Derleme
BibTex RIS Kaynak Göster

İşletme Kümelerinin Belirlenmesinde Yararlanılan Yöntemlere İlişkin Bir Literatür İncelemesi

Yıl 2023, Cilt: 21 Sayı: 1, 153 - 170, 30.04.2023
https://doi.org/10.33688/aucbd.1150602

Öz

Bu çalışmanın amacı, işletme kümelerini belirlemek için kullanılan yöntemlere ilişkin bir literatür incelemesi sunmak ve yöntemlerin ürettiği enformasyonu ve kısıtlarını kümelerin kavramsal nitelikleri kapsamında değerlendirmektir. Literatürde yer alan tüm yöntemlerin kendilerine özgü sınırlılıklara sahip olduğu görülmektedir. Bununla birlikte karma yaklaşımların, nicel yöntemlerden yararlanan yukarıdan aşağı yaklaşımlar ve nitel yöntemlerden yararlanan aşağıdan yukarı yaklaşımların tek başına benimsenmesinin neden olduğu sınırlılıkları ortadan kaldırabildiği görülmektedir. Kümelerin en temel niteliği olan etkileşim/bağlantısallık düzeyinin tespit edilmesinde ise sosyal ağ analizinden yararlanılabilir. İşletme kümelerinin ekonomik sistemler içinde belirlenebilmesi kümelere özgü politika önerilerinin geliştirilebilmesi için önem taşımaktadır.

Destekleyen Kurum

Anadolu Üniversitesi

Proje Numarası

1408E367

Teşekkür

Çalışma, 03/09/2020-05/09/2020 tarihleri arasında gerçekleştirilen 28. Ulusal Yönetim ve Organizasyon Kongresinde sunulmuştur. Görüş ve önerileri ile çalışmanın geliştirilmesine katkıda bulunan kongre katılımcılarına teşekkür ederim.

