Araştırma Makalesi
BibTex RIS Kaynak Göster

Yer Sistem Modellerinin Son Buzul Maksimumu İklim Ardgörülerinin Holdridge Biyomları ve Paleobuzul Alanları ile Değerlendirilmesi

Yıl 2023, , 394 - 426, 30.10.2023
https://doi.org/10.33688/aucbd.1290590

Öz

Geçmiş dönem iklim koşullarını anlamak için kullanılan yöntemlerden biri olan iklim modeli verileri ile yapılan çalışmalar artmakta, bu çalışmaların hangisinin gerçeği daha iyi yansıttığı konusundaki denkleştirme, sağlama yapma çalışmaları ise daha sınırlı kalmaktadır. Bu çalışmada, 7 farklı iklim modeli ardgörülerinin, çözünürlüğü artırılmış veri setlerinden, Holdridge biyomlarında bulunan buzul alanları üretilmiş, bu alanlar ile Türkiye’deki paleobuzul alanları karşılaştırılmıştır. Çalışmada, 1 km çözünürlüklü veri setleri kullanılmış, elde edilen buzul ve soğuk çöl alanları ile farklı kaynaklar kullanılarak üretilen, Türkiye’nin Son Buzul Maksimumu buzul alanları arasındaki benzerlik ve farklılıklar değerlendirilmiştir. Değerlendirme için, Türkiye paleobuzul alanları bölgelere ayrılmış, bu sayede hangi iklim modelinin hangi bölgede daha az hatalı sonuçlar verdiği ortaya koyulmuştur. Sonuç olarak, Türkiye’de MPI-ESM-P ve CCSM4 modellerinin daha geniş alanlar için tutarlı sonuçlar verirken, FGOALS2, IPSL-CM5A-LR, MRI-CGCM3 modellerinin bölgesel bazda anlamlı sonuçlar verdiği görülmüştür. MICRO-ESM ve CNRM-CM5 modellerinin ise Türkiye’deki SBM iklim koşullarını yansıtabilmesi için iyileştirmeler yapılması gerektiği ortaya çıkmıştır.

