012). Artificial immune systems for the detection of credit card fraud: An assessment. International Journal of Computer Applications, 42(17), 26–32.
  • Wu, S. X., & Banzhaf, W. (2008). A hybrid method for credit card fraud detection based on evolutionary computation. Proceedings of the 10th annual conference on Genetic and evolutionary computation.
  • Wu, X., Zhu, X., Wu, G. Q., & Ding, W. (2013). Data mining with big data. IEEE transactions on knowledge and data engineering, 26(1), 97-107.
  • Xiao, M., Xiaoli, H., & Gaojin, L. (2010). Research on application of data mining technology in financial decision support system. In 2010 3rd International Conference on Information Management, Innovation Management and Industrial Engineering (Vol. 4, pp. 381-384). IEEE.
  • Yang, Z., Liu, Y., & Chen, X. (2022). Financial fraud detection using graph neural networks on transaction data. Knowledge-Based Systems, 240, 108079.
  • Yong Ren, V., Zhang, L., & Wang, P. (2023). A novel hybrid deep learning model for financial fraud detection in imbalanced datasets. Information Sciences, 621, 703-720. (Not: Bu kaynak "Ren vd. (2023)" ile aynı olabilir, kontrol edilmelidir)
  • Yuan, L., Chen, Y., & Zhang, S. (2008). The application of data mining in financial fraud detection: Evidence from China. China Economic Review, 19(4), 693–700.
  • Yue, D., Wu, X., & Wang, Y. (2007). A review of data mining-based financial fraud detection research. International Conference on Wireless Communications, Networking and Mobile Computing.
  • Zaki, M. J., & Theodoulidis, B. (2013). Fraud detection in financial statements using meta-learning. Intelligent Data Analysis, 17(4), 689–704.
  • Zhang, J., Li, T., & Chen, H. (2014). Composite rough sets for dynamic data mining. Information Sciences, 257, 81-100.
  • Zhang, Y., & Zhou, J. (2004). A novel model for credit card fraud detection using ensemble learning. Proceedings of the International Conference on Machine Learning and Cybernetics.
  • Zhou, W., & Kapoor, G. (2011). Detecting evolutionary financial statement fraud. Decision Support Systems, 50(3), 570–575.

Yıl 2025, Cilt: 12 Sayı: 4, 318 - 345, 31.10.2025

Öz

Kaynakça

  • Abbott, L. J., Park, Y., & Parker, S. (2000). The effects of audit committee activity and independence on corporate fraud. Managerial Finance, 26(11), 55–67.
  • Alagöz, A., Öge, S., & Ortakarpuz, M. (2014). Bir Kurumsal Zekâ Teknolojisi Olarak Veri Madenciliği ile Muhasebe Bilgi Sistemi İlişkisi. Selçuk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, (31.1), 1-21.
  • Alsharif, M. and Alvi, A. (2021). The impact of data mining on accounting profession: evidence from emerging economies. International Journal of Emerging Markets, 16(1), pp. 129-146.
  • Amani, F. A., & Fadlalla, A. M. (2017). Data mining applications in accounting: A review of the literature and organizing framework. International Journal of Accounting Information Systems, 24, 32-58.
  • Ammar, S., Dunlap, D., & Wright, R. (2000). A neural network approach to detecting financial statement fraud. Proceedings of the International Conference on Artificial Intelligence.
  • Association of Certified Fraud Examiners. 2018. Global study on occupational fraud and abuse, available at: https://s3-us-west-2.amazonaws.com/acfepublic/2018-report-to-the-nations.pdf (accessed 16th February 2020).
  • Aslantas, M. (2024). The Effect of Talent Management Strategies on Work Engagement in the Finance Sector: A Study on Bank Employees. Avrasya Sosyal ve Ekonomi Araştırmaları Dergisi, 11(2), 290-317
  • Baesens, B., Setiono, R., Mues, C., & Vanthienen, J. (2003). Using neural network rule extraction and decision tables for credit-risk evaluation. Management science, 49(3), 312-329.
  • Bai, Y., Chen, J., & Wang, Y. (2008). A comparative study of data mining methods for financial statement fraud detection. Journal of Accounting and Finance, 12(3), 45-59.