Kaynakça

  • Ache, P. (2000). Cities in old industrial regions between local innovative milieu and urban governance reflections on city region governance. European Planning Studies, 8 (6), 693-709. doi:10.1080/713666434
  • Akgüngör, S., Kumral, N., Lenger, A. (2003). National industry clusters and regional specializations in Turkey. European Planning Studies, 11 (6), 647-669. doi.10.1080/0965431032000108378
  • Akgüngör, S. (2004). Industry clusters in Turkey: Identifying regional highpoints. Yapı Kredi Economic Review, 15 (2), 69-90.
  • Alcacer, J., Zhao, M. (2013). Zooming in: A practical manual for identifying geographic clusters. Harward Business School Working Paper, 1-28. doi:10.1002/smj.2451
  • Asheim, B.T. (2000). Industrial districts: The contributions of Marshall and beyond. In: Clark, G. L., Gertler, M. S., Feldman, M. P. (Eds.), The Oxford handbook of economic geography (pp. 413-431). Oxford University Press.
  • Asheim, B., Gertler, M. (2006). The geography of innovation: Regional innovation systems. In J. Fagerberg, D. Mowery, R. Nelson (Eds.), The Oxford Handbook of Innovation (pp. 291–317). Oxford: Oxford University Press.
  • Barabasi, A. (2010). İş Hayatında, Bilimde ve Günlük Yaşamda Bağlantılar. (Çev. N. Elhüseyni). İstanbul: Optimist Yayınları.
  • Barkley, D., Kim, Y., Henry, M. (2001). Do manufacturing plants cluster across rural areas? Evidence from a probabilistic modeling approach. REDRL Research Report 10-2001-01. Regional Economic Development Research Laboratory Clemson University, Clemson, South Carolina.
  • Bathelt, H., Malmberg, A., Maskell, P. (2004). Clusters and knowledge: Local buzz, global pipelines and the process of knowledge creation. Progress in Human Geography, 28 (1), 31–56. doi:10.1191/0309132504ph469oa
  • Becattini, G. (1990). The Marshallian industrial district as a socio-economic notion. In: F. Pyke, G. Becattini and W. Sengenberger (Eds.), Industrial Districts and Inter-Firm Cooperation In Italy (pp. 37–51). Geneva: International Institute for Labour Studies.
  • Bell, G. (2005). Clusters, networks, and firm innovativeness. Strategic Management Journal, 26, 287–295. doi:10.1002/smj.448
  • Bell, G., Zaheer, A. (2007). Geography, networks and knowledge flow. Organization Science, 18 (6), 955–972. doi:10.1287/orsc.1070.0308
  • Benita, F., Sarica, S., Bansal G. (2020). Testing the static and dynamic performance of statistical methods for detection of national industrial clusters. Pap Reg Sci., 99, 1137–1157. doi:10.1007/s41685-022-00272-5
  • Bergman, E.M., Feser, E. J. (1999). Industry clusters: A methodology and framework for regional development policy in the United States. In: Boosting Innovation: The Cluster Approach. Oecd Proceedings (pp 243-268).
  • Bergman, E. M., Feser, E. J. (2020). Industrial and regional clusters: concepts and comparative applications. Reprint. Edited by Scott Loveridge and Randall Jackson. WVU Research Repository.
  • Boschma, R., Wall, A. (2005). Knowledge networks and innovative performance in an industrial district: The case of a footwear district in the south of Italy. Papers in Evolutionary Economic Geography. Utrecht University.
  • Brachert, M., Titze, M., Kubis, A. (2011). Identifying industrial clusters from a multidimensional perspective: Methodical aspects with an application to Germany. Papers in Regional Science, 90 (2), 419-437. doi:10.1111/j.1435-5957.2011.00356.x
  • Bramanti, A., Ratti, R. (1997). The multi-faced dimensions of local development. In: Ratti, R., Bramanti, A., Gordon, R. L. (Eds.), The dynamics of innovative regions: The GREMI approach (pp. 3-46).
  • Brown, R. (2000). Cluster dynamics in theory and practice with application to Scotland. Regional and Industrial Policy Research Paper Number: 38. Published by: European Policies Research Centre ISBN: 1-871130-16-6.
  • Brusco, S. (1990). The idea of industrial districts: Its genesis. In: F. Pyke, G. Becattini and W. Sengenberger (Eds.), Industrial districts and inter-firm cooperation in Italy (pp. 10–20). Geneva: International Institute for Labour Studies
  • Camagni, R. (1991). Introduction: From the local 'milieu' to innovation through cooperation networks. In: Camagni, R. (ed.), Innovation networks: Spatial perspectives (pp 1-9). London: Belhaven Press.
  • Carlino, G., Kerr, W. (2105). Agglomeration and innovation. In: Duranton, G., Henderson, V. J., Strange, W. C. (Eds.), Handbook of regional and urban economics (pp 349-404).
  • Carroll, M. C., Reid, N., Bruce W., Smith, B. W. (2008). Location quotients versus spatial autocorrelation in identifying potential cluster regions. Ann Reg Sci, 42, 449–463. doi: 10.1007/s00168-007-0163-1
  • Casanueva, C., Castro, I., Galan, J. (2013). Informational networks and innovation in mature industrial clusters. Journal of Business Research, 66, 603–613. doi:10.1016/j.jbusres.2012.02.043
  • Catini, R., Karamshuk, D., Penner, O., Riccaboni, M. (2015). Identifying geographic clusters: A network analytic approach. Research Policy, 44, 1749–1762. doi:10.1016/j.respol.2015.01.011
  • Chain, C.P., Santos, A.C.d., Castro, L.G.d., Júnior, Prado, J.W.d. (2019). Bibliometric analysis of the quantitative methods applied to the measurement of industrial clusters. Journal of Economic Surveys, 33: 60-84. doi:10.1111/joes.12267
  • Cruz, C. S., Teixeira, A. C. (2010). The evolution of the cluster literature: Shedding light on the regional studies–regional science debate. Regional Studies, 44 (9), 1263-1288. doi:10.1080/00343400903234670