Kaynakça

  • Akçar, N., Yavuz, V., Yeşilyurt, S., Ivy-Ochs, S., Reber, R., Bayrakdar, C., Kubik, P.W., Zahno, C., Schlunegger, F., Schlüchter, C. (2017). Synchronous last glacial maximum across the Anatolian peninsula. Geological Society, London, Special Publications, 433 (1), 251-269. doi: 10.1144/SP433.7
  • Akdi, Y. (2003). Zaman Serileri, Birim Kökkler ve Kointegrasyon. Ankara: Bıçaklar Kitabevi.
  • Alder, J. R., Hostetler, S. W. (2019). Applying the Community Ice Sheet Model to evaluate PMIP3 LGM climatologies over the North American ice sheets. Climate Dynamics, 53 (5-6), 2807-2824. doi: 10.1007/s00382-019-04663-x
  • Alkama, R., Kageyama, M., Ramstein, G., Marti, O., Ribstein, P., Swingedouw, D. (2008). Impact of a realistic river routing in coupled ocean–atmosphere simulations of the Last Glacial Maximum climate. Climate dynamics, 30 (7), 855-869. doi: 10.1007/s00382-007-0330-1
  • Arslan, E. S., Örücü, Ö.K. (2019). Present and future potential distribution of the Pinus Nigra Arnold. and Pinus Sylvestris L. using Maxent model. International Journal of Ecosystems and Ecology Science (IJEES) 9 (4), 787–98. doi: 10.31407/ijees9425
  • Bilgin, T. (1972). Munzur Daǧları Doǧu Kısmının Glasiyal ve Periglasiyal Morfolojisi. İstanbul Universitesi Edebiyat Fakültesi Matbaası.
  • Block, K., Mauritsen, T. (2013). Forcing and feedback in the MPI‐ESM‐LR coupled model under abruptly quadrupled CO2. Journal of Advances in Modeling Earth Systems, 5 (4), 676-691. doi: 10.1002/jame.20041
  • Boston, C. M. (2012). A glacial geomorphological map of the Monadhliath Mountains, Central Scottish Highlands. Journal of Maps, 8 (4), 437-444. doi: 10.1080/17445647.2012.743865
  • Braconnot, P., Harrison, S. P., Kageyama, M., Bartlein, P. J., Masson-Delmotte, V., Abe-Ouchi, A., Otto-Bliesner, B., Zhao, Y. (2012). Evaluation of climate models using palaeoclimatic data. Nature Climate Change, 2 (6), 417-424. doi: 10.1038/nclimate1456
  • Brovkin, V., Boysen, L., Raddatz, T., Gayler, V., Loew, A., Claussen, M. (2013). Evaluation of vegetation cover and land‐surface albedo in MPI‐ESM CMIP5 simulations. Journal of Advances in Modeling Earth Systems, 5 (1), 48-57. doi: 10.1029/2012MS000169
  • Candaş, A., Sarikaya, M. A., Köse, O., Şen, Ö. L., Ciner, A. (2020). Modelling Last Glacial Maximum ice cap with the Parallel Ice Sheet Model to infer palaeoclimate in south‐west Turkey. Journal of Quaternary Science, 35 (7), 935-950. doi: 10.1002/JQS.3239
  • Chala, D., Zimmermann, N. E., Brochmann, C., Bakkestuen, V. (2017). Migration corridors for alpine plants among the ‘sky islands’ of eastern Africa: do they, or did they exist?. Alpine Botany, 127 (2), 133-144. doi: 10.1007/s00035-017-0184-z
  • Çoban, H. O., Örücü, Ö. K., Arslan, E. S. (2020). MaxEnt modeling for predicting the current and future potential geographical distribution of Quercus libani Olivier. Sustainability, 12 (7), 1-17. doi: 10.3390/su12072671
  • Dagtekin, D., Şahan, E. A., Denk, T., Köse, N., Dalfes, H. N. (2020). Past, present and future distributions of Oriental beech (Fagus orientalis) under climate change projections. PLoS One, 15 (11), 1–19. doi: 10.1371/journal.pone.0242280
  • Danabasoglu, G., Bates, S. C., Briegleb, B. P., Jayne, S. R., Jochum, M., Large, W. G., Peacock, S., Yeager, S. G. (2012). The CCSM4 ocean component. Journal of Climate, 25 (5), 1361-1389. doi: 10.1175/JCLI-D-11-00091.1
  • Doğu, A. F., Somuncu, M., Çiçek, İ., Tunçel, H., Gürgen, G. (1993). Kaçkar Dağında buzul şekilleri, yaylalar ve turizm. Türkiye Coğrafyası Ar. ve Uy. Mer. Der. 2, 157–84.
  • Dufresne, J. L., Foujols, M. A., Denvil, S., Caubel, A., Marti, O., Aumont, O., Balkanski, Y., Bekki, S., Bellenger, H., Benshila, R., Bony, S., Bopp, L., Braconnot, P., Brockmann, P., Cadule, P., Cheruy, F., Codron, F., Cozic, A., Cugnet, D., de Noblet, N., Duvel, J. P., Ethé, C., Fairhead, L., Fichefet, T., Flavoni, S., Friedlingstein, P., Grandpeix, J. Y., Guez, L., Guilyardi, E., Hauglustaine, D., Hourdin, F., Idelkadi, A., Ghattas, J., Joussaume, S., Kageyama, M., Krinner, G., Labetoulle, S., Lahellec, A., Lefebvre, M. P., Lefevre, F., Levy, C., Li, Z. X., Lloyd, J., Lott, F., Madec, G., Mancip, M., Marchand, M., Masson, S., Meurdesoif, Y., Mignot, J., Musat, I., Parouty, S., Polcher, J., Rio, C., Schulz, M., Swingedouw, D., Szopa, S., Talandier, C., Terray, P., Viovy, N., Vuichard, N. (2013). Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5. Climate Dynamics, 40, 2123-2165. doi: 10.1007/s00382-012-1636-1
  • Dury, M., Doutreloup, S., Hardy, O., Fayolle, A., Fettweis, X., Hambuckers, A., Gallée, H., François, L. (2017). Modelling past and present distributions of tropical African biomes and species using a dynamic vegetation model. İçinde: European Conference of Tropical Ecology. Brussels, Belgium. https://hdl.handle.net/2268/227208 adresinden alınmıştır.
  • Ekström, M., Grose, M. R., Whetton, P. H. (2015). An appraisal of downscaling methods used in climate change research. Wiley Interdisciplinary Reviews: Climate Change, 6 (3), 301-319. doi: 10.1002/wcc.339
  • Erinç, S. (1945). Doğu Karadeniz Dağlarında Glasyal Morfoloji Araştırmaları. İst. Üniv. Ed. Fak. Coğ. Enst. Doktora Tezi, Seri No:1, İstanbul.
  • Fathinia, B., Rödder, D., Rastegar-Pouyani, N., Rastegar-Pouyani, E., Hosseinzadeh, M. S., Kazemi, S. M. (2020). The past, current and future habitat range of the Spider-tailed Viper, Pseudocerastes urarachnoides (Serpentes: Viperidae) in western Iran and eastern Iraq as revealed by habitat modelling. Zoology in the Middle East, 66 (3), 197-205. doi: 10.1080/09397140.2020.1757910
  • Fick, S. E., Hijmans, R. J. (2017). WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37 (12), 4302-4315. doi: 10.1002/joc.5086
  • Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S. C., Collins, W., Cox, P., Driouech, F., Emori, S., Eyring, V., Forest, C., Gleckler, P., Guilyardi, E., Jakob, C., Kattsov, V., Reason, C., Rummukainen, M. (2013). Evaluation of climate models. In: Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M. (ed.). Climate Change 2013 the Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. C. 9781107057, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 741–866.
  • Fritz, S. C., Baker, P. A., Lowenstein, T. K., Seltzer, G. O., Rigsby, C. A., Dwyer, G. S., Tapia, P.M., Arnold, K.K, Ku, T.L., Luo, S. (2004). Hydrologic variation during the last 170,000 years in the southern hemisphere tropics of South America. Quaternary Research, 61(1), 95-104. doi: 10.1016/J.YQRES.2003.08.007
  • Gent, P. R., Danabasoglu, G., Donner, L. J., Holland, M. M., Hunke, E. C., Jayne, S. R., Lawrence, D.M., Neale, R.B., Rasch, P.J., Vertenstein, M., Worley, P.H., Yang, Z.L., Zhang, M. (2011). The community climate system model version 4. Journal of climate, 24 (19), 4973-4991. doi: 10.1175/2011JCLI4083.1
  • Giorgetta, M.A., Jungclaus, J., Reick, C.H., Legutke, S., Bader, J., Böttinger, M., Brovkin, V., Crueger, T., Esch, M., Fieg, K., Glushak, K., Gayler, V., Haak, H., Hollweg, H.D., Ilyina, T., Kinne, S., Kornblueh, L., Matei, D., Mauritsen, T., Mikolajewicz, U., Mueller, W., Notz, D., Pithan, F., Raddatz, T., Rast, S., Redler, R., Roeckner, E., Schmidt, H., Schnur, R., Segschneider, J., Six, K.D., Stockhause, M., Timmreck, C., Wegner, J., Widmann, H., Wieners, K.H., Claussen, M., Marotzke, J., Stevens., B. (2013). Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. Journal of Advances in Modeling Earth Systems 5 (3), 572–97. doi: 10.1002/JAME.20038.
  • Goldsmith, Y., Polissar, P. J., Ayalon, A., Bar-Matthews, M., DeMenocal, P. B., Broecker, W. S. (2017). The modern and Last Glacial Maximum hydrological cycles of the Eastern Mediterranean and the Levant from a water isotope perspective. Earth and Planetary Science Letters, 457, 302-312. doi: 10.1016/J.EPSL.2016.10.017
  • Gowan, E. J., Zhang, X., Khosravi, S., Rovere, A., Stocchi, P., Hughes, A. L., Gyllencreutz, R., Mangerud, J., Svendsen, J.I., Lohmann, G. (2021). A new global ice sheet reconstruction for the past 80 000 years. Nature Communications, 12 (1), 1–9. doi: 10.1038/s41467-021-21469-w
  • Gül, S., Kumlutaş, Y., Ilgaz, Ç. (2015). Climatic preferences and distribution of 6 evolutionary lineages of Typhlops vermicularis Merrem, 1820 in Turkey using ecological niche modeling. Turkish Journal of Zoology, 39 (2), 235-243. doi: 10.3906/zoo-1311-9
  • Gür, H. (2013). The effects of the Late Quaternary glacial–interglacial cycles on Anatolian ground squirrels: range expansion during the glacial periods?. Biological Journal of the Linnean Society, 109 (1), 19-32. doi: 10.1111/bij.12026
