Araştırma Makalesi
BibTex RIS Kaynak Göster

Mitigation of Drought Stress in Wheat by Bio-priming by PGPB Containing ACC Deaminase Activity

Yıl 2022, Cilt: 53 Sayı: 1, 51 - 57, 01.01.2022
https://doi.org/10.54614/AUAF.2022.972753

Öz

Out of stress management strategies used for drought, inoculation of plant growth-promoting bacteria holds a major position due to sustainable, low-cost, and versatile properties. The plant growth-promoting bacteria, particularly containing 1-aminocyclopropane-1-carboxylic acid deaminase activity, have a critical location since they restrict ethylene synthesis under stress conditions thereby improving stress tolerance index. In this experiment, seeds of two wheat cultivars were primed with three bacterial strains and seedlings were grown under stress and nonstress conditions. The study was laid out in completely randomized factorial design with three replications. While plant growth achieved top performance with synthetic fertilizer in 80% of field capacity, increasing drought stress restricted the efficiency of synthetic fertilizer. In contrast, plant growth-promoting bacteria-priming promoted plant growth and dry matter accumulation under optimum and drought conditions. Increase of dry matter accumulation in treatments as control plants varied between 17.1% and 57.1% under 80% of field capacity while it changed between 0.2% and 35.1% under drought conditions. TV126C and TV24C induced stress tolerance index in sensitive and tolerant cultivars under drought and optimum conditions. In conclusion, it is considered that bio-priming with plant growth-promoting bacteria involving 1-aminocyclopropane-1-carboxylic acid deaminase enzyme activity might be an effective and sustainable management strategy to drought stress in wheat cultivation.

Destekleyen Kurum

Siirt University

Proje Numarası

2017-SIUZIR-49

Teşekkür

This study was supported by the Scientific Research Projects Presidency of Siirt University.