  • Cortright, J. (2006). Making sense of clusters: Regional competitiveness and economic development. A Discussion Paper Prepared for the The Brookings Institution Metropolitan Policy Program.
  • Creswell, J. W. (2017). Araştırma Deseni: Nitel, Nicel ve Karma Yöntem Yaklaşımları. (Çev. Ed. Demir, S. B.) Ankara: Eğiten Kitap.
  • Delgado, M., Porter, M., Stern, S. (2014). Defining clusters of related industries. NBER Working Paper Series. http://www.nber.org/papers/w20375. adresinden edinilmiştir.
  • Duranton, G., Overman, H. G., (2005). Testing for localisation using micro-geographic data. Review of Economic Studies, 72 (4), 1077–1106.doi:10.1111/0034-6527.00362
  • Egeraat, C., Morgenroth, E., Kroes, R., Curran, D., Gleeson, J. (2015). A measure for identifying substantial geographic concentrations. MPRA Paper No. 65954. Retrieved from https://mpra.ub.uni-muenchen.de/65954/1/MPRA_paper_65954.pdf
  • Ellison, G., Glaeser, E. (1997). Geographic concentration in U.S. manufacturing industries: A dartboard approach. Journal of Political Economy, 105 (5), 889-927.
  • Feser, E., Bergman, E. (2000). National industry cluster templates: A framework for applied regional cluster analysis. Regional Studies, 34 (1), 1-19. doi:10.1080/00343400050005844
  • Feser E, Sweeney S, Renski H. (2005). A descriptive analysis of discrete U.S. industrial complexes. Journal of Regional Science, 45, 395–419. doi:10.1111/j.0022-4146.2005.00376.x
  • García-Lillo, F., Claver-Cortés, E., Marco-Lajara, B., Úbeda-García, M., Seva-Larrosa, P. (2018) On clusters and industrial districts: A literature review using bibliometrics methods, 2000–2015. Papers in Regional Science, 97: 835– 861. doi:10.1111/pirs.12291
  • Gebreyesus, M., Mohnen, P. (2011). Innovation performance and embeddedness in networks: Evidence from the Ethiopian Footwear Cluster. Paper submitted for the Centre for Studies of African Economies (CSAE), Oxford University Conference on “Economic Development in Africa”, March 2022.
  • Giuliani, E. (2005). The structure of cluster knowledge networks: Uneven and selective, not pervasive and collective. Paper to be presented at the DRUID Tenth Anniversary Summer Conference 2005 on Dynamics of Industry and Innovation: Organizations, Networks and Systems.
  • Giualini, E., Pietrobelli, C. (2011). Social network analysis methodologies for the evaluation of cluster development programs. Inter-American Development Bank Capital Markets and Financial Institutions Division (ICF/CMF) Technical Notes, No. IDB-TN-317.
  • Giuliani, E. (2013). Clusters, networks and firms’ product success: An empirical study. Management Decision, 51 (6), 1135–1160.
  • Gordon, I.R., McCann, P. (2000). Industrial clusters: Complexes, agglomeration and/or social networks? Urban Studies, 37 (3), 513-532. doi:10.1080/0042098002096
  • Guo, J., Lao, X., Shen, T. (2019). Location-based method to identify industrial clusters in Beijing-Tianjin-hebei area in China. J. Urban Plann. Dev., 2019, 145 (2), 1-11.
  • Gürsakal, N. (2009). Sosyal Ağ Analizi. Bursa: Dora Yayınları.
  • He, Z., Bacchus, L. (2010). Cluster network and innovation under transitional economies an empirical study of the Shaxi garment cluster. Chinese Management Studies, 4 (4), 360-384. doi:10.1108/17506141011094145
  • Hermans, F. (2020). The contribution of statistical network models to the study of clusters and their evolution. Papers in Regional Science, 1-25. doi:10.1111/pirs.12579
  • Hervas-Oliver, J. L., Gonzalez, G., Caja, P., Sempere-Ripoll, F. (2015.) Clusters and industrial districts: Where is the literature going? identifying emerging sub-fields of research. European Planning Studies, 23 (9), 1827-1872. doi:10.1080/09654313.2015.1021300
  • Hill, E., Brennan, J. (2000). A Methodology for identifying the drivers of industrial clusters: The Foundation of regional competitive advantage. Economic Development Quarterly, 14, 65-96. doi:10.1177/089124240001400109
  • Kelton, M. L., Margaret K. Pasquale, M. K., Rebelein, R. P. (2008) Using the north american industry classification system (naics) to identify national industry cluster templates for applied regional analysis. Regional Studies, 42 (3), 305-321.
  • Krugman, P. (1991). Geography and Trade. The MIT Press.
  • Kudryavtseva, T., Skhvediani, A., Iakovleva, V., Cherkas, A. (2021). Algorithm for defining clusters based on input–output tables: Case of construction cluster of Russia. International Journal of Technology, 12 (7), 1379-1386. doi:10.14716/ijtech.v12i7.5354
  • Lechner, C., Leyronas, C. (2012). The competitive advantage of cluster firms: The priority of regional network position over extra-regional networks – a study of a French high-tech cluster. Entrepreneurship ve Regional Development, 24, 457–473. doi:10.1080/08985626.2011.617785
  • Li, W., Veliyath, R., Tan, J. (2013). Network characteristics and firm performance: An examination of the relationships in the context of a cluster. Journal of Small Business Management, 51 (1), 1-22. doi:10.1111/j.1540-627X.2012.00375.x
  • Liu, B. (2011). Web Data Mining, Data Centric Systems and Applications. Berlin: Springer Publishing.
  • Liu, Z., Chen, X., Xu, W., Chen, Y., Li, X. (2021). Detecting industry clusters from the bottom up based on co-location patterns mining: A case study in Dongguan, China. Urban Analytics and City Science, 48 (9), 2827–2841. doi:10.1177/23998083219915
