Araştırma Makalesi
BibTex RIS Kaynak Göster

Tüketicinin Nesnelerin Interneti Teknolojilerini Benimsemesi ve Bir Uygulama

Yıl 2019, Cilt: 19 Sayı: 4, 241 - 268, 31.12.2019
https://doi.org/10.18037/ausbd.668649

Öz

Bu çalışmanın amacı tüketicilerin gelecekte Nesnelerin İnterneti (Nİ) teknolojilerinin kabulüne yönelik davranışsal niyetinin açıklanmasıdır. Bütünleşik Teknoloji Kabul ve Kullanım Teorisi 2’de yer alan Performans Beklentisi, Çaba Beklentisi, Sosyal Etki, Hazsal Motivasyon ve Alışkanlık değişkenlerine Güven ile Güvenlik ve Mahremiyet değişkenleri eklenmiştir. Ayrıca moderatör etkisine bakmak amacıyla Teknoloji Hazır Olma İndeksi de çalışmada yer almaktadır. 377 katılımcıdan elde edilen veriler PLS-Yapısal Eşitlik Modellemesi yöntemiyle analiz edilmiştir. Bulgulara göre davranışsal niyete ait R^2 yüksek kabul edilebilecek bir değer olan 0,60 olarak bulunmuştur. Ayrıca tüketicilerin mevcut akıllı cihazlarla girdikleri etkileşimleri sonucu sahip oldukları deneyim, onların yeni teknolojilere de alışkanlık kazanacakları inancını yansıtmakta ve dolayısıyla bu teknolojileri benimseyebileceklerini göstermektedir. Güven değişkeninin tüketicilerin bu teknolojilerden beklentilerini karşılamasında önemli bir değişken olduğu ortaya çıkmaktadır. Her ne kadar güvenlik ve mahremiyetin DN üzerinde doğrudan etkisi tespit edilemese de, hazsal motivasyonun tam aracılık etkisiyle, DN üzerinde pozitif ve anlamlı etkisi saptanmıştır. Tüketicilerin Nİ teknolojileriyle ilişkili veri mahremiyetinin korunması gibi konularda yeteri kadar bilgi sahibi olmadıkları anlaşılırken, Nİ teknolojilerinin kullanımı ile elde edilecek hazza yönelik inanç tüketicilerin veri mahremiyetine yönelik korkularını azaltmaktadır. Öte yandan tüketicilerin teknolojiye hazır olma seviyeleri yükseldikçe daha fazla haz alma, algılanan faydada artış ve daha kolay bir kullanım algısının oluşacağı sonucu çıkmaktadır. Özgünlük katan diğer birçok gizil ilişki ile birlikte bu çalışma, gelecekte bu teknolojilerin tüketiciler tarafından kabulü noktasında hem teorik hem de uygulamaya ışık tutması açısından önemli sonuçlar elde edilmesini sağlamıştır.