Kaynakça

  • Ahammed, G.J., Gantait, S., Mitra, M., Yang, Y., Li, X., 2020. Role of ethylene crosstalk in seed germination and early seedling development: A review. Plant Physiology and Biochemistry, 151, 124-131.
  • Ansari, F.A., Jabeen, M., Ahmad, I., 2021. Pseudomonas azotoformans FAP5, a novel biofilm-forming PGPR strain, alleviates drought stress in wheat plant. International Journal of Environmental Science and Technology, https://doi.org/10.1007/s13762-020-03045-9
  • Bagci, S.A., Ekiz, H., Yilmaz, A., Cakmak, I., 2007. Effects of zinc deficiency and drought on grain yield of field-grown wheat cultivars in Central Anatolia. Journal of Agronomy and Crop Science, 193 (3): 198-206.
  • Basu, A., Prasad, P., Das, S.N., Kalam, S., Sayyed, R.Z., Reddy, M.S., El Enshasy, H., 2021. Plant growth promoting rhizobacteria (PGPR) as green bioinoculants: Recent developments, constraints, and prospects. Sustainability, 13 (3): 1140.
  • Bista, D.R., Heckathorn, S.A., Jayawardena, D.M., Boldt, J.K., 2020. Effect of drought and carbon dioxide on nutrient uptake and levels of nutrient-uptake proteins in roots of barley. American Journal of Botany, 107 (10): 1401-1409.
  • Ceritoglu, M., Şahin, S., Erman, M., 2018. Effects of vermicompost on plant growth and soil structure. Selcuk Journal of Agriculture and Food Science, 32 (3): 607-615.
  • Chamam, A., Sanguin, H., Bellvert, F., Meiffren, G., Comte, G., Wisniewski-Dyé, F., Bertnard, C., Pringet-Combaret, C., 2013. Plant secondary metabolite profiling evidences strain-dependent effect in the Azospirillum-Oryza sativa association. Phytochemistry, 87: 65-77.
  • Contesto, C., Desbrosses, G., Lefoulon, C., Bena, G., Borel, F., Galland, M., Gamet, L., Varoquaux, F., Touraine, B., 2008. Effects of rhizobacterial ACC deaminase activity on Arabidopsis indicate that ethylene mediates local root responses to plant growth-promoting rhizobacteria. Plant Science, 1-2: 178-189.
  • Çakmakçi, R., Dönmez, F., Aydın, A., Şahin, F., 2006. Growth promotion of plants by plant growth-promoting rhizobacteria under greenhouse and two different field soil conditions. Soil Biology and Biochemistry, 38 (6): 1482-1487.
  • Emery, S.M., Stahlheber, K.A., Gross, K.L., 2020. Drought minimized nitrogen fertilization effects on bioenergy feedstock quality. Biomass and Bioenergy, 133: 105452.
  • Erman, M., Çakmakçı, R., Kotan, R., Çığ, F., Karagöz, K., Sönmez, F., 2008. Isolation of plant growth promoting bacteria from the Van Lake Basin and investigation of their use in some cultural plants. TÜBİTAK TOVAG 108 O 147.
  • FAO, 2021. World Agricultural Production. http://www.fao.org/faostat/en/#data/QC
  • Fernandez, G.C., 1992. Effective selection criteria for assessing plant stress tolerance. International Symposium on Adaptation of Vegetables and Other Food Crops in Temperature and Water Stress, 13-16 August 1992, Shanhua, pp: 257-270.
  • Glick, B.R., 2020. Beneficial Plant-Bacterial Interactions (2. edn). Cham: Springer Nature Switzerland.
  • He, A., Niu, S., Yang, D., Ren, W., Zhao, L., Sun, Y., Meng, L., Zhao, Q., Pare, P.W., Zhang, J., 2021. Two PGPR strains from the rhizosphere of Haloxylon ammodendron promoted growth and enhanced drought tolerance of ryegrass. Plant Physiology and Biochemistry, 161: 74-85.
  • Hoekstra, F.A., Golovina, E.A., Buitink, J. 2001. Mechanisms of plant desiccation tolerance. Trends in Plant Science, 6 (9): 431-438.
  • Jha, U.C., Bohra, A., Jha, R., Parida, S.K., 2019. Salinity stress response and ‘omics’ approaches for improving salinity stress tolerance in major grain legumes. Plant Cell Reports, 38: 255-277.
  • Johnson, R., Puthur, J.T., 2021. Seed priming as a cost effective technique for developing plants with cross tolerance to salinity stress. Plant Physiology and Biochemistry, 162: 247-257.
  • Khan, N., Bano, A., 2019. Exopolysaccharide producing rhizobacteria and their impact on growth and drought tolerance of wheat grown under rainfed conditions. Plos One, 14 (9): e0222302.
  • Khan, N., Bano, A., Rahman, M.A., Guo, J., Kang, Z., Babar, M.A., 2019. Comparative physiological and metabolic analysis reveals a complex mechanism involved in drought tolerance in chickpea (Cicer arietinum L.) induced by PGPR and PGRs. Scientific Reports, 9: 2097.
  • Kumari, S., Vaishnav, A., Jain, S., Varma, A., Choudhary, D.K., 2016. Induced drought tolerance through wild and mutant bacterial strain Pseudomonas simiae in mung bean (Vigna radiata L.). World Journal of Microbiology and Biotechnology, 32: 4.
  • Manca de Nadra, M.C., Strasser, A.M., de Saad, A.A., de Ruiz Holgado, P., Oliver, G. 1985. Extracellular polysaccharide production by Lactobacillus bulgaricus CRL 420. Milchwissenschaft, 40: 409-411.
  • Nadeem, M., Li, J., Yahya, M., Wang, M., Ali, A., Cheng, A., Wang, X., Ma, C., 2019. Grain legumes and fear of salt stress: Focus on mechanisms and management strategies. International Journal of Molecular Sciences, 20 (4): 799.
  • Naseem, H., Bano, A., 2013. Role of plant growth-promoting rhizobacteria and their exopolysaccharide in drought tolerance of maize. Journal of Plant Interactions, 9 (1): 689-701.
  • Naumavo, P.A., Agbodjato, N.A., Baba-Moussa, F., Adjanohoun, A., Baba-Moussa, L., 2016. Plant growth promoting rhizobacteria: Beneficial effects for healthy and sustainable agriculture. African Journal of Biotechnology, 15 (27), 1452-1463.
  • Penrose, D.M., Glick, B.R., 2001. Levels of 1-aminocyclopropane-1-carboxylic acid (ACC) in exudates and extracts of canola seeds treated with plant growth-promoting bacteria. Canadian Journal of Microbiology, 47: 368-372.
  • Prado, F.E., Boero, C., Gallardo, M., Gonzalez, J.A., 2000. Effect of NaCl on germination, growth, and soluble sugar content in Chenopodium quinoa Willd. seeds. Botanical bulletin of Academia Sinica, 41: 27-34.
  • Raghuwanshi, R., Prasad, J. K. 2018. Perspectives of rhizobacteria with ACC deaminase activity in plant growth under abiotic stress. In: eds. Giri, B. Prasad, R., & Varma, A. Root Biology, Springer International Publishing, Cham, 303-321.
  • Richardson, A.E., Simpson, R.J., 2011. Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physiology, 156: 989-996.
  • Semenov, M.A., Stratonovitch, P., Alghabari, F., Gooding, M.J., 2014. Adapting wheat in Europe for climate change. Journal of Cereal Science, 59: 245-256.
  • Sonkurt, M., Çığ, F., 2019. The effect of plant growth-promoting bacteria on the development, yield and yield components of bread (Triticum aestivum L.) and durum (Triticum durum) wheats. Applied Ecology and Environmental Research, 17 (2): 3877-3896.
  • Steiner, F., Oliveira, C.D., Zoz, T., Zuffo, A.M., Freitas, R.S., 2020. Co-ınoculation of common bean with Rhizobium and Azospirillum enhance the drought tolerance. Russian Journal of Plant Physiology, 67: 923-932.
  • Turan, M., Ekinci, M., Yıldırım, E., Güneş, A., Karagöz, K., Kotan, R., Dursun, A., 2014. Plant growth-promoting rhizobacteria improved growth, nutrient, and hormone content of cabbage (Brassica oleracea) seedlings. Turkish Journal of Agriculture and Forestry, 38: 327-333.
  • Vacheron, J., Desbrosses, G., Bouffaud, M.L., Touraine, B., Loccoz, Y.M., Muller, D., Legendre, L., Wisniewski-Dye, F., Combaret, C.P., 2013. Plant growth-promoting rhizobacteria and root system functioning. Frontiers in Plant Science, 4: 356.