  • Lösch, A. (1954). The economics of location. New Haven: Yale University Press.
  • Lu, R., Reve, T., Huang, J., Jian, Z., Chen, M. (2018). A literature review of cluster theory: Are relations among clusters important?. Journal of Economic Surveys, 32, 1201-1220. doi:10.1111/joes.12255
  • Maillat, D. (1998). From the industrial district to the innovative milieu: Contribution to an analysis of territorialised productive organisations. Discussion Papers (REL - Recherches Economiques de Louvain) 1998017, Université catholique de Louvain, Institut de Recherches Economiques et Sociales (IRES).
  • Markusen, A. (1994). Studying regions by studying firms. The Professional Geographer, 46 (4), 477-490. doi:10.1111/j.0033-0124.1994.00477.x
  • Markusen, A. (1996). Sticky places in slippery space: A typology of industrial districts. Economic Geography, 72 (3), 292–313.doi:10.2307/144402
  • Marshall, A. (1961). Principles of Economics. London: McMillan.
  • Martin, R., Sunley, P. (2002). Deconstructing clusters: Chaotic concept or policy panacea? Journal of Economic Geography, 3, 5–35. doi:10.1093/jeg/3.1.5
  • Maskell, P., Lorenzen, M. (2004). The cluster as market organization. Urban Studies, 41(5–6), 991–1009. https://www.jstor.org/stable/43198251 adresinden edinilmiştir.
  • Maskell, P., Malmberg, A. (1999). The competitiveness of firms and regions ‘ubiquitification’ and the importance of localized learning. European Urban and Regional Studies, 6 (1), 9–25. doi:10.1177/096977649900600102
  • Maurel, F., Sédillot, B. (1999). A measure of the geographic concentration in French manufacturing industries. Regional Science and Urban Economics, 29 (5), 575-604. doi:10.1016/S0166-0462(99)00020-4
  • Mccann, B., Folta, T. (2011). Performance differentials within geographic clusters. Journal of Business Venturing, 26, 104–123. doi:10.1016/j.jbusvent.2009.04.004
  • Nachum, L., Keeble, D. (2003). Neo-marshallian clusters and global networks the linkages of media firms in central London. Long Range Planning, 36, 459–480. doi:10.1016/S0024-6301(03)00114-6
  • Ord, J.K., Getis, A. (1995). Local spatial autocorrelation statistics: Distributional issues and an application. Geographical Analysis, 27 (4), 286-306. doi:10.1111/j.1538-4632.1995.tb00912.x
  • Papagiannidis, S., See-To, E., Assimakopoulos, D., Yang, Y. (2018). Identifying industrial clusters with a novel big-data methodology: Are SIC codes (not) fit for purpose in the Internet age? Computers and Operations Research, 98, 355–366. doi:10.1016/j.cor.2017.06.010
  • Paul, J., Criado, A. R. (2020). The art of writing literature review: What do we know and what do we need to know? International Business Review, 29, 1-7.doi: 10.1016/j.ibusrev.2020.101717
  • Piore, M. J., Sabel, C. F. 1984. The Second Industrial Divide: Possibilities For Prosperity. New York: Basic Books.
  • Porter, M. (1998). Clusters and new economics of competition. Harvard Business Review, November-December, 77-90.
  • Porter, M. (2000). Location, competition and economic development: Local clusters in a global economy. Economic Development Quarterly, 14 (1), 15-34. doi:10.1177/089124240001400105
  • Roelandt, T. J. A., Hertog, P. D. (1999). Cluster analysis and cluster-based policy making in OECD countries: An Introduction to the theme. In: Boosting Innovation: The Cluster Approach. OECD Prooceedings.
  • Rosenfeld, S.A. (1995). Overachievers: Business Clusters That Work. Washington.
  • Scholl, T., Brenner, T. (2016) Detecting spatial clustering using a firm-level cluster index. Regional Studies, 50 (6), 1054-1068. doi: 10.1080/00343404.2014.958456
  • Serrat O. (2017). Knowledge Solutions: Tools, Methods, and Approaches to Drive Organizational Performance. Singapore: Springer Publishing.
  • Sığrı, Ü. (2018). Nitel araştırma yöntemleri. İstanbul: Beta Yayınları.
  • Steinle, C., Schiele, H. (2002). When do industries cluster? A proposal on how to assess an industry’s propensity to concentrate at a single region or nation. Research Policy, 31, 849–858. http://www.sciencedirect.com/science/article/pii/S0048-7333(01)00151-2 adresinden edinilmiştir.
  • Stejskal, J., Hajek, P. (2012) Competitive advantage analysis: a novel method for industrial clusters identification, Journal of Business Economics and Management, 13 (2), 344-365. doi:10.3846/16111699.2011.620154
  • Stek, E. P. (2021). Identifying spatial technology clusters from patenting concentrations using heat map kernel density estimation. Scientometrics, 126, 911–930. doi: 10.1007/s11192-020-03751-8
  • Storper, M. (1997). The Regional World: Territorial Development in a Global Economy. New York.
  • Taplin, I. (2011). Network structure and knowledge transfer in cluster evolution: The transformation of the Napa Valley wine region. International Journal of Organizational Analysis, 19 (2), 127–145. doi: 10.1108/19348831111135074
  • Titze, M., Brachert, M., Kubis, A. (2011). The identification of regional industrial clusters using qualitative input–output analysis (QIOA), Regional Studies, 45 (1), 89-102. doi:10.1080/00343400903234688
  • Van Den Berg, L., Braun, E., Winden, W. (2001). Growth clusters in European cities: An integral approach. Urban Studies, 38 (1), 185–205. doi:10.1080/00420980124001
  • Wasserman, S., Faust, K. (1994). Social Network Analysis. Cambridge University Press.
  • Weber, A. (1929). Theory of Location of Industries. University of Chicago Press, Chicago, IL.