Kaynakça

  • Ajzen, I. (1991). The theory of planned behavior. Organizational behavior and human decision processes, 50(2), 179-211.
  • Ajzen, I., & Fishbein, M. (2005). The influence of attitudes on behavior. The handbook of attitudes, 173(221), 31.
  • Aksöz, M. (2016). Examining the adoption of intention of internet of things in healthcare technology products with innovation diffusion theory and technology acceptance model. Unpublished Master Thesis. Istanbul: Bahçeşehir University, Graduate School of Natural and Applied Sciences.
  • Alaba, F. A., Othman, M., Hashem, I. A. T., & Alotaibi, F. (2017). Internet of Things security: A survey. Journal of Network and Computer Applications, 88, 10-28.
  • Alalwan, A. A., Dwivedi, Y. K., & Rana, N. P. (2017). Factors influencing adoption of mobile banking by Jordanian bank customers: Extending UTAUT2 with trust. International Journal of Information Management, 37(3), 99-110.
  • Aldossari, M. Q., & Sidorova, A. (2018). Consumer Acceptance of Internet of Things (IoT): Smart Home Context. Journal of Computer Information Systems, 1-11.
  • AlHogail, A. (2018). Improving IoT Technology Adoption through Improving Consumer Trust. Technologies, 6(3), 64.
  • AlHogail, A., & AlShahrani, M. (2018, July). Building consumer trust to improve Internet of Things (IoT) technology adoption. In International Conference on Applied Human Factors and Ergonomics (pp. 325-334). Springer, Cham.
  • Ameen, N., Willis, R., & Shah, M. H. (2018). An examination of the gender gap in smartphone adoption and use in Arab countries: A cross-national study. Computers in Human Behavior, 89, 148-162.
  • Ammar, M., Russello, G., & Crispo, B. (2018). Internet of Things: A survey on the security of IoT frameworks. Journal of Information Security and Applications, 38, 8-27. Attie, E., & Meyer-Waarden, L. (2016). The Impacts of Social Value, Cognitive Factors and Well-Being on the Use of the Internet of Things and Smart Connected Objects.
  • Baptista, G., & Oliveira, T. (2015). Understanding mobile banking: The unified theory of acceptance and use of technology combined with cultural moderators. Computers in Human Behavior, 50, 418-430.
  • Baron, R. M., & Kenny, D. A. (1986). The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of personality and social psychology, 51(6), 1173.
  • Baudier, P., Ammi, C., & Deboeuf-Rouchon, M. (2018). Smart home: Highly-educated students' acceptance. Technological Forecasting and Social Change.
  • Belanche, D., Casaló, L. V., & Flavián, C. (2012). Integrating trust and personal values into the Technology Acceptance Model: The case of e-government services adoption. Cuadernos de Economía y Dirección de la Empresa, 15(4), 192-204.
  • Brown, S. A., & Venkatesh, V. (2005). Model of adoption of technology in households: A baseline model test and extension incorporating household life cycle. MIS quarterly, 29(3).
  • Liébana-Cabanillas, F., Marinković, V., & Kalinić, Z. (2017). A SEM-neural network approach for predicting antecedents of m-commerce acceptance. International Journal of Information Management, 37(2), 14-24.
  • Cisco. (2013). “Embracing the Internet of Everything”. White paper.
  • Chin, W. W. (1998). The partial least squares approach to structural equation modeling. Modern methods for business research, 295(2), 295-336.
  • Chipeva, P., Cruz-Jesus, F., Oliveira, T., & Irani, Z. (2018). Digital divide at individual level: Evidence for Eastern and Western European countries. Government Information Quarterly, 35(3), 460-479.
  • Chong, A. Y. L., & Chan, F. T. (2012). Structural equation modeling for multi-stage analysis on Radio Frequency Identification (RFID) diffusion in the health care industry. Expert Systems with Applications, 39(10), 8645-8654.
  • Cohen, J. (1988). Statistical power analysis for the behaviors science.(2nd). New Jersey: Laurence Erlbaum Associates, Publishers, Hillsdale.
  • Coughlan, T., Brown, M., Mortier, R., Houghton, R. J., Goulden, M., & Lawson, G. (2012, November). Exploring Acceptance and Consequences of the Internet of Things in the Home. In 2012 IEEE International Conference on Green Computing and Communications (pp. 148-155). IEEE.
  • Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS quarterly, 319-340.
  • Deci, E. L., & Ryan, R. M. (1985). The general causality orientations scale: Self-determination in personality. Journal of research in personality, 19(2), 109-134.
  • Doğan, D. (2019). SmartPLS ile Veri Analizi. (2. Baskı). Ankara: Zet Yayınları