  • Balagolla, E. M. S. R., Fernando, P. G. T., & Rathnayake, H. M. S. P. (2021). A hybrid model for financial fraud detection using machine learning techniques. Journal of Financial Crime.
  • Baran Kılıç, M., Akar, G. B., & Güzeliş, C. (2022). A comparative analysis of deep learning models for financial fraud detection. Expert Systems with Applications, 207, 117945.
  • Bartoletti, M., Carta, S., & Onnio, M. (2021). A survey on fraud detection with machine learning. ACM Computing Surveys, 54(6), 1–38.
  • Beasley, M. S. (1996). An empirical analysis of the relation between the board of director composition and financial statement fraud. The Accounting Review, 71(4), 443–465.
  • Beasley, M. S., Carcello, J. V., & Hermanson, D. R. (2000). Fraudulent financial reporting: Consideration of industry traits and corporate governance mechanisms. Accounting Horizons, 14(4), 441–454.
  • Bell, T. B., & Carcello, J. V. (2000). A decision aid for assessing the likelihood of fraudulent financial reporting. Auditing: A Journal of Practice & Theory, 19(1), 169–184.
  • Beneish, M. D. (1997). Detecting GAAP violation: Implications for assessing earnings management among firms with extreme financial performance. Journal of Accounting and Public Policy, 16(3), 271–309.
  • Beneish, M. D. (1999). The detection of earnings manipulation. Financial Analysts Journal, 55(5), 24–36.
  • Bermúdez, L., Pérez, J. M., Ayuso, M., & Gómez, E. (2008). A Bayesian dichotomous model with asymmetric link for fraud in insurance. Insurance: Mathematics and Economics, 42(2), 779–786.
  • Bhattacharyya, S., Jha, S., Tharakunnel, K., & Westland, J. C. (2011). Data mining for credit card fraud: A comparative study. Decision Support Systems, 50(3), 602–613.
  • Bose, I., & Wang, J. (2007). Data mining for detection of financial statement fraud in China. Journal of Emerging Technologies in Accounting, 4(1), 1–20.
  • Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees. Wadsworth.
  • Cecchini, M., Aytug, H., Koehler, G. J., & Pathak, P. (2010). Detecting management fraud in public companies. Management Science, 56(7), 1146–1160.
  • Cerullo, M. J., & Cerullo, V. (1999). Using neural networks to predict financial reporting fraud: Part 1. The CPA Journal, 69(5), 42–47.
  • Chahadah, A. A., Refae, G. A. E., & Qasim, A. (2018). The use of data mining techniques in accounting and finance as a corporate strategic tool: an empirical investigation on banks operating in emerging economies. International Journal of Economics and Business Research, 15(4), 442-452.
  • Chai, S., Chen, Y., & Huang, B. (2006). A fuzzy logic approach for fraud detection in financial statements. Journal of Intelligent & Fuzzy Systems, 17(4), 345–356.
  • Chaurasia, V., Pal, S., & Tiwari, B. B. (2022). A hybrid machine learning model for credit card fraud detection. International Journal of Information Technology, 14(2), 1103–1113.
  • Chen, L. D., Sakaguchi, T., & Frolick, M. N. (2000). Data mining methods, applications, and tools. Information systems management, 17(1), 65-70.
  • Chye Koh, H., & Kee Low, C. (2004). Going concern prediction using data mining techniques. Managerial Auditing Journal, 19(3), 462-476.
  • Coman, D. M., Mieilă, M., Voinea, C. M., Tănase, L. C., & Necula, A. I. (2025). Determinants of the Accounting Services’ Outsourcing Amid the Business’ Digitization in Romania: An Analytical Examination. Journal of East European Management Studies, 30(2), 39038.
  • Debreceny, R. S., & Gray, G. L. (2010). Data mining journal entries for fraud detection: An exploratory study. International Journal of Accounting Information Systems, 11(3), 157-181.
  • Deng, X. (2009). An integrated framework for financial fraud detection using data mining [Doctoral dissertation, University of Technology, Sydney].