  • Gür, H. (2017). Geç Kuvaterner buzul buzullararası döngülerinin Anadolu’nun biyolojik çeşitliliği üzerine etkileri. Türkiye Jeoloji Bülteni, 60 (4), 507-528. doi: 10.25288/tjb.363813 Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology: A Journal of the Royal Meteorological Society, 25 (15), 1965-1978. doi: 10.1002/joc.1276
  • Hoffman, F., Fung, I., Randerson, J., Thornton, P., Foley, J., Covey, C., John, J., Levis, S., Post, W.M., Vertenstein, M., Stöckli, R., Running, S., Heinsch, F.A., Erickson, D., Drake, J. (2006). Terrestrial biogeochemistry in the community climate system model (CCSM). Journal of Physics: Conference Series, 46 (1), 363–69. doi: 10.1088/1742-6596/46/1/051
  • Holdridge, L. R. (1947). Determination of world plant formations from simple climatic data. Science, 105 (2727), 367–68. doi: 10.1126/science.105.2727.367
  • Holdridge, L. R., Joseph, A.T. (1967). Life Zone Ecology with Photographic Supplement Prepared. Costa Rica.
  • Hopcroft, P. O., Valdes, P. J. (2015). How well do simulated last glacial maximum tropical temperatures constrain equilibrium climate sensitivity?. Geophysical Research Letters, 42 (13), 5533-5539. doi: 10.1002/2015GL064903
  • Hourdin, F., Foujols, M. A., Codron, F., Guemas, V., Dufresne, J. L., Bony, S., Denvil, S., Guez, L., Lott, F., Ghattas, J., Braconnot, P., Marti, O., Meurdesoif, Y., Bopp, L. (2013). Impact of the LMDZ atmospheric grid configuration on the climate and sensitivity of the IPSL-CM5A coupled model. Climate Dynamics, 40 (9-10), 2167-2192. doi: 10.1007/s00382-012-1411-3
  • Ju, L., Wang, H., Jiang, D. (2007). Simulation of the Last Glacial Maximum climate over East Asia with a regional climate model nested in a general circulation model. Palaeogeography, Palaeoclimatology, Palaeoecology, 248 (3-4), 376-390. doi: 10.1016/J.PALAEO.2006.12.012
  • Jungclaus, J. H., Fischer, N., Haak, H., Lohmann, K., Marotzke, J., Matei, D., Mikolajewicz, U., Notz, D., Von Storch, J. S. (2013). Characteristics of the ocean simulations in the Max Planck Institute Ocean Model (MPIOM) the ocean component of the MPI‐Earth system model. Journal of Advances in Modeling Earth Systems, 5 (2), 422-446. doi: 10.1002/jame.20023
  • Jungclaus, J. H., Lorenz, S. J., Timmreck, C., Reick, C. H., Brovkin, V., Six, K., Segschneider, J., Giorgetta, M.A., Crowley, T.J., Pongratz, J., Krivova, N.A., Vieira, L.E., Solanki, S.K., Klocke, D., Botzel, M., Esch, M., Gayler, V., Haak, H., Raddatz, T.J., Roeckner, E., Schnur, R., Widdmann, H., Claussenn, M., Stevens, B., Marotzke, J. (2010). Climate and carbon-cycle variability over the last millennium. Climate of the Past, 6 (5), 723-737. doi: 10.5194/cp-6-723-2010
  • Kamworapan, S., Surussavadee, C. (2019). Evaluation of CMIP5 global climate models for simulating climatological temperature and precipitation for Southeast Asia. Advances in Meteorology, 1-18. doi: 10.1155/2019/1067365
  • Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., Zimmermann, N.E., Linder, H.P., Kessler, M. (2017). Climatologies at high resolution for the earth’s land surface areas. Scientific Data, 4 (1), 1-20. doi: 10.1038/sdata.2017.122
  • Kawai, H., Koshiro, T., Webb, M., Yukimoto, S., Tanaka, T. (2015). Cloud feedbacks in MRI-CGCM3. CAS/JSC WGNE Research Activities in Atmospheric and Oceanic Modelling/WMO, 45, 7-11.
  • Khon, V., Wang, Y., Schneider, B. (2014). Variations of the tropical hydrological cycle during the last glacial-interglacial period: a model-data intercomparison. In EGU General Assembly Conference Abstracts, 16,1538
  • Kilic, O. M., Gunal, H. (2021). Spatial-temporal changes in rainfall erosivity in Turkey using CMIP5 global climate change scenario. Arabian Journal of Geosciences, 14 (12). doi: 10.1007/s12517-021-07184-2
  • Koç, D. E., Biltekin, D., Ustaoğlu, B. (2021). Modelling potential distribution of Carpinus betulus in Anatolia and its surroundings from the Last Glacial Maximum to the future. Arabian Journal of Geosciences, 14 (12). doi: 10.1007/s12517-021-07444-1
  • Koç, D. E., Dalfes, H. N., Avcı, M. (2022). Anadolu’da Konifer Ağaçların Yayılış Alanlarındaki Değişimler. Coğrafya Dergisi, Journal of Geograph (44), 81-95. doi: 10.26650/JGEOG2022-974433
  • Koc, D. E., Svenning, J. C., Avcı, M. (2018). Climate change impacts on the potential distribution of Taxus baccata L. in the Eastern Mediterranean and the Bolkar Mountains (Turkey) from last glacial maximum to the future. Eurasian Journal of Forest Science, 6 (3), 69-82. doi: 10.31195/ejejfs.435962
  • Kohn, M. J., McKay, M. P. (2012). Paleoecology of late Pleistocene–Holocene faunas of eastern and central Wyoming, USA, with implications for LGM climate models. Palaeogeography, Palaeoclimatology, Palaeoecology, 326, 42-53. doi: 10.1016/J.PALAEO.2012.01.037
  • Koo, K. A., Park, S. U., Kong, W. S., Hong, S., Jang, I., Seo, C. (2017). Potential climate change effects on tree distributions in the Korean Peninsula: Understanding model & climate uncertainties. Ecological Modelling, 353, 17-27. doi: 10.1016/j.ecolmodel.2016.10.007
  • Lawrence, D. M., Oleson, K. W., Flanner, M. G., Fletcher, C. G., Lawrence, P. J., Levis, S., Swenson, S.C., Bonan, G. B. (2012). The CCSM4 land simulation, 1850–2005: Assessment of surface climate and new capabilities. Journal of Climate, 25 (7), 2240-2260. doi: 10.1175/JCLI-D-11-00103.1
  • Leemans, R. (1990). Possible changes in natural vegetation due to a global warming. Global data sets collected and compiled by the Biosphere Project. C. Working Pa., Laxenburg, Austria: IIASA.
  • Li, C., Battisti, D. S. (2008). Reduced Atlantic storminess during Last Glacial Maximum: Evidence from a coupled climate model. Journal of Climate, 21 (14), 3561-3579. doi: 10.1175/2007JCLI2166.1
  • Li, Y., Morrill, C. (2013). Lake levels in Asia at the Last Glacial Maximum as indicators of hydrologic sensitivity to greenhouse gas concentrations. Quaternary Science Reviews, 60, 1-12. doi: 10.1016/J.QUASCIREV.2012.10.045
  • Lionello, P., D'Agostino, R. (2019). Consensus and disagreement among models on Mediterranean climate changes from the last glacial maximum to future high emission scenarios. In Geophysical Research Abstracts, 21.
  • Liu, W., Lu, J., Leung, L. R., Xie, S. P., Liu, Z., Zhu, J. (2015). The de-correlation of westerly winds and westerly-wind stress over the Southern Ocean during the Last Glacial Maximum. Climate Dynamics, 45 (11–12), 3157–3168. doi: 10.1007/s00382-015-2530-4
  • Lofverstrom, M. (2020). A dynamic link between high-intensity precipitation events in southwestern North America and Europe at the Last Glacial Maximum. Earth and Planetary Science Letters, 534, 116081. doi: 10.1016/j.epsl.2020.116081
  • Louis, H. (1944). Die Spuren eiszeitlicher Vergletscherung in Anatolien. Geologische Rundschau, 34 (7-8), 447-481. doi: 10.1007/BF01803099
  • Messerli, B. (1967). Die eiszeitliche und die gegenwärtige Vergletscherung im Mittelmeerraum. Geographica Helvetica, 22 (3), 105-228. doi: 10.5194/gh-22-105-1967 NE. (2021). Natural Earth. 13 Aralık 2022 tarihinde https://www.naturalearthdata.com/downloads/ adresinden alınmıştır.
  • Oerlemans, J. (1998). Modelling glacier fluctuations. In Into the Second Century of Worldwide Glacier Monitoring: Prospects and Strategies. 85–96.
  • Oster, J. L., Ibarra, D. E., Winnick, M. J., Maher, K. (2015). Steering of westerly storms over western North America at the Last Glacial Maximum. Nature Geoscience, 8 (3), 201-205. doi: 10.1038/ngeo2365
  • Oueslati, B., Bellon, G. (2013). Convective entrainment and large-scale organization of tropical precipitation: Sensitivity of the CNRM-CM5 hierarchy of models. Journal of Climate, 26 (9), 2931-2946. doi: 10.1175/JCLI-D-12-00314.1
  • Palmer, T. (2014). Climate forecasting: Build high-resolution global climate models. Nature, 515(7527), 338-339. doi: 10.1038/515338a
  • Pederson, G. T., Fagre, D. B., Gray, S. T., Graumlich, L. J. (2004). Decadal‐scale climate drivers for glacial dynamics in Glacier National Park, Montana, USA. Geophysical Research Letters, 31 (12). doi: 10.1029/2004GL019770
  • Pellitero, R., Rea, B. R., Spagnolo, M., Bakke, J., Hughes, P., Ivy-Ochs, S., Lukas, S., Ribolini, A. (2015). A GIS tool for automatic calculation of glacier equilibrium-line altitudes. Computers & Geosciences, 82, 55-62. doi: 10.1016/J.CAGEO.2015.05.005
  • Pellitero, R., Rea, B. R., Spagnolo, M., Bakke, J., Ivy-Ochs, S., Frew, C. R., Hughes, P., Ribolini, A., Lukas, S., Renssen, H. (2016). GlaRe, a GIS tool to reconstruct the 3D surface of palaeoglaciers. Computers & Geosciences, 94, 77-85. doi: 10.1016/j.cageo.2016.06.008