  • Elliott, K., Meng, G., & Hall, M. (2012). The influence of technology readiness on the evaluation of self-service technology attributes and resulting attitude toward technology usage. Services Marketing Quarterly, 33(4), 311-329.
  • El-Masri, M., & Tarhini, A. (2017). Factors affecting the adoption of e-learning systems in Qatar and USA: Extending the Unified Theory of Acceptance and Use of Technology 2 (UTAUT2). Educational Technology Research and Development, 65(3), 743-763.
  • Falcone, R., & Sapienza, A. (2018). On the Users’ Acceptance of IoT Systems: A Theoretical Approach. Information, 9(3), 53.
  • Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of marketing research, 18(1), 39-50.
  • Gao, L., & Bai, X. (2014). A unified perspective on the factors influencing consumer acceptance of internet of things technology. Asia Pacific Journal of Marketing and Logistics, 26(2), 211-231.
  • Gao, Y., Li, H., & Luo, Y. (2015). An empirical study of wearable technology acceptance in healthcare. Industrial Management & Data Systems, 115(9), 1704-1723.
  • Fernandez-Gago, C., Moyano, F., & Lopez, J. (2017). Modelling trust dynamics in the Internet of Things. Information Sciences, 396, 72-82.
  • Gartner. (2013). Forecast: The internet of things, worldwide. Retrieved from http://www.gartner.com/newsroom/id/2636073
  • Gefen, D., Karahanna, E., & Straub, D. W. (2003). Trust and TAM in online shopping: an integrated model. MIS quarterly, 27(1), 51-90.
  • Gong, W. (2016). The Internet of Things (IoT): What is the potential of the internet of things (IoT) as a marketing tool? (Bachelor's thesis, University of Twente).
  • Henseler, J., Hubona, G., & Ray, P. A. (2016). Using PLS path modeling in new technology research: updated guidelines. Industrial management & data systems, 116(1), 2-20.
  • Hair Jr, J. F., Hult, G. T. M., Ringle, C., & Sarstedt, M. (2016). A primer on partial least squares structural equation modeling (PLS-SEM). Sage publications.
  • Herrero, Á., & San Martín, H. (2017). Explaining the adoption of social networks sites for sharing user-generated content: A revision of the UTAUT2. Computers in Human Behavior, 71, 209-217.
  • Ramón-Jerónimo, M. A., Peral-Peral, B., & Arenas-Gaitan, J. (2013). Elderly persons and Internet use. Social Science Computer Review, 31(4), 389-403.
  • Kaushik, A. K., Agrawal, A. K., & Rahman, Z. (2015). Tourist behaviour towards self-service hotel technology adoption: Trust and subjective norm as key antecedents. Tourism Management Perspectives, 16, 278-289.
  • Khan, W. Z., Aalsalem, M. Y., Khan, M. K., & Arshad, Q. (2016). Enabling consumer trust upon acceptance of IoT technologies through security and privacy model. In Advanced multimedia and ubiquitous engineering (pp. 111-117). Springer, Singapore.
  • Kim, S. S., & Malhotra, N. K. (2005). A longitudinal model of continued IS use: An integrative view of four mechanisms underlying postadoption phenomena. Management science, 51(5), 741-755.
  • Kuo, K. M., Liu, C. F., & Ma, C. C. (2013). An investigation of the effect of nurses’ technology readiness on the acceptance of mobile electronic medical record systems. BMC medical informatics and decision making, 13(1), 88.
  • Lasi, H., Fettke, P., Kemper, H. G., Feld, T., & Hoffmann, M. (2014). Industry 4.0. Business & information systems engineering, 6(4), 239-242.
  • Limayem, M., Hirt, S. G., & Cheung, C. M. (2007). How habit limits the predictive power of intention: The case of information systems continuance. MIS quarterly, 31(4).
  • Lu, Y., Papagiannidis, S., & Alamanos, E. (2018). Internet of Things: A systematic review of the business literature from the user and organisational perspectives. Technological Forecasting and Social Change, 136, 285-297.
  • Mardjo, A. Exploring Facebook users’ willingness to accept f-commerce using the integrated unified theory of acceptance and use of technology 2 (UTAUT2), trust and risk under the moderating role of age and gender.
  • Macedo, I. M. (2017). Predicting the acceptance and use of information and communication technology by older adults: An empirical examination of the revised UTAUT2. Computers in Human Behavior, 75, 935-948.
  • Mohammadzadeh, A. K., Ghafoori, S., Mohammadian, A., Mohammadkazemi, R., Mahbanooei, B., & Ghasemi, R. (2018). A Fuzzy Analytic Network Process (FANP) approach for prioritizing internet of things challenges in Iran. Technology in Society, 53, 124-134.