  • Deng, X. (2017). A hybrid model for financial fraud detection: An empirical study in China. Journal of Forensic & Investigative Accounting, 9(1), 145–160.
  • Deshmukh, A., & Talluru, L. (1998). A rule-based fuzzy logic system for fraud detection in financial statements. Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics (Vol. 4, pp. 3723-3728).
  • Deshmukh, A., Romine, J., & Siegel, P.H. (1997). Measurement and combination of red flags to assess the risk of management fraud: a fuzzy set approach, Managerial Finance 23 (6) 35–48.
  • Dong, W., Liao, S., & Zhang, Z. (2014). The impact of management integrity on audit efficiency: Evidence from China. China Journal of Accounting Research, 7(1), 59–78.
  • Duman, E., & Özelçi, Ü. (2011). Detecting credit card fraud by genetic algorithm and scatter search. Expert Systems with Applications, 38(10), 13057–13063.
  • Eduardo, S., Pérez, M., & López, V. (2021). A novel ensemble method for fraud detection using machine learning. Applied Soft Computing, 100, 106991.
  • Eining, M. M., Jones, D. R., & Loebbecke, J. K. (1997). Reliance on decision aids: An examination of auditors' assessment of management fraud. Auditing: A Journal of Practice & Theory, 16(2), 1–19.
  • Elmougy, S., Tolba, A., & Hamdy, N. (2021). A hybrid feature selection model for financial fraud detection. IEEE Access, 9, 128310–128322.
  • Fanning, K. M., & Cogger, K. O. (1998). Neural network detection of management fraud using published financial data. Intelligent Systems in Accounting, Finance and Management, 7(1), 21–41.
  • Fanning, K. M., Cogger, K. O., & Srivastava, R. P. (1995). Detection of management fraud: A neural network approach. International Journal of Intelligent Systems in Accounting, Finance & Management, 4(2), 113–126.
  • Farooq Aziz. (2023). Data analytics impacts in the field of accounting. World Journal of Advanced Research and Reviews, 18(2), 946–951. doi:10.30574/wjarr.2023.18.2.0863.
  • Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge discovery in databases. AI magazine, 17(3), 37-37.
  • Feng, M., Zheng, J., Han, Y., Ren, J., & Liu, Q. (2018). Big data analytics and mining for crime data analysis, visualization and prediction. In International conference on brain inspired cognitive systems (pp. 605-614). Cham: Springer International Publishing.
  • Feroz, E. H., Kwon, T. M., Pastena, V. S., & Park, K. (2000). The efficacy of red flags in predicting the SEC's targets: An artificial neural networks approach. International Journal of Intelligent Systems in Accounting, Finance & Management, 9(3), 145–157.
  • Glancy, F. H., & Yadav, S. B. (2011). A computational model for financial reporting fraud detection. Decision Support Systems, 50(3), 595–601.
  • Gray, G. L., & Debreceny, R. S. (2014). A taxonomy to guide research on the application of data mining to fraud detection in financial statement audits. International Journal of Accounting Information Systems, 15(4), 357-380.
  • Green, B. P., & Choi, J. H. (1997). Assessing the risk of management fraud through neural network technology. Auditing: A Journal of Practice & Theory, 16(1), 14–28.
  • Guoxin, L., Hua, Z., & Wei, L. (2007). The application of data mining in financial statement fraud detection. Proceedings of the International Conference on Wireless Communications, Networking and Mobile Computing.
  • Hajek, P., & Henriques, R. (2017). Mining corporate annual reports for intelligent detection of financial statement fraud—A comparative study of machine learning methods. Knowledge-Based Systems, 128, 139–152.
  • Han, J., Kamber, M., & Mining, D. (2006). Concepts and techniques. Morgan kaufmann, 340(1), 94104-103205.
  • Hansen, J. V., McDonald, J. B., & Stice, J. D. (1996). Artificial intelligence and generalized qualitative-response models: An empirical test on two audit decision-making domains. Decision Sciences, 27(2), 229–255.
  • Hilal, W., Gadsden, S. A., & Yawney, J. (2022). Financial fraud: a review of anomaly detection techniques and recent advances. Expert systems With applications, 193, 116429.