ACC Deaminaz Aktivitesi İçeren PGPB Kullanılarak Biyo-priming ile Buğdayda Kuraklık Stresinin Azaltılması

Yıl 2022, Cilt: 53 Sayı: 1, 51 - 57, 01.01.2022
https://doi.org/10.54614/AUAF.2022.972753

Öz

Kuraklığa karşı kullanılan stres yönetimi stratejileri arasında, bitki gelişimini teşvik edici bakterilerin (PGPB) inokulasyonu sürdürülebilir, düşük maliyetli ve çok yönlü özellikleri sayesinde önemli bir pozisyonda yer alır. Özellikle ACC (1-am inosi klopr opan- 1-kar boksi lik asit) aktivitesi içeren PGPB’ler stres koşulları altında etilen sentezini sınırlandırarak stres tolerans indeksini iyileştirdikleri için kritik bir pozisyona sahiptir. Bu deneyde, iki buğday çeşidinin tohumları üç bakteriyel strain ile ekim öncesinde inokule edildi ve fideler stres ve stres olmayan koşullar altında yetiştirildi. Çalışma tesadüf parsellerinde faktöriyel deneme desenine göre üç tekerrürlü olarak yürütülmüştür. Bitki gelişimi %80 tarla kapasitesinde sentetik gübreleme ile zirveye çıkarken artan kuraklık stresi sentetik gübrenin etkinliğini sınırlandırdı. Aksine, PGPB-priming hem optimum hem de kurak koşullarda bitki gelişimini ve kuru madde birikimini teşvik etti. Kontrol bitkilerine göre uygulamalarda kuru madde birikiminin artışı %80 tarla kapasitesinde %17.1–57.1 aralığında değişirken kurak koşullarda %0.2–35.1 aralığında değişmiştir. TV126C ve TV24C hassas ve dayanıklı çeşitlerde kuraklık stres toleransını teşvik etti. Sonuç olarak, ACC deaminaz aktivitesi içeren PGPB ile biyo-priming uygulamalarının buğday tarımında kuraklık stresine karşı etkili ve sürdürülebilir bir yönetim stratejisi olabileceği düşünülmektedir.