  • Peng, G., Matthews, J. L., Wang, M., Vose, R., Sun, L. (2020). What do global climate models tell us about future Arctic sea ice coverage changes? Climate, 8 (1). doi: 10.3390/cli8010015
  • Prentice, I. C., Guiot, J., Harrison, S. P. (1992). Mediterranean vegetation, lake levels and palaeoclimate at the Last Glacial Maximum. Nature, 360(6405), 658-660. doi: 10.1038/360658a0
  • Reber, R., Akçar, N., Tikhomirov, D., Yesilyurt, S., Vockenhuber, C., Yavuz, V., Ivy-Ochs, S., Schlüchter, C. (2022). LGM glaciations in the northeastern anatolian mountains: new insights. Geosciences, 12 (7). doi: 10.3390/geosciences12070257
  • Reber, R., Akçar, N., Yesilyurt, S., Yavuz, V., Tikhomirov, D., Kubik, P. W., Schlüchter, C. (2014). Glacier advances in northeastern Turkey before and during the global Last Glacial Maximum. Quaternary Science Reviews, 101, 177-192. doi: 10.1016/j.quascirev.2014.07.014
  • Reick, C. H., Raddatz, T., Brovkin, V., Gayler, V. (2013). Representation of natural and anthropogenic land cover change in MPI‐ESM. Journal of Advances in Modeling Earth Systems, 5(3), 459-482. doi: 10.1002/jame.20022
  • Sarıkaya, M. A., Çiner, A., Haybat, H., Zreda, M. (2014). An early advance of glaciers on Mount Akdağ, SW Turkey, before the global Last Glacial Maximum; insights from cosmogenic nuclides and glacier modeling. Quaternary Science Reviews, 88, 96-109. doi: 10.1016/j.quascirev.2014.01.016
  • Sarıkaya, M. A., Çiner, A., Yıldırım, C. (2017). Cosmogenic 36Cl glacial chronologies of the Late Quaternary glaciers on Mount Geyikdağ in the Eastern Mediterranean. Quaternary Geochronology, 39, 189-204. doi: 10.1016/j.quageo.2017.03.003
  • Sarikaya, O., Karaceylan, I. B., Sen, I. (2018). Maximum entropy modeling (maxent) of current and future distributions of Ips mannsfeldi (Wachtl, 1879) (Curculionidae: Scolytinae) in Turkey. Applied Ecology and Environmental Research, 16 (3), 2527–2535. doi: 10.15666/aeer/1603_25272535
  • Schär, C., Fuhrer, O., Arteaga, A., Ban, N., Charpilloz, C., Di Girolamo, S., Hentgen, L., Hoefler, T., Lapillonne, X., Leutwyler, D., Osterried, K., Panosetti, D., Rüdisühli, S., Schlemmer, L., Schulthess, T. C., Sprenger, M., Ubbiali, S., Wernli, H. (2020). Kilometer-scale climate models: Prospects and challenges. Bulletin of the American Meteorological Society, 101 (5), 567-587. doi: 10.1175/BAMS-D-18-0167.1
  • Schmidli, J., Frei, C., Vidale, P. L. (2006). Downscaling from GCM precipitation: a benchmark for dynamical and statistical downscaling methods. International Journal of Climatology: A Journal of the Royal Meteorological Society, 26 (5), 679-689. doi: 10.1002/joc.1287
  • Sun, Y., Zhou, T., Ramstein, G., Contoux, C., Zhang, Z. (2016). Drivers and mechanisms for enhanced summer monsoon precipitation over East Asia during the mid-Pliocene in the IPSL-CM5A. Climate Dynamics, 46 (5-6), 1437-1457. doi: 10.1007/s00382-015-2656-4
  • Tarıkahya-Hacıoğlu, B., Karacaoğlu, Ç., Özüdoğru, B. (2014). The speciation history and systematics of Carthamus (Asteraceae) with special emphasis on Turkish species by integrating phylogenetic and Ecological Niche Modelling data. Plant systematics and evolution, 300 (6), 1349-1359. doi: 10.1007/s00606-013-0966-8
  • Tatli, H., Dalfes, H.N., Menteş, Ş.S. (2004). A statistical downscaling method for monthly total precipitation over Turkey. International Journal of Climatology: A Journal of the Royal Meteorological Society, 24 (2), 161-180. doi: 10.1002/joc.997
  • Tatlı, H. (2017). Classification of the Köppen and Holdridge life zones with respect to the climate scenarios-Rcp4. 5 over Turkey. In 8th Atmospheric Sciences Symposium-01-04 November 2017, 651-657.
  • Tekin, M. K., Tatlı, H., Koç, T. (2018). Türkiye’deki yaşam-bölgelerinin Holdridge yaşam-zon yöntemi ile belirlenmesi. TÜCAUM 30. Yıl Uluslararası Coğrafya Sempozyumu, 30, 713-722.
  • Thorp, P. W. (1981). A trimline method for defining the upper limit of Loch Lomond Advance glaciers: examples from the Loch Leven and Glen Coe areas. Scottish Journal of Geology, 17 (1), 49-64. doi: 10.1144/sjg17010049
  • Tierney, J. E., Zhu, J., King, J., Malevich, S. B., Hakim, G. J., Poulsen, C. J. (2020). Glacial cooling and climate sensitivity revisited. Nature, 584 (7822), 569-573. doi: 10.1038/s41586-020-2617-x
  • Tonbul, S. (1997). Bi̇ngöl Dağında buzul şeki̇lleri̇. Türkiye Coğrafyası Ar. ve Uy. Mer. Der., 6, 347–374.
  • Ülker, E. D., Tavşanoğlu, Ç., Perktaş, U. (2018). Ecological niche modelling of pedunculate oak (Quercus robur) supports the ‘expansion–contraction’model of Pleistocene biogeography. Biological Journal of the Linnean Society, 123 (2), 338-347. doi: 10.1093/biolinnean/blx154
  • Vaissi, S. (2021). Potential changes in the distributions of Near Eastern fire salamander (Salamandra infraimmaculata) in response to historical, recent and future climate change in the Near and Middle East: Implication for conservation and management. Global Ecology and Conservation, 29, e01730. doi: 10.1016/j.gecco.2021.e01730
  • Voldoire, A., Sanchez-Gomez, E., Salas y Mélia, D., Decharme, B., Cassou, C., Sénési, S., Valcke, S., Beau, I., Alias, A., Chevallier, M., Deque, M., Deshayes, J., Douville, H., Fernandez, E., Madec, G., Maisonnave, E., Moine, M.P., Planton, S., Saint-Martin, D., Szopa, S., Tyteca, S., Alkama, R., Belamari, S., Braun, A., Coquart, L., Chauvin, F. (2013). The CNRM-CM5. 1 global climate model: description and basic evaluation. Climate Dynamics, 40 (9-10), 2091-2121. doi: 10.1007/s00382-011-1259-y
  • Wang, B., Liu, M., Yu, Y., Li, L., Lin, P., Dong, L., Liu, L., Liu, J., Huang, W., Xu, S., Shen, S., Pu, Y., Xue, W., Xia, K., Wang, Y., Sun, W., Hu, N., Huang, X., Liu, H., Zheng, W., Wu, B., Zhou, T., Yang, G. (2013). Preliminary evaluations of FGOALS-g2 for decadal predictions. Advances in Atmospheric Sciences, 30 (3), 674-683. doi: 10.1007/s00376-012-2084-x
  • Watanabe, S., Hajima, T., Sudo, K., Nagashima, T., Takemura, T., Okajima, H., Nozawa, T., Kawase, H., Abe, M., Yokohata, T., Ise, T., Sato, H., Kato, E., Takata, K., Emori, S., Kawamiya, M. (2011). MIROC-ESM 2010: Model description and basic results of CMIP5-20c3m experiments. Geoscientific Model Development, 4 (4), 845-872. doi: 10.5194/gmd-4-845-2011
  • Winkelmann, R., Martin, M. A., Haseloff, M., Albrecht, T., Bueler, E., Khroulev, C.,Levermann, A. (2011). The Potsdam parallel ice sheet model (PISM-PIK)–Part 1: Model description. The Cryosphere, 5 (3), 715-726. doi: 10.5194/tc-5-715-2011
  • Yeşilyurt, S. (2017). Kavuşşahap Dağları’nda ( Van ) Geç Kuvaterner Buzullaşması: Bölgesel Paleoiklim Açısından Değerlendirme. Ankara Üniversitesi, Sosyal Bilimler Enstitüsü (Yayımlanmamış Doktora Tezi).
  • Yılmaz, E. (2021a). Yüksek çözünürlüklü CCSM4 model verilerine göre Son Buzul Maksimumunda (SBM) Türkiye’nin Holdridge Ekolojik Bölgeleri ve günümüz iklim şartlarıyla karşılaştırılması. Coğrafi Bilimler Dergisi, 19(2), 331–67. doi: 10.33688/aucbd.880675
  • Yılmaz, E. (2021b). Yüksek çözünürlüklü ERA-Interim ve HadGEM2-CC model verilerine göre Türkiye’nin güncel ve gelecekteki Holdridge ekolojik bölgeleri. Coğrafi Bilimler Dergisi, 19(1), 29–60. doi: 10.33688/aucbd.778259
  • Yukimoto, S., Adachi, Y., Hosaka, M., Sakami, T., Yoshimura, H., Hirabara, M., Tanaka, T.Y., Shindo, E., Tsujino, H., Deushi, M., Mizuta, R., Yabu, S., Obata, A., Nakano, H., Koshiro, T., Ose, T., Kitoh, A. (2012). A new global climate model of the Meteorological Research Institute: MRI-CGCM3: -Model description and basic performance-. Journal of the Meteorological Society of Japan, 90(A), 23–64. doi: 10.2151/jmsj.2012-A02
  • Zheng, W., Yu, Y. (2013). Paleoclimate simulations of the mid-Holocene and Last Glacial Maximum by FGOALS. Advances in Atmospheric Sciences, 30 (3), 684-698. doi: 10.1007/s00376-012-2177-6
  • Zhou, T., Song, F., Chen, X. (2013). Historical evolution of global and regional surface air temperature simulated by FGOALS-s2 and FGOALS-g2: How reliable are the model results?. Advances in Atmospheric Sciences, 30(3), 638-657. doi: 10.1007/s00376-013-2205-1
  • Zhou, T., Wang, B., Yu, Y., Liu, Y., Zheng, W., Li, L., Wu, B., Lin, P., Guo, Z., Man, W., Bao, Q., Duan, A., Liu, H., Chen, X., He, B., Li, J., Zou, L., Wang, X., Zhang, L., Sun, Y., Zhang, W. (2018). The FGOALS climate system model as a modeling tool for supporting climate sciences: An overview. Earth and Planetary Physics, 2 (4), 276-291. doi: 10.26464/epp2018026