  • Hoogs, B., Kiehl, T., Lacomb, C., & Senturk, D. (2007). A genetic algorithm approach to detecting temporal patterns indicative of financial statement fraud. Intelligent Systems in Accounting, Finance and Management, 15(1-2), 41–56.
  • Huang, S. Y. (2006). An empirical study on the detection of financial statement fraud using data mining. Journal of American Academy of Business, 9(2), 89–95.
  • Humpherys, S. L., Moffitt, K. C., Burns, M. B., Burgoon, J. K., & Felix, W. F. (2011). Identification of fraudulent financial statements using linguistic credibility analysis. Decision Support Systems, 50(3), 585–594.
  • Jain, N., & Srivastava, V. (2013). Data mining techniques: a survey paper. IJRET: International Journal of Research in Engineering and Technology, 2(11), 2319-1163.
  • Jans, M., Lybaert, N., & Vanhoof, K. (2011). A framework for internal fraud risk reduction: IT support for forensic accountants. International Journal of Digital Accounting Research, 11, 1–29.
  • Jun Lee, S., & Siau, K. (2001). A review of data mining techniques. Industrial Management & Data Systems, 101(1), 41-46.
  • Kandemir, T., & Kardeş, Z. (2025). Hileli Finansal Tabloların Tespitinde Veri Madenciliği Uygulamaları: Mevcut Araştırma Eğilimlerinin İncelenmesi (2006-2024). Denetişim (33), 333-355. https://doi.org/10.58348/denetisim.1674341.
  • Karami, M., Baber, W. W., & Ojala, A. (2022). The effectual process of business model innovation for seizing opportunities in frontier markets. Technovation, 117, 102595.
  • Kiehl, T., Hoogs, B., & LaComb, C. (2005). A genetic algorithm for detecting temporal patterns indicative of financial statement fraud. Proceedings of the Genetic and Evolutionary Computation Conference.
  • Kirkos, E., Spathis, C., & Manolopoulos, Y. (2007). Data mining techniques for the detection of fraudulent financial statements. Expert Systems with Applications, 32(4), 995–1003.
  • Koskivaara, E. (2000). Artificial neural networks for analytical review in auditing. Turku Centre for Computer Science.
  • Kotsiantis, S., Koumanakos, E., Tzelepis, D., & Tampakas, V. (2006). Forecasting fraudulent financial statements using data mining. International Journal of Computational Intelligence, 3(2), 104–110.
  • Krambia-Kapardis, M., Christodoulou, C., & Agathocleous, M. (2010). Neural networks: The panacea in fraud detection? Managerial Auditing Journal, 25(7), 659–678.
  • Kumar, M. K., & Kar, P. K. (2020). A Study on Privacy Preserving in Big Data Mining Using Fuzzy Logic Approach. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 11, 2108-2116.
  • Laourou, A. B. F. (2025). The adoption and implementation of data mining in accounting information systems (AIS) within the public sector of Nigeria. IIARD Journals. https://doi. org/10.56201/jafm, 11.
  • Lenard, M. J., & Alam, P. (2004). An evolutionary approach to data mining for fraud detection in financial statements. Journal of Emerging Technologies in Accounting, 1(1), 69–82.
  • Li, J. (2015). Financial fraud detection based on text mining and sentiment analysis [Doctoral dissertation, University of Maryland].
  • Li, J. (2021). Advanced machine learning techniques for financial fraud detection: A review. Journal of Financial Analytics, 4(1), 45-62.
  • Liang, D., & Lv, J. (2016). A fuzzy GA-BPNN model for financial fraud detection. Journal of Intelligent & Fuzzy Systems, 30(4), 2309–2318.
  • Lin, J. W., Hwang, M. I., & Becker, J. D. (2003). A fuzzy neural network for assessing the risk of fraudulent financial reporting. Managerial Auditing Journal, 18(8), 657–665.
  • Liou, F. M. (2008). Fraudulent financial reporting detection and business failure prediction models: a comparison. Managerial Auditing Journal, 23(7), 650-662.
  • Liou, F. M. (2008). Fraudulent financial reporting detection using business intelligence and data mining. Journal of Modern Accounting and Auditing, 4(11), 38–47.
