Araştırma Makalesi
BibTex RIS Kaynak Göster

Fruktoz Aracılıklı Sıçan Metabolik Sendrom Modelinde Aerobik ve Anaerobik Egzersizlerin Serum Trimetilamin N-Oksit (TMAO) Düzeylerine Etkisi

Yıl 2021, Cilt: 23 Sayı: 4, 21 - 32, 31.12.2021

Öz

Bu araştırmada trombosit agregasyonunu güçlü bir şekilde uyaran proinflamatuar trimetilamin N-oksit (TMAO) serum düzeylerinin sıçanlarda yüksek fruktoz ile oluşturulan metabolik sendrom modelinde uygulanan aerobik ve anaerobik egzersizden ne düzeylerde etkilendiğini araştırmayı amaçladık. Araştırmada toplam 24 adet Wistar Albino cinsi erkek sıçan kullanıldı. Sıçanlar çalışma boyunca nemi, sıcaklığı ve ışıklandırılması kontrol altında olan çalışma odalarında barındırıldı. Sıçanlar kontrol grubu, metabolik sendrom grubu, metabolik sendrom + aerobik egzersiz grubu ve metabolik sendrom + anaerobik egzersiz grubu olarak 4 gruba ayrıldı. Metabolik sendrom oluşturmak için sıçanlara %30 oranında fruktoz içeren içme suyu içirildi. Metabolik sendrom oluşumu, çalışmanın 8. haftasında serum glukoz, trigliserit ve yüksek yoğunluklu lipoprotein (HDL) düzeyleri kontrol edilerek teyit edildi. Egzersizler 6 hafta boyunca haftada üç gün uygulandı. Çalışma sonunda sıçanlar dekapite edilerek TMAO düzeyleri serum örneklerinde ELISA yöntemi ile ölçüldü. Metabolik sendrom oluşturulan ve egzersiz uygulanmayan sıçanların TMAO düzeyleri kontrol grubuna göre istatistiksel olarak anlamlı şekilde yüksekti (p<0.001). Her iki egzersiz uygulaması da metabolik sendromla yükselen TMAO düzeylerini azaltsa da, anaerobik egzersiz uygulamasının ardından oluşan düşüş istatistiksel olarak anlamlı düzeydeydi (p<0.05). Metabolik sendrom oluşturulan sıçanlarda farklı egzersiz uygulamalarının serum TMAO düzeylerini etkilediği görüldü. Bu sonuca göre, metabolik sendromlu sıçanlarda bozulan mikrofloranın disbiyosizi ve oluşan TMAO, egzersizin metabolik ve hormonal etkileri ile düzelebilmektedir. Bu çalışma anaerobik egzersiz uygulamasının TMAO’nun dolaşımdaki seviyelerini düşürebileceğini, metabolik sendrom ve kardiyak sendrom gibi hastalıkların tedavisinde etkili bir yöntem olabileceğini gösteren ilk çalışmadır.