Proje Numarası

2017-SIUZIR-49

Kaynakça

  • Ahammed, G.J., Gantait, S., Mitra, M., Yang, Y., Li, X., 2020. Role of ethylene crosstalk in seed germination and early seedling development: A review. Plant Physiology and Biochemistry, 151, 124-131.
  • Ansari, F.A., Jabeen, M., Ahmad, I., 2021. Pseudomonas azotoformans FAP5, a novel biofilm-forming PGPR strain, alleviates drought stress in wheat plant. International Journal of Environmental Science and Technology, https://doi.org/10.1007/s13762-020-03045-9
  • Bagci, S.A., Ekiz, H., Yilmaz, A., Cakmak, I., 2007. Effects of zinc deficiency and drought on grain yield of field-grown wheat cultivars in Central Anatolia. Journal of Agronomy and Crop Science, 193 (3): 198-206.
  • Basu, A., Prasad, P., Das, S.N., Kalam, S., Sayyed, R.Z., Reddy, M.S., El Enshasy, H., 2021. Plant growth promoting rhizobacteria (PGPR) as green bioinoculants: Recent developments, constraints, and prospects. Sustainability, 13 (3): 1140.
  • Bista, D.R., Heckathorn, S.A., Jayawardena, D.M., Boldt, J.K., 2020. Effect of drought and carbon dioxide on nutrient uptake and levels of nutrient-uptake proteins in roots of barley. American Journal of Botany, 107 (10): 1401-1409.
  • Ceritoglu, M., Şahin, S., Erman, M., 2018. Effects of vermicompost on plant growth and soil structure. Selcuk Journal of Agriculture and Food Science, 32 (3): 607-615.
  • Chamam, A., Sanguin, H., Bellvert, F., Meiffren, G., Comte, G., Wisniewski-Dyé, F., Bertnard, C., Pringet-Combaret, C., 2013. Plant secondary metabolite profiling evidences strain-dependent effect in the Azospirillum-Oryza sativa association. Phytochemistry, 87: 65-77.
  • Contesto, C., Desbrosses, G., Lefoulon, C., Bena, G., Borel, F., Galland, M., Gamet, L., Varoquaux, F., Touraine, B., 2008. Effects of rhizobacterial ACC deaminase activity on Arabidopsis indicate that ethylene mediates local root responses to plant growth-promoting rhizobacteria. Plant Science, 1-2: 178-189.
  • Çakmakçi, R., Dönmez, F., Aydın, A., Şahin, F., 2006. Growth promotion of plants by plant growth-promoting rhizobacteria under greenhouse and two different field soil conditions. Soil Biology and Biochemistry, 38 (6): 1482-1487.
  • Emery, S.M., Stahlheber, K.A., Gross, K.L., 2020. Drought minimized nitrogen fertilization effects on bioenergy feedstock quality. Biomass and Bioenergy, 133: 105452.
  • Erman, M., Çakmakçı, R., Kotan, R., Çığ, F., Karagöz, K., Sönmez, F., 2008. Isolation of plant growth promoting bacteria from the Van Lake Basin and investigation of their use in some cultural plants. TÜBİTAK TOVAG 108 O 147.
  • FAO, 2021. World Agricultural Production. http://www.fao.org/faostat/en/#data/QC
  • Fernandez, G.C., 1992. Effective selection criteria for assessing plant stress tolerance. International Symposium on Adaptation of Vegetables and Other Food Crops in Temperature and Water Stress, 13-16 August 1992, Shanhua, pp: 257-270.
  • Glick, B.R., 2020. Beneficial Plant-Bacterial Interactions (2. edn). Cham: Springer Nature Switzerland.
  • He, A., Niu, S., Yang, D., Ren, W., Zhao, L., Sun, Y., Meng, L., Zhao, Q., Pare, P.W., Zhang, J., 2021. Two PGPR strains from the rhizosphere of Haloxylon ammodendron promoted growth and enhanced drought tolerance of ryegrass. Plant Physiology and Biochemistry, 161: 74-85.
  • Hoekstra, F.A., Golovina, E.A., Buitink, J. 2001. Mechanisms of plant desiccation tolerance. Trends in Plant Science, 6 (9): 431-438.
  • Jha, U.C., Bohra, A., Jha, R., Parida, S.K., 2019. Salinity stress response and ‘omics’ approaches for improving salinity stress tolerance in major grain legumes. Plant Cell Reports, 38: 255-277.