  • Liu, Q., & Vasarhelyi, M. A. (2014). Big questions in AIS research: Measurement, information processing, data analysis, and reporting. Journal of information systems, 28(1), 1-17.
  • Liu, X. (2021). Empirical analysis of financial statement fraud of listed companies based on logistic regression and random forest algorithm. Journal of Mathematics, 2021(1), 9241338.
  • Martin, K., Sanders, E., & Baird, J. (2022). Deep learning for anomaly detection in financial networks. Journal of Financial Stability, 60, 100992.
  • Meenakshi, S., & Sivaranjani, S. (2016). A survey on credit card fraud detection using data mining techniques. International Journal of Advanced Research in Computer Science and Software Engineering, 6(5), 268–272.
  • Mercan, M., Kitesashvili, D., Aslantas, M. (2023). Effect of Financial Literacy on Financial Well-Being in Georgia. Journal of Business, Vol. 12 No. 2
  • Mraović, B. (2008). Relevance of data mining for accounting: social implications. Social Responsibility Journal, 4(4), 439-455.
  • Murcia, F. C. (2008). Fraud detection in financial statements: An empirical study of Brazilian public companies [Doctoral dissertation, University of São Paulo].
  • Ngai, E. W., Hu, Y., Wong, Y. H., Chen, Y., & Sun, X. (2011). The application of data mining techniques in financial fraud detection: A classification framework and an academic review of literature. Decision support systems, 50(3), 559-569.
  • Nha, B. T., & Thuan, N. D. (2022, December). Methodology Interaction by Machine Learning Model to Detect Vulnerability in Smart Contract of Blockchain. In 2022 RIVF International Conference on Computing and Communication Technologies (RIVF) (pp. 112-117). IEEE.
  • Olszewski, D. (2014). Fraud detection using self-organizing maps. Proceedings of the International Conference on Artificial Intelligence and Soft Computing.
  • Owusu-Ansah, S., Moyes, G. D., Oyelere, P. B., & Hay, D. (2002). An empirical analysis of the likelihood of detecting fraud in New Zealand. Managerial Auditing Journal, 17(4), 192–204.
  • Özekes, S. (2003). Veri madenciliği modelleri ve uygulama alanları. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, 2(3), 65-82.
  • Pacheco, R., Salgado, L., & Eining, M. (1996). The impact of decision aids on auditor's fraud risk assessments. Advances in Accounting Information Systems, 4, 141–159.
  • Page MJ, McKenzie JE, Bossuyt PM, ve ark. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372 (71):1-9. doi:10.1136/bmj.n71
  • Panigrahi, S., Kundu, A., Sural, S., & Majumdar, A. K. (2009). Credit card fraud detection: A fusion approach using Dempster–Shafer theory and Bayesian learning. Information Fusion, 10(4), 354–363.
  • Papík, M., & Papíková, L. (2022). Detecting accounting fraud in companies reporting under US GAAP through data mining. International Journal of Accounting Information Systems, 45, 100559.
  • Pathak, J., Vidyarthi, N., & Summers, S. L. (2005). A fuzzy-based algorithm for auditors to detect elements of fraud in settled insurance claims. Managerial Auditing Journal, 20(6), 632–644.
  • Perols, J. (2011). Financial statement fraud detection: An analysis of statistical and machine learning algorithms. Auditing: A Journal of Practice & Theory, 30(2), 19–50.
  • Pinquet, J., Ayuso, M., & Guillén, M. (2007). Selection bias and auditing policies for insurance claims. The Journal of Risk and Insurance, 74(2), 425–440.
  • Popat, R. R., & Chaudhary, J. (2018, May). A survey on credit card fraud detection using machine learning. In 2018 2nd international conference on trends in electronics and informatics (ICOEI) (pp. 1120-1125). IEEE.
  • Quah, J. T. S., & Sriganesh, M. (2008). Real-time credit card fraud detection using computational intelligence. Expert Systems with Applications, 35(4), 1721–1732.
  • Ramzan, M., & Ahmad, M. (2014, March). Evolution of data mining: An overview. In 2014 Conference on IT in Business, Industry and Government (CSIBIG) (pp. 1-4). IEEE.