Evaluation of Earth System Models' Last Glacial Maximum climate hindcasts with Holdridge Biomes and paleoglacier areas

Yıl 2023, , 394 - 426, 30.10.2023
https://doi.org/10.33688/aucbd.1290590

Öz

Studies with climate model data, which is one of the methods used to understand the climatic conditions of the past, are increasing, while the studies of balancing and validating which of these studies better demonstrate the reality remain more limited. In this study, glacier areas in the Holdridge biomes were produced from the datasets of 7 different climate model escapades with enhanced resolution, and these areas were compared with the paleo glacier areas in Turkey. In the study, 1 km resolution data sets were used, and the similarities and differences between the glacier and cold desert areas obtained and Turkey's Last Glacial Maximum glacier areas produced using different sources were evaluated. For the evaluation, Turkey's paleo glacier areas were divided into regions, thus it was revealed which climate model gave less inaccurate results in which region. As a result, it was seen that the MPI-ESM-P and CCSM4 models gave consistent results for larger areas in Turkey, while the FGOALS2, IPSL-CM5A-LR, MRI-CGCM3 models gave significant results on a regional basis. On the other hand, it has been revealed that MICRO-ESM and CNRM-CM5 models need to be improved in order to represent the LGM climate conditions in Turkey.

Kaynakça

  • Akçar, N., Yavuz, V., Yeşilyurt, S., Ivy-Ochs, S., Reber, R., Bayrakdar, C., Kubik, P.W., Zahno, C., Schlunegger, F., Schlüchter, C. (2017). Synchronous last glacial maximum across the Anatolian peninsula. Geological Society, London, Special Publications, 433 (1), 251-269. doi: 10.1144/SP433.7
  • Akdi, Y. (2003). Zaman Serileri, Birim Kökkler ve Kointegrasyon. Ankara: Bıçaklar Kitabevi.
  • Alder, J. R., Hostetler, S. W. (2019). Applying the Community Ice Sheet Model to evaluate PMIP3 LGM climatologies over the North American ice sheets. Climate Dynamics, 53 (5-6), 2807-2824. doi: 10.1007/s00382-019-04663-x
  • Alkama, R., Kageyama, M., Ramstein, G., Marti, O., Ribstein, P., Swingedouw, D. (2008). Impact of a realistic river routing in coupled ocean–atmosphere simulations of the Last Glacial Maximum climate. Climate dynamics, 30 (7), 855-869. doi: 10.1007/s00382-007-0330-1
  • Arslan, E. S., Örücü, Ö.K. (2019). Present and future potential distribution of the Pinus Nigra Arnold. and Pinus Sylvestris L. using Maxent model. International Journal of Ecosystems and Ecology Science (IJEES) 9 (4), 787–98. doi: 10.31407/ijees9425
  • Bilgin, T. (1972). Munzur Daǧları Doǧu Kısmının Glasiyal ve Periglasiyal Morfolojisi. İstanbul Universitesi Edebiyat Fakültesi Matbaası.
  • Block, K., Mauritsen, T. (2013). Forcing and feedback in the MPI‐ESM‐LR coupled model under abruptly quadrupled CO2. Journal of Advances in Modeling Earth Systems, 5 (4), 676-691. doi: 10.1002/jame.20041
  • Boston, C. M. (2012). A glacial geomorphological map of the Monadhliath Mountains, Central Scottish Highlands. Journal of Maps, 8 (4), 437-444. doi: 10.1080/17445647.2012.743865
  • Braconnot, P., Harrison, S. P., Kageyama, M., Bartlein, P. J., Masson-Delmotte, V., Abe-Ouchi, A., Otto-Bliesner, B., Zhao, Y. (2012). Evaluation of climate models using palaeoclimatic data. Nature Climate Change, 2 (6), 417-424. doi: 10.1038/nclimate1456
  • Brovkin, V., Boysen, L., Raddatz, T., Gayler, V., Loew, A., Claussen, M. (2013). Evaluation of vegetation cover and land‐surface albedo in MPI‐ESM CMIP5 simulations. Journal of Advances in Modeling Earth Systems, 5 (1), 48-57. doi: 10.1029/2012MS000169
  • Candaş, A., Sarikaya, M. A., Köse, O., Şen, Ö. L., Ciner, A. (2020). Modelling Last Glacial Maximum ice cap with the Parallel Ice Sheet Model to infer palaeoclimate in south‐west Turkey. Journal of Quaternary Science, 35 (7), 935-950. doi: 10.1002/JQS.3239
  • Chala, D., Zimmermann, N. E., Brochmann, C., Bakkestuen, V. (2017). Migration corridors for alpine plants among the ‘sky islands’ of eastern Africa: do they, or did they exist?. Alpine Botany, 127 (2), 133-144. doi: 10.1007/s00035-017-0184-z
  • Çoban, H. O., Örücü, Ö. K., Arslan, E. S. (2020). MaxEnt modeling for predicting the current and future potential geographical distribution of Quercus libani Olivier. Sustainability, 12 (7), 1-17. doi: 10.3390/su12072671
  • Dagtekin, D., Şahan, E. A., Denk, T., Köse, N., Dalfes, H. N. (2020). Past, present and future distributions of Oriental beech (Fagus orientalis) under climate change projections. PLoS One, 15 (11), 1–19. doi: 10.1371/journal.pone.0242280
  • Danabasoglu, G., Bates, S. C., Briegleb, B. P., Jayne, S. R., Jochum, M., Large, W. G., Peacock, S., Yeager, S. G. (2012). The CCSM4 ocean component. Journal of Climate, 25 (5), 1361-1389. doi: 10.1175/JCLI-D-11-00091.1
  • Doğu, A. F., Somuncu, M., Çiçek, İ., Tunçel, H., Gürgen, G. (1993). Kaçkar Dağında buzul şekilleri, yaylalar ve turizm. Türkiye Coğrafyası Ar. ve Uy. Mer. Der. 2, 157–84.
  • Dufresne, J. L., Foujols, M. A., Denvil, S., Caubel, A., Marti, O., Aumont, O., Balkanski, Y., Bekki, S., Bellenger, H., Benshila, R., Bony, S., Bopp, L., Braconnot, P., Brockmann, P., Cadule, P., Cheruy, F., Codron, F., Cozic, A., Cugnet, D., de Noblet, N., Duvel, J. P., Ethé, C., Fairhead, L., Fichefet, T., Flavoni, S., Friedlingstein, P., Grandpeix, J. Y., Guez, L., Guilyardi, E., Hauglustaine, D., Hourdin, F., Idelkadi, A., Ghattas, J., Joussaume, S., Kageyama, M., Krinner, G., Labetoulle, S., Lahellec, A., Lefebvre, M. P., Lefevre, F., Levy, C., Li, Z. X., Lloyd, J., Lott, F., Madec, G., Mancip, M., Marchand, M., Masson, S., Meurdesoif, Y., Mignot, J., Musat, I., Parouty, S., Polcher, J., Rio, C., Schulz, M., Swingedouw, D., Szopa, S., Talandier, C., Terray, P., Viovy, N., Vuichard, N. (2013). Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5. Climate Dynamics, 40, 2123-2165. doi: 10.1007/s00382-012-1636-1
  • Dury, M., Doutreloup, S., Hardy, O., Fayolle, A., Fettweis, X., Hambuckers, A., Gallée, H., François, L. (2017). Modelling past and present distributions of tropical African biomes and species using a dynamic vegetation model. İçinde: European Conference of Tropical Ecology. Brussels, Belgium. https://hdl.handle.net/2268/227208 adresinden alınmıştır.
  • Ekström, M., Grose, M. R., Whetton, P. H. (2015). An appraisal of downscaling methods used in climate change research. Wiley Interdisciplinary Reviews: Climate Change, 6 (3), 301-319. doi: 10.1002/wcc.339
  • Erinç, S. (1945). Doğu Karadeniz Dağlarında Glasyal Morfoloji Araştırmaları. İst. Üniv. Ed. Fak. Coğ. Enst. Doktora Tezi, Seri No:1, İstanbul.
  • Fathinia, B., Rödder, D., Rastegar-Pouyani, N., Rastegar-Pouyani, E., Hosseinzadeh, M. S., Kazemi, S. M. (2020). The past, current and future habitat range of the Spider-tailed Viper, Pseudocerastes urarachnoides (Serpentes: Viperidae) in western Iran and eastern Iraq as revealed by habitat modelling. Zoology in the Middle East, 66 (3), 197-205. doi: 10.1080/09397140.2020.1757910