  • Morosan, C., & DeFranco, A. (2016). It's about time: Revisiting UTAUT2 to examine consumers’ intentions to use NFC mobile payments in hotels. International Journal of Hospitality Management, 53, 17-29.
  • Morrison, D. E., & Firmstone, J. (2000). The social function of trust and implications for e-commerce. International Journal of Advertising, 19(5), 599-623. Ouellette, J. A., & Wood, W. (1998). Habit and intention in everyday life: The multiple processes by which past behavior predicts future behavior. Psychological bulletin, 124(1), 54.
  • Parasuraman, A. (2000). Technology Readiness Index (TRI) a multiple-item scale to measure readiness to embrace new technologies. Journal of service research, 2(4), 307-320.
  • Perera, C., Zaslavsky, A., Christen, P., & Georgakopoulos, D. (2013). Context aware computing for the internet of things: A survey. IEEE communications surveys & tutorials, 16(1), 414-454.
  • Rahman, S. A., Taghizadeh, S. K., Ramayah, T., & Alam, M. M. D. (2017). Technology acceptance among micro-entrepreneurs in marginalized social strata: The case of social innovation in Bangladesh. Technological Forecasting and Social Change, 118, 236-245.
  • Ringle, C.M., Wende, S., and Becker, J.-M. 2015. “SmartPLS 3.” Boenningstedt:SmartPLS GmbH, http://www.smartpls.com.
  • Sicari, S., Rizzardi, A., Grieco, L. A., & Coen-Porisini, A. (2015). Security, privacy and trust in Internet of Things: The road ahead. Computer networks, 76, 146-164.
  • Shin, D. H. (2010). The effects of trust, security and privacy in social networking: A security-based approach to understand the pattern of adoption. Interacting with computers, 22(5), 428-438.
  • Shin, S., & Lee, W. J. (2014). The effects of technology readiness and technology acceptance on NFC mobile payment services in Korea. Journal of Applied Business Research, 30(6), 1615.
  • Silva, B. N., Khan, M., & Han, K. (2018). Internet of things: A comprehensive review of enabling technologies, architecture, and challenges. IETE Technical review, 35(2), 205-220.
  • Simanjuntak, R. J., & Ramantoko, G. (2016, January). Factors Affecting Purchase Intention Of Consumers To Smartphone Samsung Galaxy Post Use Of Previous Smartphone. In International Conference on Transformation in Communication (ICOTIC).
  • Šumak, B., & Šorgo, A. (2016). The acceptance and use of interactive whiteboards among teachers: Differences in UTAUT determinants between pre-and post-adopters. Computers in Human Behavior, 64, 602-620.
  • Tenenhaus, M., Vinzi, V. E., Chatelin, Y. M., & Lauro, C. (2005). PLS path modeling. Computational statistics & data analysis, 48(1), 159-205.
  • Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management science, 46(2), 186-204.
  • Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS quarterly, 425-478.
  • Venkatesh, V., Thong, J. Y., & Xu, X. (2012). Consumer acceptance and use of information technology: extending the unified theory of acceptance and use of technology. MIS quarterly, 36(1), 157-178.
  • Verkijika, S. F. (2018). Factors influencing the adoption of mobile commerce applications in Cameroon. Telematics and Informatics, 35(6), 1665-1674.
  • Tsu Wei, T., Marthandan, G., Yee-Loong Chong, A., Ooi, K. B., & Arumugam, S. (2009). What drives Malaysian m-commerce adoption? An empirical analysis. Industrial Management & Data Systems, 109(3), 370-388.
  • Wong, C. H., Wei-Han Tan, G., Loke, S. P., & Ooi, K. B. (2014). Mobile TV: a new form of entertainment?. Industrial Management & Data Systems, 114(7), 1050-1067.
  • Wu, L.H., Wu, L.C. and Chang, S.C. (2016) ‘Exploring consumers’ intention to accept smartwatch’, Computers in Human Behaviour, November, Vol. 64, pp.383–392.
  • XIONG, X., & MEI, Q. (2016). Study on the Factors Influencing User’s Acceptance Intention for Smart Medical and Health Care Equipment Based on UTAUT2. DEStech Transactions on Economics, Business and Management, (apme).
  • Yildirim, H., & Ali-Eldin, A. M. (2018). A model for predicting user intention to use wearable IoT devices at the workplace. Journal of King Saud University-Computer and Information Sciences.
Toplam 71 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Celal Hakan Kağnıcıoğlu 0000-0003-4369-6063

Haldun Çolak 0000-0001-7164-3538

Yayımlanma Tarihi 31 Aralık 2019
Gönderilme Tarihi 22 Ağustos 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 19 Sayı: 4

Kaynak Göster

APA Kağnıcıoğlu, C. H., & Çolak, H. (2019). Tüketicinin Nesnelerin Interneti Teknolojilerini Benimsemesi ve Bir Uygulama. Anadolu Üniversitesi Sosyal Bilimler Dergisi, 19(4), 241-268. https://doi.org/10.18037/ausbd.668649