A Literature Review on Methods Used For Determining Business Clusters

Yıl 2023, Cilt: 21 Sayı: 1, 153 - 170, 30.04.2023
https://doi.org/10.33688/aucbd.1150602

Öz

The aim of this paper is to present a literature review on the methods used to identify business clusters and to evaluate the information and constraints produced by the methods within the scope of the conceptual characteristics of the clusters. All methods have their own limitations. However, mixed approaches can eliminate the limitations caused by adopting top-down approaches using quantitative methods and bottom-up approaches using qualitative methods alone. Social network analysis can be used to determine the level of interaction/connectivity, which is the most basic feature of clusters. Identifying business clusters within economic systems is important for developing cluster-specific policy recommendations.

Proje Numarası

1408E367

Kaynakça

  • Ache, P. (2000). Cities in old industrial regions between local innovative milieu and urban governance reflections on city region governance. European Planning Studies, 8 (6), 693-709. doi:10.1080/713666434
  • Akgüngör, S., Kumral, N., Lenger, A. (2003). National industry clusters and regional specializations in Turkey. European Planning Studies, 11 (6), 647-669. doi.10.1080/0965431032000108378
  • Akgüngör, S. (2004). Industry clusters in Turkey: Identifying regional highpoints. Yapı Kredi Economic Review, 15 (2), 69-90.
  • Alcacer, J., Zhao, M. (2013). Zooming in: A practical manual for identifying geographic clusters. Harward Business School Working Paper, 1-28. doi:10.1002/smj.2451
  • Asheim, B.T. (2000). Industrial districts: The contributions of Marshall and beyond. In: Clark, G. L., Gertler, M. S., Feldman, M. P. (Eds.), The Oxford handbook of economic geography (pp. 413-431). Oxford University Press.
  • Asheim, B., Gertler, M. (2006). The geography of innovation: Regional innovation systems. In J. Fagerberg, D. Mowery, R. Nelson (Eds.), The Oxford Handbook of Innovation (pp. 291–317). Oxford: Oxford University Press.
  • Barabasi, A. (2010). İş Hayatında, Bilimde ve Günlük Yaşamda Bağlantılar. (Çev. N. Elhüseyni). İstanbul: Optimist Yayınları.
  • Barkley, D., Kim, Y., Henry, M. (2001). Do manufacturing plants cluster across rural areas? Evidence from a probabilistic modeling approach. REDRL Research Report 10-2001-01. Regional Economic Development Research Laboratory Clemson University, Clemson, South Carolina.
  • Bathelt, H., Malmberg, A., Maskell, P. (2004). Clusters and knowledge: Local buzz, global pipelines and the process of knowledge creation. Progress in Human Geography, 28 (1), 31–56. doi:10.1191/0309132504ph469oa
  • Becattini, G. (1990). The Marshallian industrial district as a socio-economic notion. In: F. Pyke, G. Becattini and W. Sengenberger (Eds.), Industrial Districts and Inter-Firm Cooperation In Italy (pp. 37–51). Geneva: International Institute for Labour Studies.
  • Bell, G. (2005). Clusters, networks, and firm innovativeness. Strategic Management Journal, 26, 287–295. doi:10.1002/smj.448
  • Bell, G., Zaheer, A. (2007). Geography, networks and knowledge flow. Organization Science, 18 (6), 955–972. doi:10.1287/orsc.1070.0308
  • Benita, F., Sarica, S., Bansal G. (2020). Testing the static and dynamic performance of statistical methods for detection of national industrial clusters. Pap Reg Sci., 99, 1137–1157. doi:10.1007/s41685-022-00272-5
  • Bergman, E.M., Feser, E. J. (1999). Industry clusters: A methodology and framework for regional development policy in the United States. In: Boosting Innovation: The Cluster Approach. Oecd Proceedings (pp 243-268).
  • Bergman, E. M., Feser, E. J. (2020). Industrial and regional clusters: concepts and comparative applications. Reprint. Edited by Scott Loveridge and Randall Jackson. WVU Research Repository.
  • Boschma, R., Wall, A. (2005). Knowledge networks and innovative performance in an industrial district: The case of a footwear district in the south of Italy. Papers in Evolutionary Economic Geography. Utrecht University.
  • Brachert, M., Titze, M., Kubis, A. (2011). Identifying industrial clusters from a multidimensional perspective: Methodical aspects with an application to Germany. Papers in Regional Science, 90 (2), 419-437. doi:10.1111/j.1435-5957.2011.00356.x
  • Bramanti, A., Ratti, R. (1997). The multi-faced dimensions of local development. In: Ratti, R., Bramanti, A., Gordon, R. L. (Eds.), The dynamics of innovative regions: The GREMI approach (pp. 3-46).