  • Fick, S. E., Hijmans, R. J. (2017). WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37 (12), 4302-4315. doi: 10.1002/joc.5086
  • Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S. C., Collins, W., Cox, P., Driouech, F., Emori, S., Eyring, V., Forest, C., Gleckler, P., Guilyardi, E., Jakob, C., Kattsov, V., Reason, C., Rummukainen, M. (2013). Evaluation of climate models. In: Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M. (ed.). Climate Change 2013 the Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. C. 9781107057, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 741–866.
  • Fritz, S. C., Baker, P. A., Lowenstein, T. K., Seltzer, G. O., Rigsby, C. A., Dwyer, G. S., Tapia, P.M., Arnold, K.K, Ku, T.L., Luo, S. (2004). Hydrologic variation during the last 170,000 years in the southern hemisphere tropics of South America. Quaternary Research, 61(1), 95-104. doi: 10.1016/J.YQRES.2003.08.007
  • Gent, P. R., Danabasoglu, G., Donner, L. J., Holland, M. M., Hunke, E. C., Jayne, S. R., Lawrence, D.M., Neale, R.B., Rasch, P.J., Vertenstein, M., Worley, P.H., Yang, Z.L., Zhang, M. (2011). The community climate system model version 4. Journal of climate, 24 (19), 4973-4991. doi: 10.1175/2011JCLI4083.1
  • Giorgetta, M.A., Jungclaus, J., Reick, C.H., Legutke, S., Bader, J., Böttinger, M., Brovkin, V., Crueger, T., Esch, M., Fieg, K., Glushak, K., Gayler, V., Haak, H., Hollweg, H.D., Ilyina, T., Kinne, S., Kornblueh, L., Matei, D., Mauritsen, T., Mikolajewicz, U., Mueller, W., Notz, D., Pithan, F., Raddatz, T., Rast, S., Redler, R., Roeckner, E., Schmidt, H., Schnur, R., Segschneider, J., Six, K.D., Stockhause, M., Timmreck, C., Wegner, J., Widmann, H., Wieners, K.H., Claussen, M., Marotzke, J., Stevens., B. (2013). Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. Journal of Advances in Modeling Earth Systems 5 (3), 572–97. doi: 10.1002/JAME.20038.
  • Goldsmith, Y., Polissar, P. J., Ayalon, A., Bar-Matthews, M., DeMenocal, P. B., Broecker, W. S. (2017). The modern and Last Glacial Maximum hydrological cycles of the Eastern Mediterranean and the Levant from a water isotope perspective. Earth and Planetary Science Letters, 457, 302-312. doi: 10.1016/J.EPSL.2016.10.017
  • Gowan, E. J., Zhang, X., Khosravi, S., Rovere, A., Stocchi, P., Hughes, A. L., Gyllencreutz, R., Mangerud, J., Svendsen, J.I., Lohmann, G. (2021). A new global ice sheet reconstruction for the past 80 000 years. Nature Communications, 12 (1), 1–9. doi: 10.1038/s41467-021-21469-w
  • Gül, S., Kumlutaş, Y., Ilgaz, Ç. (2015). Climatic preferences and distribution of 6 evolutionary lineages of Typhlops vermicularis Merrem, 1820 in Turkey using ecological niche modeling. Turkish Journal of Zoology, 39 (2), 235-243. doi: 10.3906/zoo-1311-9
  • Gür, H. (2013). The effects of the Late Quaternary glacial–interglacial cycles on Anatolian ground squirrels: range expansion during the glacial periods?. Biological Journal of the Linnean Society, 109 (1), 19-32. doi: 10.1111/bij.12026
  • Gür, H. (2017). Geç Kuvaterner buzul buzullararası döngülerinin Anadolu’nun biyolojik çeşitliliği üzerine etkileri. Türkiye Jeoloji Bülteni, 60 (4), 507-528. doi: 10.25288/tjb.363813 Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology: A Journal of the Royal Meteorological Society, 25 (15), 1965-1978. doi: 10.1002/joc.1276
  • Hoffman, F., Fung, I., Randerson, J., Thornton, P., Foley, J., Covey, C., John, J., Levis, S., Post, W.M., Vertenstein, M., Stöckli, R., Running, S., Heinsch, F.A., Erickson, D., Drake, J. (2006). Terrestrial biogeochemistry in the community climate system model (CCSM). Journal of Physics: Conference Series, 46 (1), 363–69. doi: 10.1088/1742-6596/46/1/051
  • Holdridge, L. R. (1947). Determination of world plant formations from simple climatic data. Science, 105 (2727), 367–68. doi: 10.1126/science.105.2727.367
  • Holdridge, L. R., Joseph, A.T. (1967). Life Zone Ecology with Photographic Supplement Prepared. Costa Rica.
  • Hopcroft, P. O., Valdes, P. J. (2015). How well do simulated last glacial maximum tropical temperatures constrain equilibrium climate sensitivity?. Geophysical Research Letters, 42 (13), 5533-5539. doi: 10.1002/2015GL064903
  • Hourdin, F., Foujols, M. A., Codron, F., Guemas, V., Dufresne, J. L., Bony, S., Denvil, S., Guez, L., Lott, F., Ghattas, J., Braconnot, P., Marti, O., Meurdesoif, Y., Bopp, L. (2013). Impact of the LMDZ atmospheric grid configuration on the climate and sensitivity of the IPSL-CM5A coupled model. Climate Dynamics, 40 (9-10), 2167-2192. doi: 10.1007/s00382-012-1411-3
  • Ju, L., Wang, H., Jiang, D. (2007). Simulation of the Last Glacial Maximum climate over East Asia with a regional climate model nested in a general circulation model. Palaeogeography, Palaeoclimatology, Palaeoecology, 248 (3-4), 376-390. doi: 10.1016/J.PALAEO.2006.12.012
  • Jungclaus, J. H., Fischer, N., Haak, H., Lohmann, K., Marotzke, J., Matei, D., Mikolajewicz, U., Notz, D., Von Storch, J. S. (2013). Characteristics of the ocean simulations in the Max Planck Institute Ocean Model (MPIOM) the ocean component of the MPI‐Earth system model. Journal of Advances in Modeling Earth Systems, 5 (2), 422-446. doi: 10.1002/jame.20023
  • Jungclaus, J. H., Lorenz, S. J., Timmreck, C., Reick, C. H., Brovkin, V., Six, K., Segschneider, J., Giorgetta, M.A., Crowley, T.J., Pongratz, J., Krivova, N.A., Vieira, L.E., Solanki, S.K., Klocke, D., Botzel, M., Esch, M., Gayler, V., Haak, H., Raddatz, T.J., Roeckner, E., Schnur, R., Widdmann, H., Claussenn, M., Stevens, B., Marotzke, J. (2010). Climate and carbon-cycle variability over the last millennium. Climate of the Past, 6 (5), 723-737. doi: 10.5194/cp-6-723-2010
  • Kamworapan, S., Surussavadee, C. (2019). Evaluation of CMIP5 global climate models for simulating climatological temperature and precipitation for Southeast Asia. Advances in Meteorology, 1-18. doi: 10.1155/2019/1067365
  • Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., Zimmermann, N.E., Linder, H.P., Kessler, M. (2017). Climatologies at high resolution for the earth’s land surface areas. Scientific Data, 4 (1), 1-20. doi: 10.1038/sdata.2017.122
  • Kawai, H., Koshiro, T., Webb, M., Yukimoto, S., Tanaka, T. (2015). Cloud feedbacks in MRI-CGCM3. CAS/JSC WGNE Research Activities in Atmospheric and Oceanic Modelling/WMO, 45, 7-11.
  • Khon, V., Wang, Y., Schneider, B. (2014). Variations of the tropical hydrological cycle during the last glacial-interglacial period: a model-data intercomparison. In EGU General Assembly Conference Abstracts, 16,1538
  • Kilic, O. M., Gunal, H. (2021). Spatial-temporal changes in rainfall erosivity in Turkey using CMIP5 global climate change scenario. Arabian Journal of Geosciences, 14 (12). doi: 10.1007/s12517-021-07184-2