Kaynakça

  • Argyridou S, Bernieh D, Henson J, Edwardson CL, Davies MJ., Khunti K et al. Associations between physical activity and trimethylamine N-oxide in those at risk of type 2 diabetes. BMJ Open Diabetes Research and Care, 2020; 8(2): e001359.
  • Arslan M, Atmaca A, Ayvaz G, ve ark. Metabolik sendrom kılavuzu. Türkiye Endokrinoloji ve Metabolizma Derneği. 2009.
  • Barrea L, Annunziata G, Muscogiuri G, Di Somma C, Laudisio D, Maisto M, et al. Trimethylamine-N-oxide (TMAO) as Novel Potential Biomarker of Early Predictors of Metabolic Syndrome. Nutrients, 2018;10(12): 1971.
  • Chen J, Guo Y, Gui Y, & Xu D. Physical exercise, gut, gut microbiota, and atherosclerotic cardiovascular diseases. Lipids in health and disease, 2018;17(1): 1-7.
  • Denou E, Marcinko K, Surette MG, Steinberg GR, & Schertzer JD. High-intensity exercise training increases the diversity and metabolic capacity of the mouse distal gut microbiota during diet-induced obesity. American journal of physiology. Endocrinology and metabolism, 2016;310(11): E982–E993.
  • Doğan AE. Metabolik sendrom ve metabolik sendrom bileşenlerinin renal hücreli karsinomda tümör agresifliği üzerine etkisi [Uzmanlık Tezi]. Ankara: Gazi Üniversitesi Tıp Fakültesi; 2019.
  • Er F. Fruktoz aracılıklı metabolik sendrom modelinde kuersetin uygulaması ve egzersizin etkisi [Doktora Tezi]. Ankara: Gazi Üniversitesi Sağlık Bilimleri Enstitüsü; 2017.
  • Erickson ML, Malin SK, Wang Z, Brown JM, Hazen SL, Kirwan JP. Effects of lifestyle intervention on plasma trimethylamine N-oxide in obese adults. Nutrients, 2019;11(1): 179.
  • Evans CC, LePard KJ, Kwak JW, Stancukas MC, Laskowski S, Dougherty J et al. Exercise prevents weight gain and alters the gut microbiota in a mouse model of high fat diet-induced obesity. PLoS One 2014;9:e92193.
  • Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults: Executive Summary of the Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA 2001; 285 : 2486 –2497
  • Fiuza-Luces C, Santos-Lozano A, Joyner M, Carrera-Bastos P, Picazo O, Zugaza JL et al. Exercise benefits in cardiovascular disease: beyond attenuation of traditional risk factors. Nature Reviews Cardiology, 2018;15(12): 731-743.
  • Karaman ME, Arslan C, Gürsu MF, Güngör HI, Arkali G, Yüce A, Türk G. Moderate Aerobic Exercise May Reduce Metabolic Syndrome Induced Testicular Oxidative Stress and Deterioration in Sperm Parameters. Journal of Pharmaceutical Research International, 2021; 33(11) 38-45.
  • Koch LG, Britton SL. Artificial selection for intrinsic aerobic endurance running capacity in rats. Physiol Genomics, 2001;5(1): 45-52.
  • Lambert G, Amar MJ, Guo G, Brewer HB Jr, Gonzalez FJ, Sinal CJ. The farnesoid X-receptor is an essential regulator of cholesterol homeostasis. J Biol Chem 2003;278:2563–70
  • Miyamoto J, Kasubuchi M, Nakajima A, Irie J, Itoh H, Kimura I. The role of short-chain fatty acid on blood pressure regulation. Curr Opin Nephrol Hypertens 2016;25:379–83.
  • Myers J, Kokkinos P, & Nyelin E. Physical Activity, Cardiorespiratory Fitness, and the Metabolic Syndrome. Nutrients, 2019;11(7): 1652.
  • Omura JD, Bellissimo MP, Watson KB, Loustalot F, Fulton JE, & Carlson SA. Primary care providers' physical activity counseling and referral practices and barriers for cardiovascular disease prevention. Preventive medicine, 2018;108: 115-122.
  • Org E, Blum Y, Kasela S, Mehrabian M, Kuusisto J, Kangas AJ, et al. Relationships between gut microbiota, plasma metabolites, and metabolic syndrome traits in the METSIM cohort. Genome biology, 2017;18(1): 70.
  • Parks BW, Nam E, Org E, Kostem E, Norheim F, Hui S. et al. Genetic control of obesity and gut microbiota composition in response to high-fat, high-sucrose diet in mice. Cell metabolism, 2013;17(1): 141–152.
  • Pilar B, Güllich A, Oliveira P, Ströher D, Piccoli J, & Manfredini V. Protective role of flaxseed oil and flaxseed lignan secoisolariciresinol diglucoside against oxidative stress in ;rats with metabolic syndrome. Journal of food science, 2017:82(12): 3029-3036.
  • Randrianarisoa E, Lehn-Stefan A, Wang X, Hoene M, Peter A., Heinzmann SS, et al. Relationship of Serum Trimethylamine N-Oxide (TMAO) Levels with early Atherosclerosis in Humans. Scientific reports, 2016;6:26745.
  • Robinson-Cohen C, Littman AJ, Duncan GE, Weiss NS, Sachs MC, Ruzinski J, et al. Physical activity and change in estimated GFR among persons with CKD. Journal of the American Society of Nephrology, 2014;25(2): 399-406.
  • Schugar RC, Shih DM, Warrier M, Helsley RN, Burrows A, Ferguson D, et al. The TMAO-producing enzyme flavin-containing monooxygenase 3 regulates obesity and the beiging of white adipose tissue. Cell reports, 2017;19(12): 2451-2461
  • Tang WW, Wang Z, Kennedy DJ, Wu Y, Buffa JA, Agatisa-Boyle B, et al. Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circulation research, 2015;116(3): 448-455
  • Tang WW, Wang Z, Levison BS, Koeth RA, Britt EB, Fu X, et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. New England Journal of Medicine, 2013;368(17): 1575-1584.
  • Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, DuGar B, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature, 2011;472(7341): 57-63
  • Yüksel AD, Batman A. Mikrobiyota ve metabolik sendrom. [Microbiota and metabolic syndrome] Turk Kardiyol Dern Ars, 2017; 45(3): 286-296.
  • Zhang D, Liu X, Liu Y, Sun X, Wang B, Ren Y, et al. Leisure-time physical activity and incident metabolic syndrome: a systematic review and dose-response meta-analysis of cohort studies. Metabolism: clinical and experimental, 2017;75:36–44.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Spor Hekimliği
Bölüm Makaleler
Yazarlar

Muhammed Karaman 0000-0003-0800-8093

Cengiz Arslan 0000-0003-4406-1131

Mehmet Ferit Gürsu 0000-0003-3552-7315

Tuğçe Kaymaz Bu kişi benim 0000-0002-7389-9390

Yayımlanma Tarihi 31 Aralık 2021
Kabul Tarihi 8 Aralık 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 23 Sayı: 4

Kaynak Göster

APA Karaman, M., Arslan, C., Gürsu, M. F., Kaymaz, T. (2021). Fruktoz Aracılıklı Sıçan Metabolik Sendrom Modelinde Aerobik ve Anaerobik Egzersizlerin Serum Trimetilamin N-Oksit (TMAO) Düzeylerine Etkisi. Beden Eğitimi Ve Spor Bilimleri Dergisi, 23(4), 21-32.