  • Johnson, R., Puthur, J.T., 2021. Seed priming as a cost effective technique for developing plants with cross tolerance to salinity stress. Plant Physiology and Biochemistry, 162: 247-257.
  • Khan, N., Bano, A., 2019. Exopolysaccharide producing rhizobacteria and their impact on growth and drought tolerance of wheat grown under rainfed conditions. Plos One, 14 (9): e0222302.
  • Khan, N., Bano, A., Rahman, M.A., Guo, J., Kang, Z., Babar, M.A., 2019. Comparative physiological and metabolic analysis reveals a complex mechanism involved in drought tolerance in chickpea (Cicer arietinum L.) induced by PGPR and PGRs. Scientific Reports, 9: 2097.
  • Kumari, S., Vaishnav, A., Jain, S., Varma, A., Choudhary, D.K., 2016. Induced drought tolerance through wild and mutant bacterial strain Pseudomonas simiae in mung bean (Vigna radiata L.). World Journal of Microbiology and Biotechnology, 32: 4.
  • Manca de Nadra, M.C., Strasser, A.M., de Saad, A.A., de Ruiz Holgado, P., Oliver, G. 1985. Extracellular polysaccharide production by Lactobacillus bulgaricus CRL 420. Milchwissenschaft, 40: 409-411.
  • Nadeem, M., Li, J., Yahya, M., Wang, M., Ali, A., Cheng, A., Wang, X., Ma, C., 2019. Grain legumes and fear of salt stress: Focus on mechanisms and management strategies. International Journal of Molecular Sciences, 20 (4): 799.
  • Naseem, H., Bano, A., 2013. Role of plant growth-promoting rhizobacteria and their exopolysaccharide in drought tolerance of maize. Journal of Plant Interactions, 9 (1): 689-701.
  • Naumavo, P.A., Agbodjato, N.A., Baba-Moussa, F., Adjanohoun, A., Baba-Moussa, L., 2016. Plant growth promoting rhizobacteria: Beneficial effects for healthy and sustainable agriculture. African Journal of Biotechnology, 15 (27), 1452-1463.
  • Penrose, D.M., Glick, B.R., 2001. Levels of 1-aminocyclopropane-1-carboxylic acid (ACC) in exudates and extracts of canola seeds treated with plant growth-promoting bacteria. Canadian Journal of Microbiology, 47: 368-372.
  • Prado, F.E., Boero, C., Gallardo, M., Gonzalez, J.A., 2000. Effect of NaCl on germination, growth, and soluble sugar content in Chenopodium quinoa Willd. seeds. Botanical bulletin of Academia Sinica, 41: 27-34.
  • Raghuwanshi, R., Prasad, J. K. 2018. Perspectives of rhizobacteria with ACC deaminase activity in plant growth under abiotic stress. In: eds. Giri, B. Prasad, R., & Varma, A. Root Biology, Springer International Publishing, Cham, 303-321.
  • Richardson, A.E., Simpson, R.J., 2011. Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physiology, 156: 989-996.
  • Semenov, M.A., Stratonovitch, P., Alghabari, F., Gooding, M.J., 2014. Adapting wheat in Europe for climate change. Journal of Cereal Science, 59: 245-256.
  • Sonkurt, M., Çığ, F., 2019. The effect of plant growth-promoting bacteria on the development, yield and yield components of bread (Triticum aestivum L.) and durum (Triticum durum) wheats. Applied Ecology and Environmental Research, 17 (2): 3877-3896.
  • Steiner, F., Oliveira, C.D., Zoz, T., Zuffo, A.M., Freitas, R.S., 2020. Co-ınoculation of common bean with Rhizobium and Azospirillum enhance the drought tolerance. Russian Journal of Plant Physiology, 67: 923-932.
  • Turan, M., Ekinci, M., Yıldırım, E., Güneş, A., Karagöz, K., Kotan, R., Dursun, A., 2014. Plant growth-promoting rhizobacteria improved growth, nutrient, and hormone content of cabbage (Brassica oleracea) seedlings. Turkish Journal of Agriculture and Forestry, 38: 327-333.
  • Vacheron, J., Desbrosses, G., Bouffaud, M.L., Touraine, B., Loccoz, Y.M., Muller, D., Legendre, L., Wisniewski-Dye, F., Combaret, C.P., 2013. Plant growth-promoting rhizobacteria and root system functioning. Frontiers in Plant Science, 4: 356.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm ARAŞTIRMALAR
Yazarlar