  • Koç, D. E., Biltekin, D., Ustaoğlu, B. (2021). Modelling potential distribution of Carpinus betulus in Anatolia and its surroundings from the Last Glacial Maximum to the future. Arabian Journal of Geosciences, 14 (12). doi: 10.1007/s12517-021-07444-1
  • Koç, D. E., Dalfes, H. N., Avcı, M. (2022). Anadolu’da Konifer Ağaçların Yayılış Alanlarındaki Değişimler. Coğrafya Dergisi, Journal of Geograph (44), 81-95. doi: 10.26650/JGEOG2022-974433
  • Koc, D. E., Svenning, J. C., Avcı, M. (2018). Climate change impacts on the potential distribution of Taxus baccata L. in the Eastern Mediterranean and the Bolkar Mountains (Turkey) from last glacial maximum to the future. Eurasian Journal of Forest Science, 6 (3), 69-82. doi: 10.31195/ejejfs.435962
  • Kohn, M. J., McKay, M. P. (2012). Paleoecology of late Pleistocene–Holocene faunas of eastern and central Wyoming, USA, with implications for LGM climate models. Palaeogeography, Palaeoclimatology, Palaeoecology, 326, 42-53. doi: 10.1016/J.PALAEO.2012.01.037
  • Koo, K. A., Park, S. U., Kong, W. S., Hong, S., Jang, I., Seo, C. (2017). Potential climate change effects on tree distributions in the Korean Peninsula: Understanding model & climate uncertainties. Ecological Modelling, 353, 17-27. doi: 10.1016/j.ecolmodel.2016.10.007
  • Lawrence, D. M., Oleson, K. W., Flanner, M. G., Fletcher, C. G., Lawrence, P. J., Levis, S., Swenson, S.C., Bonan, G. B. (2012). The CCSM4 land simulation, 1850–2005: Assessment of surface climate and new capabilities. Journal of Climate, 25 (7), 2240-2260. doi: 10.1175/JCLI-D-11-00103.1
  • Leemans, R. (1990). Possible changes in natural vegetation due to a global warming. Global data sets collected and compiled by the Biosphere Project. C. Working Pa., Laxenburg, Austria: IIASA.
  • Li, C., Battisti, D. S. (2008). Reduced Atlantic storminess during Last Glacial Maximum: Evidence from a coupled climate model. Journal of Climate, 21 (14), 3561-3579. doi: 10.1175/2007JCLI2166.1
  • Li, Y., Morrill, C. (2013). Lake levels in Asia at the Last Glacial Maximum as indicators of hydrologic sensitivity to greenhouse gas concentrations. Quaternary Science Reviews, 60, 1-12. doi: 10.1016/J.QUASCIREV.2012.10.045
  • Lionello, P., D'Agostino, R. (2019). Consensus and disagreement among models on Mediterranean climate changes from the last glacial maximum to future high emission scenarios. In Geophysical Research Abstracts, 21.
  • Liu, W., Lu, J., Leung, L. R., Xie, S. P., Liu, Z., Zhu, J. (2015). The de-correlation of westerly winds and westerly-wind stress over the Southern Ocean during the Last Glacial Maximum. Climate Dynamics, 45 (11–12), 3157–3168. doi: 10.1007/s00382-015-2530-4
  • Lofverstrom, M. (2020). A dynamic link between high-intensity precipitation events in southwestern North America and Europe at the Last Glacial Maximum. Earth and Planetary Science Letters, 534, 116081. doi: 10.1016/j.epsl.2020.116081
  • Louis, H. (1944). Die Spuren eiszeitlicher Vergletscherung in Anatolien. Geologische Rundschau, 34 (7-8), 447-481. doi: 10.1007/BF01803099
  • Messerli, B. (1967). Die eiszeitliche und die gegenwärtige Vergletscherung im Mittelmeerraum. Geographica Helvetica, 22 (3), 105-228. doi: 10.5194/gh-22-105-1967 NE. (2021). Natural Earth. 13 Aralık 2022 tarihinde https://www.naturalearthdata.com/downloads/ adresinden alınmıştır.
  • Oerlemans, J. (1998). Modelling glacier fluctuations. In Into the Second Century of Worldwide Glacier Monitoring: Prospects and Strategies. 85–96.
  • Oster, J. L., Ibarra, D. E., Winnick, M. J., Maher, K. (2015). Steering of westerly storms over western North America at the Last Glacial Maximum. Nature Geoscience, 8 (3), 201-205. doi: 10.1038/ngeo2365
  • Oueslati, B., Bellon, G. (2013). Convective entrainment and large-scale organization of tropical precipitation: Sensitivity of the CNRM-CM5 hierarchy of models. Journal of Climate, 26 (9), 2931-2946. doi: 10.1175/JCLI-D-12-00314.1
  • Palmer, T. (2014). Climate forecasting: Build high-resolution global climate models. Nature, 515(7527), 338-339. doi: 10.1038/515338a
  • Pederson, G. T., Fagre, D. B., Gray, S. T., Graumlich, L. J. (2004). Decadal‐scale climate drivers for glacial dynamics in Glacier National Park, Montana, USA. Geophysical Research Letters, 31 (12). doi: 10.1029/2004GL019770
  • Pellitero, R., Rea, B. R., Spagnolo, M., Bakke, J., Hughes, P., Ivy-Ochs, S., Lukas, S., Ribolini, A. (2015). A GIS tool for automatic calculation of glacier equilibrium-line altitudes. Computers & Geosciences, 82, 55-62. doi: 10.1016/J.CAGEO.2015.05.005
  • Pellitero, R., Rea, B. R., Spagnolo, M., Bakke, J., Ivy-Ochs, S., Frew, C. R., Hughes, P., Ribolini, A., Lukas, S., Renssen, H. (2016). GlaRe, a GIS tool to reconstruct the 3D surface of palaeoglaciers. Computers & Geosciences, 94, 77-85. doi: 10.1016/j.cageo.2016.06.008
  • Peng, G., Matthews, J. L., Wang, M., Vose, R., Sun, L. (2020). What do global climate models tell us about future Arctic sea ice coverage changes? Climate, 8 (1). doi: 10.3390/cli8010015
  • Prentice, I. C., Guiot, J., Harrison, S. P. (1992). Mediterranean vegetation, lake levels and palaeoclimate at the Last Glacial Maximum. Nature, 360(6405), 658-660. doi: 10.1038/360658a0
  • Reber, R., Akçar, N., Tikhomirov, D., Yesilyurt, S., Vockenhuber, C., Yavuz, V., Ivy-Ochs, S., Schlüchter, C. (2022). LGM glaciations in the northeastern anatolian mountains: new insights. Geosciences, 12 (7). doi: 10.3390/geosciences12070257
  • Reber, R., Akçar, N., Yesilyurt, S., Yavuz, V., Tikhomirov, D., Kubik, P. W., Schlüchter, C. (2014). Glacier advances in northeastern Turkey before and during the global Last Glacial Maximum. Quaternary Science Reviews, 101, 177-192. doi: 10.1016/j.quascirev.2014.07.014
  • Reick, C. H., Raddatz, T., Brovkin, V., Gayler, V. (2013). Representation of natural and anthropogenic land cover change in MPI‐ESM. Journal of Advances in Modeling Earth Systems, 5(3), 459-482. doi: 10.1002/jame.20022
  • Sarıkaya, M. A., Çiner, A., Haybat, H., Zreda, M. (2014). An early advance of glaciers on Mount Akdağ, SW Turkey, before the global Last Glacial Maximum; insights from cosmogenic nuclides and glacier modeling. Quaternary Science Reviews, 88, 96-109. doi: 10.1016/j.quascirev.2014.01.016
  • Sarıkaya, M. A., Çiner, A., Yıldırım, C. (2017). Cosmogenic 36Cl glacial chronologies of the Late Quaternary glaciers on Mount Geyikdağ in the Eastern Mediterranean. Quaternary Geochronology, 39, 189-204. doi: 10.1016/j.quageo.2017.03.003
  • Sarikaya, O., Karaceylan, I. B., Sen, I. (2018). Maximum entropy modeling (maxent) of current and future distributions of Ips mannsfeldi (Wachtl, 1879) (Curculionidae: Scolytinae) in Turkey. Applied Ecology and Environmental Research, 16 (3), 2527–2535. doi: 10.15666/aeer/1603_25272535