  • Brown, R. (2000). Cluster dynamics in theory and practice with application to Scotland. Regional and Industrial Policy Research Paper Number: 38. Published by: European Policies Research Centre ISBN: 1-871130-16-6.
  • Brusco, S. (1990). The idea of industrial districts: Its genesis. In: F. Pyke, G. Becattini and W. Sengenberger (Eds.), Industrial districts and inter-firm cooperation in Italy (pp. 10–20). Geneva: International Institute for Labour Studies
  • Camagni, R. (1991). Introduction: From the local 'milieu' to innovation through cooperation networks. In: Camagni, R. (ed.), Innovation networks: Spatial perspectives (pp 1-9). London: Belhaven Press.
  • Carlino, G., Kerr, W. (2105). Agglomeration and innovation. In: Duranton, G., Henderson, V. J., Strange, W. C. (Eds.), Handbook of regional and urban economics (pp 349-404).
  • Carroll, M. C., Reid, N., Bruce W., Smith, B. W. (2008). Location quotients versus spatial autocorrelation in identifying potential cluster regions. Ann Reg Sci, 42, 449–463. doi: 10.1007/s00168-007-0163-1
  • Casanueva, C., Castro, I., Galan, J. (2013). Informational networks and innovation in mature industrial clusters. Journal of Business Research, 66, 603–613. doi:10.1016/j.jbusres.2012.02.043
  • Catini, R., Karamshuk, D., Penner, O., Riccaboni, M. (2015). Identifying geographic clusters: A network analytic approach. Research Policy, 44, 1749–1762. doi:10.1016/j.respol.2015.01.011
  • Chain, C.P., Santos, A.C.d., Castro, L.G.d., Júnior, Prado, J.W.d. (2019). Bibliometric analysis of the quantitative methods applied to the measurement of industrial clusters. Journal of Economic Surveys, 33: 60-84. doi:10.1111/joes.12267
  • Cruz, C. S., Teixeira, A. C. (2010). The evolution of the cluster literature: Shedding light on the regional studies–regional science debate. Regional Studies, 44 (9), 1263-1288. doi:10.1080/00343400903234670
  • Cortright, J. (2006). Making sense of clusters: Regional competitiveness and economic development. A Discussion Paper Prepared for the The Brookings Institution Metropolitan Policy Program.
  • Creswell, J. W. (2017). Araştırma Deseni: Nitel, Nicel ve Karma Yöntem Yaklaşımları. (Çev. Ed. Demir, S. B.) Ankara: Eğiten Kitap.
  • Delgado, M., Porter, M., Stern, S. (2014). Defining clusters of related industries. NBER Working Paper Series. http://www.nber.org/papers/w20375. adresinden edinilmiştir.
  • Duranton, G., Overman, H. G., (2005). Testing for localisation using micro-geographic data. Review of Economic Studies, 72 (4), 1077–1106.doi:10.1111/0034-6527.00362
  • Egeraat, C., Morgenroth, E., Kroes, R., Curran, D., Gleeson, J. (2015). A measure for identifying substantial geographic concentrations. MPRA Paper No. 65954. Retrieved from https://mpra.ub.uni-muenchen.de/65954/1/MPRA_paper_65954.pdf
  • Ellison, G., Glaeser, E. (1997). Geographic concentration in U.S. manufacturing industries: A dartboard approach. Journal of Political Economy, 105 (5), 889-927.
  • Feser, E., Bergman, E. (2000). National industry cluster templates: A framework for applied regional cluster analysis. Regional Studies, 34 (1), 1-19. doi:10.1080/00343400050005844
  • Feser E, Sweeney S, Renski H. (2005). A descriptive analysis of discrete U.S. industrial complexes. Journal of Regional Science, 45, 395–419. doi:10.1111/j.0022-4146.2005.00376.x
  • García-Lillo, F., Claver-Cortés, E., Marco-Lajara, B., Úbeda-García, M., Seva-Larrosa, P. (2018) On clusters and industrial districts: A literature review using bibliometrics methods, 2000–2015. Papers in Regional Science, 97: 835– 861. doi:10.1111/pirs.12291
  • Gebreyesus, M., Mohnen, P. (2011). Innovation performance and embeddedness in networks: Evidence from the Ethiopian Footwear Cluster. Paper submitted for the Centre for Studies of African Economies (CSAE), Oxford University Conference on “Economic Development in Africa”, March 2022.
  • Giuliani, E. (2005). The structure of cluster knowledge networks: Uneven and selective, not pervasive and collective. Paper to be presented at the DRUID Tenth Anniversary Summer Conference 2005 on Dynamics of Industry and Innovation: Organizations, Networks and Systems.
  • Giualini, E., Pietrobelli, C. (2011). Social network analysis methodologies for the evaluation of cluster development programs. Inter-American Development Bank Capital Markets and Financial Institutions Division (ICF/CMF) Technical Notes, No. IDB-TN-317.