  • Ravisankar, P., Ravi, V., Rao, G. R., & Bose, I. (2011). Detection of financial statement fraud and feature selection using data mining techniques. Decision Support Systems, 50(2), 491–500.
  • Ren, Y. (2006). An empirical study on financial fraud detection in Chinese listed companies [Doctoral dissertation, Shanghai University of Finance and Economics].
  • Ren, Y., Zhang, L., & Wang, P. (2023). A novel hybrid deep learning model for financial fraud detection in imbalanced datasets. Information Sciences, 621, 703-720.
  • Rezaee, Z. (2005). Causes, consequences, and deterence of financial statement fraud. Critical perspectives on Accounting, 16(3), 277-298.
  • Ryan, C. L., Cant, R., McAllister, M. M., Vanderburg, R., & Batty, C. (2022). Transformative learning theory applications in health professional and nursing education: An umbrella review. Nurse Education Today, 119, 105604.https://doi.org/10.1016/j.nedt.2022.105604
  • Rygielski, C., Wang, J. C., & Yen, D. C. (2002). Data mining techniques for customer relationship management. Technology in society, 24(4), 483-502.
  • Sağlar, J., & Kefe, İ. (2021). A Revıew on Data Mınıng Methods used ın Internal Audıt and External Audıt. EKEV Akademi Dergisi. (88), 259-274.
  • Sahin, Y., Bulkan, S., & Duman, E. (2013). A cost-sensitive decision tree approach for fraud detection. Expert Systems with Applications, 40(15), 5916–5923.
  • Sánchez, D., Vila, M. A., Cerda, L., & Serrano, J. M. (2009). Association rules applied to credit card fraud detection. Expert Systems with Applications, 36(2), 3630–3640.
  • Seifert, J. W. (2004). Data mining: An overview. National security issues, 201-217.
  • Seng, J. L., & Chen, T. C. (2010). An analytic approach to select data mining for business decision. Expert Systems with Applications, 37(12), 8042-8057.
  • Sharma, A., & Panigrahi, P. K. (2013). A review of financial accounting fraud detection based on data mining techniques. arXiv preprint arXiv:1309.3944.
  • Soltani Halvaiee, N., & Akbari, M. K. (2014). A novel model for credit card fraud detection using Artificial Immune Systems. Applied Soft Computing, 24, 40–49.
  • Söylemez, Y. & Türkmen, S. Y. (2017). Yapay Sinir Ağları Modeli ile Finansal Başarısızlık Tahmini. Finans Ekonomi ve Sosyal Araştırmalar Dergisi, 2(4), 270-284.
  • Spathis, C., Doumpos, M., & Zopounidis, C. (2002). Detecting falsified financial statements: A comparative study using multicriteria analysis and multivariate statistical techniques. European Accounting Review, 11(3), 509–535.
  • Summers, S. L., & Sweeney, J. T. (1998). Fraudulently misstated financial statements and insider trading: An empirical analysis. The Accounting Review, 73(1), 131–146.
  • Tan, R., Zhang, X., & Li, Y. (2021). A hybrid machine learning approach for financial fraud detection using multi-source data. Electronic Commerce Research and Applications, 48, 101070.
  • Tangod, S., & Kulkarni, S. (2015). A survey on credit card fraud detection using data mining techniques. International Journal of Computer Applications, 118(15), 31–34.
  • Theodorakopoulos, L., Thanasas, G., & Halkiopoulos, C. (2024). Implications of big data in accounting: Challenges and opportunities. Emerging Science Journal, 8(3), 1201-1214.
  • Tsai, C. F., & Yen, D. C. (2008). A comparative study of data mining techniques for corporate bankruptcy prediction. Expert Systems with Applications, 35(3), 756–763.
  • Tüzüntürk, S. (2010). Veri madenciliği ve istatistik. Uludağ Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 29(1), 65-90.
  • Vasarhelyi, M. A., Kogan, A., & Tuttle, B. M. (2015). Big data in accounting: An overview. Accounting Horizons, 29(2), 381-396.