  • Schär, C., Fuhrer, O., Arteaga, A., Ban, N., Charpilloz, C., Di Girolamo, S., Hentgen, L., Hoefler, T., Lapillonne, X., Leutwyler, D., Osterried, K., Panosetti, D., Rüdisühli, S., Schlemmer, L., Schulthess, T. C., Sprenger, M., Ubbiali, S., Wernli, H. (2020). Kilometer-scale climate models: Prospects and challenges. Bulletin of the American Meteorological Society, 101 (5), 567-587. doi: 10.1175/BAMS-D-18-0167.1
  • Schmidli, J., Frei, C., Vidale, P. L. (2006). Downscaling from GCM precipitation: a benchmark for dynamical and statistical downscaling methods. International Journal of Climatology: A Journal of the Royal Meteorological Society, 26 (5), 679-689. doi: 10.1002/joc.1287
  • Sun, Y., Zhou, T., Ramstein, G., Contoux, C., Zhang, Z. (2016). Drivers and mechanisms for enhanced summer monsoon precipitation over East Asia during the mid-Pliocene in the IPSL-CM5A. Climate Dynamics, 46 (5-6), 1437-1457. doi: 10.1007/s00382-015-2656-4
  • Tarıkahya-Hacıoğlu, B., Karacaoğlu, Ç., Özüdoğru, B. (2014). The speciation history and systematics of Carthamus (Asteraceae) with special emphasis on Turkish species by integrating phylogenetic and Ecological Niche Modelling data. Plant systematics and evolution, 300 (6), 1349-1359. doi: 10.1007/s00606-013-0966-8
  • Tatli, H., Dalfes, H.N., Menteş, Ş.S. (2004). A statistical downscaling method for monthly total precipitation over Turkey. International Journal of Climatology: A Journal of the Royal Meteorological Society, 24 (2), 161-180. doi: 10.1002/joc.997
  • Tatlı, H. (2017). Classification of the Köppen and Holdridge life zones with respect to the climate scenarios-Rcp4. 5 over Turkey. In 8th Atmospheric Sciences Symposium-01-04 November 2017, 651-657.
  • Tekin, M. K., Tatlı, H., Koç, T. (2018). Türkiye’deki yaşam-bölgelerinin Holdridge yaşam-zon yöntemi ile belirlenmesi. TÜCAUM 30. Yıl Uluslararası Coğrafya Sempozyumu, 30, 713-722.
  • Thorp, P. W. (1981). A trimline method for defining the upper limit of Loch Lomond Advance glaciers: examples from the Loch Leven and Glen Coe areas. Scottish Journal of Geology, 17 (1), 49-64. doi: 10.1144/sjg17010049
  • Tierney, J. E., Zhu, J., King, J., Malevich, S. B., Hakim, G. J., Poulsen, C. J. (2020). Glacial cooling and climate sensitivity revisited. Nature, 584 (7822), 569-573. doi: 10.1038/s41586-020-2617-x
  • Tonbul, S. (1997). Bi̇ngöl Dağında buzul şeki̇lleri̇. Türkiye Coğrafyası Ar. ve Uy. Mer. Der., 6, 347–374.
  • Ülker, E. D., Tavşanoğlu, Ç., Perktaş, U. (2018). Ecological niche modelling of pedunculate oak (Quercus robur) supports the ‘expansion–contraction’model of Pleistocene biogeography. Biological Journal of the Linnean Society, 123 (2), 338-347. doi: 10.1093/biolinnean/blx154
  • Vaissi, S. (2021). Potential changes in the distributions of Near Eastern fire salamander (Salamandra infraimmaculata) in response to historical, recent and future climate change in the Near and Middle East: Implication for conservation and management. Global Ecology and Conservation, 29, e01730. doi: 10.1016/j.gecco.2021.e01730
  • Voldoire, A., Sanchez-Gomez, E., Salas y Mélia, D., Decharme, B., Cassou, C., Sénési, S., Valcke, S., Beau, I., Alias, A., Chevallier, M., Deque, M., Deshayes, J., Douville, H., Fernandez, E., Madec, G., Maisonnave, E., Moine, M.P., Planton, S., Saint-Martin, D., Szopa, S., Tyteca, S., Alkama, R., Belamari, S., Braun, A., Coquart, L., Chauvin, F. (2013). The CNRM-CM5. 1 global climate model: description and basic evaluation. Climate Dynamics, 40 (9-10), 2091-2121. doi: 10.1007/s00382-011-1259-y
  • Wang, B., Liu, M., Yu, Y., Li, L., Lin, P., Dong, L., Liu, L., Liu, J., Huang, W., Xu, S., Shen, S., Pu, Y., Xue, W., Xia, K., Wang, Y., Sun, W., Hu, N., Huang, X., Liu, H., Zheng, W., Wu, B., Zhou, T., Yang, G. (2013). Preliminary evaluations of FGOALS-g2 for decadal predictions. Advances in Atmospheric Sciences, 30 (3), 674-683. doi: 10.1007/s00376-012-2084-x
  • Watanabe, S., Hajima, T., Sudo, K., Nagashima, T., Takemura, T., Okajima, H., Nozawa, T., Kawase, H., Abe, M., Yokohata, T., Ise, T., Sato, H., Kato, E., Takata, K., Emori, S., Kawamiya, M. (2011). MIROC-ESM 2010: Model description and basic results of CMIP5-20c3m experiments. Geoscientific Model Development, 4 (4), 845-872. doi: 10.5194/gmd-4-845-2011
  • Winkelmann, R., Martin, M. A., Haseloff, M., Albrecht, T., Bueler, E., Khroulev, C.,Levermann, A. (2011). The Potsdam parallel ice sheet model (PISM-PIK)–Part 1: Model description. The Cryosphere, 5 (3), 715-726. doi: 10.5194/tc-5-715-2011
  • Yeşilyurt, S. (2017). Kavuşşahap Dağları’nda ( Van ) Geç Kuvaterner Buzullaşması: Bölgesel Paleoiklim Açısından Değerlendirme. Ankara Üniversitesi, Sosyal Bilimler Enstitüsü (Yayımlanmamış Doktora Tezi).
  • Yılmaz, E. (2021a). Yüksek çözünürlüklü CCSM4 model verilerine göre Son Buzul Maksimumunda (SBM) Türkiye’nin Holdridge Ekolojik Bölgeleri ve günümüz iklim şartlarıyla karşılaştırılması. Coğrafi Bilimler Dergisi, 19(2), 331–67. doi: 10.33688/aucbd.880675
  • Yılmaz, E. (2021b). Yüksek çözünürlüklü ERA-Interim ve HadGEM2-CC model verilerine göre Türkiye’nin güncel ve gelecekteki Holdridge ekolojik bölgeleri. Coğrafi Bilimler Dergisi, 19(1), 29–60. doi: 10.33688/aucbd.778259
  • Yukimoto, S., Adachi, Y., Hosaka, M., Sakami, T., Yoshimura, H., Hirabara, M., Tanaka, T.Y., Shindo, E., Tsujino, H., Deushi, M., Mizuta, R., Yabu, S., Obata, A., Nakano, H., Koshiro, T., Ose, T., Kitoh, A. (2012). A new global climate model of the Meteorological Research Institute: MRI-CGCM3: -Model description and basic performance-. Journal of the Meteorological Society of Japan, 90(A), 23–64. doi: 10.2151/jmsj.2012-A02
  • Zheng, W., Yu, Y. (2013). Paleoclimate simulations of the mid-Holocene and Last Glacial Maximum by FGOALS. Advances in Atmospheric Sciences, 30 (3), 684-698. doi: 10.1007/s00376-012-2177-6
  • Zhou, T., Song, F., Chen, X. (2013). Historical evolution of global and regional surface air temperature simulated by FGOALS-s2 and FGOALS-g2: How reliable are the model results?. Advances in Atmospheric Sciences, 30(3), 638-657. doi: 10.1007/s00376-013-2205-1
  • Zhou, T., Wang, B., Yu, Y., Liu, Y., Zheng, W., Li, L., Wu, B., Lin, P., Guo, Z., Man, W., Bao, Q., Duan, A., Liu, H., Chen, X., He, B., Li, J., Zou, L., Wang, X., Zhang, L., Sun, Y., Zhang, W. (2018). The FGOALS climate system model as a modeling tool for supporting climate sciences: An overview. Earth and Planetary Physics, 2 (4), 276-291. doi: 10.26464/epp2018026
Toplam 96 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Buzulbilim, Coğrafi Bilgi Sistemleri, Fiziki Coğrafya
Bölüm Araştırma Makalesi
Yazarlar

Erkan Yılmaz 0000-0002-3821-3648

Serdar Yeşilyurt 0000-0002-2896-9644

Erken Görünüm Tarihi 13 Eylül 2023
Yayımlanma Tarihi 30 Ekim 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Yılmaz, E., & Yeşilyurt, S. (2023). Yer Sistem Modellerinin Son Buzul Maksimumu İklim Ardgörülerinin Holdridge Biyomları ve Paleobuzul Alanları ile Değerlendirilmesi. Coğrafi Bilimler Dergisi, 21(2), 394-426. https://doi.org/10.33688/aucbd.1290590