  • Giuliani, E. (2013). Clusters, networks and firms’ product success: An empirical study. Management Decision, 51 (6), 1135–1160.
  • Gordon, I.R., McCann, P. (2000). Industrial clusters: Complexes, agglomeration and/or social networks? Urban Studies, 37 (3), 513-532. doi:10.1080/0042098002096
  • Guo, J., Lao, X., Shen, T. (2019). Location-based method to identify industrial clusters in Beijing-Tianjin-hebei area in China. J. Urban Plann. Dev., 2019, 145 (2), 1-11.
  • Gürsakal, N. (2009). Sosyal Ağ Analizi. Bursa: Dora Yayınları.
  • He, Z., Bacchus, L. (2010). Cluster network and innovation under transitional economies an empirical study of the Shaxi garment cluster. Chinese Management Studies, 4 (4), 360-384. doi:10.1108/17506141011094145
  • Hermans, F. (2020). The contribution of statistical network models to the study of clusters and their evolution. Papers in Regional Science, 1-25. doi:10.1111/pirs.12579
  • Hervas-Oliver, J. L., Gonzalez, G., Caja, P., Sempere-Ripoll, F. (2015.) Clusters and industrial districts: Where is the literature going? identifying emerging sub-fields of research. European Planning Studies, 23 (9), 1827-1872. doi:10.1080/09654313.2015.1021300
  • Hill, E., Brennan, J. (2000). A Methodology for identifying the drivers of industrial clusters: The Foundation of regional competitive advantage. Economic Development Quarterly, 14, 65-96. doi:10.1177/089124240001400109
  • Kelton, M. L., Margaret K. Pasquale, M. K., Rebelein, R. P. (2008) Using the north american industry classification system (naics) to identify national industry cluster templates for applied regional analysis. Regional Studies, 42 (3), 305-321.
  • Krugman, P. (1991). Geography and Trade. The MIT Press.
  • Kudryavtseva, T., Skhvediani, A., Iakovleva, V., Cherkas, A. (2021). Algorithm for defining clusters based on input–output tables: Case of construction cluster of Russia. International Journal of Technology, 12 (7), 1379-1386. doi:10.14716/ijtech.v12i7.5354
  • Lechner, C., Leyronas, C. (2012). The competitive advantage of cluster firms: The priority of regional network position over extra-regional networks – a study of a French high-tech cluster. Entrepreneurship ve Regional Development, 24, 457–473. doi:10.1080/08985626.2011.617785
  • Li, W., Veliyath, R., Tan, J. (2013). Network characteristics and firm performance: An examination of the relationships in the context of a cluster. Journal of Small Business Management, 51 (1), 1-22. doi:10.1111/j.1540-627X.2012.00375.x
  • Liu, B. (2011). Web Data Mining, Data Centric Systems and Applications. Berlin: Springer Publishing.
  • Liu, Z., Chen, X., Xu, W., Chen, Y., Li, X. (2021). Detecting industry clusters from the bottom up based on co-location patterns mining: A case study in Dongguan, China. Urban Analytics and City Science, 48 (9), 2827–2841. doi:10.1177/23998083219915
  • Lösch, A. (1954). The economics of location. New Haven: Yale University Press.
  • Lu, R., Reve, T., Huang, J., Jian, Z., Chen, M. (2018). A literature review of cluster theory: Are relations among clusters important?. Journal of Economic Surveys, 32, 1201-1220. doi:10.1111/joes.12255
  • Maillat, D. (1998). From the industrial district to the innovative milieu: Contribution to an analysis of territorialised productive organisations. Discussion Papers (REL - Recherches Economiques de Louvain) 1998017, Université catholique de Louvain, Institut de Recherches Economiques et Sociales (IRES).
  • Markusen, A. (1994). Studying regions by studying firms. The Professional Geographer, 46 (4), 477-490. doi:10.1111/j.0033-0124.1994.00477.x
  • Markusen, A. (1996). Sticky places in slippery space: A typology of industrial districts. Economic Geography, 72 (3), 292–313.doi:10.2307/144402
  • Marshall, A. (1961). Principles of Economics. London: McMillan.
  • Martin, R., Sunley, P. (2002). Deconstructing clusters: Chaotic concept or policy panacea? Journal of Economic Geography, 3, 5–35. doi:10.1093/jeg/3.1.5
  • Maskell, P., Lorenzen, M. (2004). The cluster as market organization. Urban Studies, 41(5–6), 991–1009. https://www.jstor.org/stable/43198251 adresinden edinilmiştir.
  • Maskell, P., Malmberg, A. (1999). The competitiveness of firms and regions ‘ubiquitification’ and the importance of localized learning. European Urban and Regional Studies, 6 (1), 9–25. doi:10.1177/096977649900600102