  • Viaene, S., Ayuso, M., Guillen, M., Gheel, D. V., & Dedene, G. (2004). Strategies for detecting fraudulent claims in the automobile insurance industry. European Journal of Operational Research, 176(1), 565–583.
  • Virdhagriswaran, S. (2006). Data mining for insurance fraud detection [Doctoral dissertation, University of Texas at Arlington].
  • Warren, J. D., Moffitt, K. C., & Byrnes, P. (2015). How big data will change accounting. Accounting horizons, 29(2), 397-407.
  • Welch, J. R., Reeves, T. P., & Welch, S. A. (1998). Using genetic algorithms to create a network for detecting management fraud. Intelligent Systems in Accounting, Finance and Management, 7(3), 161–174.
  • West, J., & Bhattacharya, M. (2016). Intelligent financial fraud detection: a comprehensive review. Computers & security, 57, 47-66.
  • Whitrow, C., Hand, D. J., Juszczak, P., Weston, D., & Adams, N. M. (2009). Transaction aggregation as a strategy for credit card fraud detection. Data Mining and Knowledge Discovery, 18(1), 30–55.
  • Wong, N., Ray, P., Stephens, G., & Lewis, L. (2012). Artificial immune systems for the detection of credit card fraud: An assessment. International Journal of Computer Applications, 42(17), 26–32.
  • Wu, S. X., & Banzhaf, W. (2008). A hybrid method for credit card fraud detection based on evolutionary computation. Proceedings of the 10th annual conference on Genetic and evolutionary computation.
  • Wu, X., Zhu, X., Wu, G. Q., & Ding, W. (2013). Data mining with big data. IEEE transactions on knowledge and data engineering, 26(1), 97-107.
  • Xiao, M., Xiaoli, H., & Gaojin, L. (2010). Research on application of data mining technology in financial decision support system. In 2010 3rd International Conference on Information Management, Innovation Management and Industrial Engineering (Vol. 4, pp. 381-384). IEEE.
  • Yang, Z., Liu, Y., & Chen, X. (2022). Financial fraud detection using graph neural networks on transaction data. Knowledge-Based Systems, 240, 108079.
  • Yong Ren, V., Zhang, L., & Wang, P. (2023). A novel hybrid deep learning model for financial fraud detection in imbalanced datasets. Information Sciences, 621, 703-720. (Not: Bu kaynak "Ren vd. (2023)" ile aynı olabilir, kontrol edilmelidir)
  • Yuan, L., Chen, Y., & Zhang, S. (2008). The application of data mining in financial fraud detection: Evidence from China. China Economic Review, 19(4), 693–700.
  • Yue, D., Wu, X., & Wang, Y. (2007). A review of data mining-based financial fraud detection research. International Conference on Wireless Communications, Networking and Mobile Computing.
  • Zaki, M. J., & Theodoulidis, B. (2013). Fraud detection in financial statements using meta-learning. Intelligent Data Analysis, 17(4), 689–704.
  • Zhang, J., Li, T., & Chen, H. (2014). Composite rough sets for dynamic data mining. Information Sciences, 257, 81-100.
  • Zhang, Y., & Zhou, J. (2004). A novel model for credit card fraud detection using ensemble learning. Proceedings of the International Conference on Machine Learning and Cybernetics.
  • Zhou, W., & Kapoor, G. (2011). Detecting evolutionary financial statement fraud. Decision Support Systems, 50(3), 570–575.
Toplam 137 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Bilgi Sistemleri Geliştirme Metodolojileri ve Uygulamaları, Sigorta Muhasebesi
Bölüm Araştırma Makalesi
Yazarlar

Fatih Ömür Binici 0000-0001-6147-1955

Gönderilme Tarihi 23 Eylül 2025
Kabul Tarihi 23 Ekim 2025
Yayımlanma Tarihi 31 Ekim 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 12 Sayı: 4

Kaynak Göster

APA Binici, F. Ö. (2025). VERİ MADENCİLİĞİ VE MUHASEBEDE KULLANIMI: MUHASEBE DOLANDIRICILIĞININ TESPİTİNDE EN ÇOK KULLANILAN YÖNTEMLER. Avrasya Sosyal ve Ekonomi Araştırmaları Dergisi, 12(4), 318-345.