Fatih Çığ 0000-0002-4042-0566

Murat Erman 0000-0002-1435-1982

Behçet İnal 0000-0003-2215-2710

Harun Bektaş 0000-0002-4397-4089

Mehmet Sonkurt 0000-0002-3926-2847

Mohsen Mırzapour 0000-0002-2898-6903

Mustafa Ceritoğlu 0000-0002-4138-4579

Proje Numarası 2017-SIUZIR-49
Yayımlanma Tarihi 1 Ocak 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 53 Sayı: 1

Kaynak Göster

APA Çığ, F., Erman, M., İnal, B., Bektaş, H., vd. (2022). Mitigation of Drought Stress in Wheat by Bio-priming by PGPB Containing ACC Deaminase Activity. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 53(1), 51-57. https://doi.org/10.54614/AUAF.2022.972753
AMA Çığ F, Erman M, İnal B, Bektaş H, Sonkurt M, Mırzapour M, Ceritoğlu M. Mitigation of Drought Stress in Wheat by Bio-priming by PGPB Containing ACC Deaminase Activity. Atatürk Üniversitesi Ziraat Fakültesi Dergisi. Ocak 2022;53(1):51-57. doi:10.54614/AUAF.2022.972753
Chicago Çığ, Fatih, Murat Erman, Behçet İnal, Harun Bektaş, Mehmet Sonkurt, Mohsen Mırzapour, ve Mustafa Ceritoğlu. “Mitigation of Drought Stress in Wheat by Bio-Priming by PGPB Containing ACC Deaminase Activity”. Atatürk Üniversitesi Ziraat Fakültesi Dergisi 53, sy. 1 (Ocak 2022): 51-57. https://doi.org/10.54614/AUAF.2022.972753.
EndNote Çığ F, Erman M, İnal B, Bektaş H, Sonkurt M, Mırzapour M, Ceritoğlu M (01 Ocak 2022) Mitigation of Drought Stress in Wheat by Bio-priming by PGPB Containing ACC Deaminase Activity. Atatürk Üniversitesi Ziraat Fakültesi Dergisi 53 1 51–57.
IEEE F. Çığ, M. Erman, B. İnal, H. Bektaş, M. Sonkurt, M. Mırzapour, ve M. Ceritoğlu, “Mitigation of Drought Stress in Wheat by Bio-priming by PGPB Containing ACC Deaminase Activity”, Atatürk Üniversitesi Ziraat Fakültesi Dergisi, c. 53, sy. 1, ss. 51–57, 2022, doi: 10.54614/AUAF.2022.972753.
ISNAD Çığ, Fatih vd. “Mitigation of Drought Stress in Wheat by Bio-Priming by PGPB Containing ACC Deaminase Activity”. Atatürk Üniversitesi Ziraat Fakültesi Dergisi 53/1 (Ocak 2022), 51-57. https://doi.org/10.54614/AUAF.2022.972753.
JAMA Çığ F, Erman M, İnal B, Bektaş H, Sonkurt M, Mırzapour M, Ceritoğlu M. Mitigation of Drought Stress in Wheat by Bio-priming by PGPB Containing ACC Deaminase Activity. Atatürk Üniversitesi Ziraat Fakültesi Dergisi. 2022;53:51–57.
MLA Çığ, Fatih vd. “Mitigation of Drought Stress in Wheat by Bio-Priming by PGPB Containing ACC Deaminase Activity”. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, c. 53, sy. 1, 2022, ss. 51-57, doi:10.54614/AUAF.2022.972753.
Vancouver Çığ F, Erman M, İnal B, Bektaş H, Sonkurt M, Mırzapour M, Ceritoğlu M. Mitigation of Drought Stress in Wheat by Bio-priming by PGPB Containing ACC Deaminase Activity. Atatürk Üniversitesi Ziraat Fakültesi Dergisi. 2022;53(1):51-7.

Bu dergide yayınlanan makaleler Creative Commons Uluslararası Lisansı (https://creativecommons.org/licenses/by-nc/4.0/) kapsamında yayınlanmaktadır. Bu, orijinal makaleye uygun şekilde atıf yapılması şartıyla, eserin herhangi bir ortam veya formatta kopyalanmasını ve dağıtılmasını sağlar. Ancak, eserler ticari amaçlar için kullanılamaz.

https://creativecommons.org/licenses/by-nc/4.0/