  • Maurel, F., Sédillot, B. (1999). A measure of the geographic concentration in French manufacturing industries. Regional Science and Urban Economics, 29 (5), 575-604. doi:10.1016/S0166-0462(99)00020-4
  • Mccann, B., Folta, T. (2011). Performance differentials within geographic clusters. Journal of Business Venturing, 26, 104–123. doi:10.1016/j.jbusvent.2009.04.004
  • Nachum, L., Keeble, D. (2003). Neo-marshallian clusters and global networks the linkages of media firms in central London. Long Range Planning, 36, 459–480. doi:10.1016/S0024-6301(03)00114-6
  • Ord, J.K., Getis, A. (1995). Local spatial autocorrelation statistics: Distributional issues and an application. Geographical Analysis, 27 (4), 286-306. doi:10.1111/j.1538-4632.1995.tb00912.x
  • Papagiannidis, S., See-To, E., Assimakopoulos, D., Yang, Y. (2018). Identifying industrial clusters with a novel big-data methodology: Are SIC codes (not) fit for purpose in the Internet age? Computers and Operations Research, 98, 355–366. doi:10.1016/j.cor.2017.06.010
  • Paul, J., Criado, A. R. (2020). The art of writing literature review: What do we know and what do we need to know? International Business Review, 29, 1-7.doi: 10.1016/j.ibusrev.2020.101717
  • Piore, M. J., Sabel, C. F. 1984. The Second Industrial Divide: Possibilities For Prosperity. New York: Basic Books.
  • Porter, M. (1998). Clusters and new economics of competition. Harvard Business Review, November-December, 77-90.
  • Porter, M. (2000). Location, competition and economic development: Local clusters in a global economy. Economic Development Quarterly, 14 (1), 15-34. doi:10.1177/089124240001400105
  • Roelandt, T. J. A., Hertog, P. D. (1999). Cluster analysis and cluster-based policy making in OECD countries: An Introduction to the theme. In: Boosting Innovation: The Cluster Approach. OECD Prooceedings.
  • Rosenfeld, S.A. (1995). Overachievers: Business Clusters That Work. Washington.
  • Scholl, T., Brenner, T. (2016) Detecting spatial clustering using a firm-level cluster index. Regional Studies, 50 (6), 1054-1068. doi: 10.1080/00343404.2014.958456
  • Serrat O. (2017). Knowledge Solutions: Tools, Methods, and Approaches to Drive Organizational Performance. Singapore: Springer Publishing.
  • Sığrı, Ü. (2018). Nitel araştırma yöntemleri. İstanbul: Beta Yayınları.
  • Steinle, C., Schiele, H. (2002). When do industries cluster? A proposal on how to assess an industry’s propensity to concentrate at a single region or nation. Research Policy, 31, 849–858. http://www.sciencedirect.com/science/article/pii/S0048-7333(01)00151-2 adresinden edinilmiştir.
  • Stejskal, J., Hajek, P. (2012) Competitive advantage analysis: a novel method for industrial clusters identification, Journal of Business Economics and Management, 13 (2), 344-365. doi:10.3846/16111699.2011.620154
  • Stek, E. P. (2021). Identifying spatial technology clusters from patenting concentrations using heat map kernel density estimation. Scientometrics, 126, 911–930. doi: 10.1007/s11192-020-03751-8
  • Storper, M. (1997). The Regional World: Territorial Development in a Global Economy. New York.
  • Taplin, I. (2011). Network structure and knowledge transfer in cluster evolution: The transformation of the Napa Valley wine region. International Journal of Organizational Analysis, 19 (2), 127–145. doi: 10.1108/19348831111135074
  • Titze, M., Brachert, M., Kubis, A. (2011). The identification of regional industrial clusters using qualitative input–output analysis (QIOA), Regional Studies, 45 (1), 89-102. doi:10.1080/00343400903234688
  • Van Den Berg, L., Braun, E., Winden, W. (2001). Growth clusters in European cities: An integral approach. Urban Studies, 38 (1), 185–205. doi:10.1080/00420980124001
  • Wasserman, S., Faust, K. (1994). Social Network Analysis. Cambridge University Press.
  • Weber, A. (1929). Theory of Location of Industries. University of Chicago Press, Chicago, IL.
Toplam 86 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Beşeri Coğrafya
Bölüm Derleme
Yazarlar

Gökhan Önder 0000-0002-0936-4076

Proje Numarası 1408E367
Erken Görünüm Tarihi 30 Nisan 2023
Yayımlanma Tarihi 30 Nisan 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 21 Sayı: 1

Kaynak Göster

APA Önder, G. (2023). İşletme Kümelerinin Belirlenmesinde Yararlanılan Yöntemlere İlişkin Bir Literatür İncelemesi. Coğrafi Bilimler Dergisi, 21(1), 153-170. https://doi.org/10.33688/aucbd.1150602