Araştırma Makalesi
BibTex RIS Kaynak Göster

Beauveria bassiana’nın Domateste Kurşuni Küf (Botrytis cinerea) Hastalığına Karşı In vitro ve In vivo Koşullarda Etkinliğinin Belirlenmesi

Yıl 2025, Cilt: 14 Sayı: 2, 216 - 227, 29.12.2025
https://doi.org/10.29278/azd.1792442

Öz

Amaç: Entomopatojen fungus Beauveria bassiana BIM ve BY2 izolatlarının farklı konsantrasyonlardaki kültür filtratlarının domatesde kurşuni küf hastalığına neden olan Botrytis cinerea’ya karşı in vitro ve in vivo koşullarında etkinlikleri araştırılmıştır.
Materyal ve Yöntem: Bu çalışmada, Antalya domates seralarından izole edilen B. cinerea Ant-4 izolatı ve entomopatojen fungus B. bassiana BIM ve BY2 izolatlarından elde edilen kültür filtratları kullanılmıştır. In vitro koşullarda B. bassiana’ya ait BIM ve BY2 izolatlarının farklı konsantrasyonlardaki kültür filtratlarının, agar well yöntemi (%0, 20, 40, 60, 80 ve 100) ile ve ayrıca %10, 25 ve 50 oranlarında kültür filtratı içeren PDA ortamlarında, B. cinerea’nın misel gelişimi üzerindeki antifungal etkileri değerlendirilmiştir.
En iyi antagonistik etkiyi gösteren BIM izolatının kültür filtratlarının, %50, 80 ve 100 konsantrasyonları, domates bitkilerine 3 farklı yöntemle (yaprak, gövde enjeksiyonu, kök uygulamaları) ve 2 farklı uygulama şeklinde (tek uygulama ve 5 gün arayla 5 uygulama) in vivo koşullarda B. cinerea'ya karşı etkisi değerlendirilmiştir. Bitki materyali olarak H-2274 domates çeşidine ait fideler kullanılmıştır.
Araştırma bulguları: Agar well yönteminde B. bassiana BIM ve BY2 izolatlarının kültür filtratlarının konsantrasyonları (%20, %40, %60, %80, %100), B. cinerea misel gelişimini engellememiş ve inhibisyon zonları gözlenmemiştir. Her iki entomopatojen fungus izolatına ait kültür filtratlarının PDA ortamına doğrudan ilavesiyle elde edilen %10, %25 ve %50 konsantrasyonlarının, B. cinerea misel gelişimini engellediği belirlenmiştir. En etkili B. bassiana BIM izolatının %50 kültür filtrat konsantrasyonu olmuştur ve B. cinerea misel gelişiminde %100 inhibisyon tespit edilmiştir. B. bassiana BY2 kültür filtratı, BIM’e göre daha az etkili bulunmuş ve en etkili dozu %50 konsantrasyonu B. cinerea'nın misel gelişimini %41.9 oranında engellemiştir B. bassiana BIM kültür filtratının %50, %80 ve %100 konsantrasyonları domates bitkilerine 3 farklı yöntemle (yaprak, gövde enjeksiyonu, kök uygulamaları) ve 2 farklı uygulama (tek uygulama ve 5 gün arayla 5 uygulama) yapılarak in vivo koşullarda değerlendirilmiştir. Gövde enjeksiyonu tek uygulamalı kültür filtratının %50 ile %100 konsantrasyonları ve 5 gün arayla 5 kez yapılan yaprak uygulamasının %80 konsantrasyonları fungisit kadar etkili olup B. cinerea’yı tamamen baskılamıştır.
Sonuç: Bu çalışma, entomopatojen fungus B. bassiana BIM izolatının, domateslerde B. cinerea kurşuni küf hastalığına karşı biyolojik mücadelede etkili bir alternatif olabileceğini ve kimyasal fungisitlerin yerine çevre dostu bir çözüm sunabileceğini göstermektedir.

Etik Beyan

Yok

Destekleyen Kurum

ISUBÜ Bilimsel Araştırma Projeleri Koordinasyon Birimi

Proje Numarası

Bu çalışma, ISUBÜ Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından 2022-YL1-0171 No’lu proje ile desteklenen ve (YOK Tez No:10718281 olan) yüksek lisans tezinden üretilmiştir.

Teşekkür

Bu çalışma, ISUBÜ Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından 2022-YL1-0171 No’lu proje ile desteklenen ve (YOK Tez No:10718281 olan) yüksek lisans tezinden üretilmiştir.

Kaynakça

  • Abbott, W. S. (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18(2), 265–267. https://doi.org/10.1093/jee/18.2.265a
  • Althouse, C., Petersen, B. & McEwen, L. (1997). Effects on Young American Kestrels (Falco sparverius) Exposed to Beauveria bassiana Bioinsecticide.
  • Bulletin of Environmental Contamination and Toxicology, 59, 507–512. https://doi.org/10.1007/s001289900507
  • Bark, Y. G., Lee, D. G., Kim, Y. H., & Kang, S. C. (1996). Antibiotic properties of an entomopathogenic fungus, Beauveria bassiana, on Fusarium oxysporum and Botrytis cinerea. Korean Journal of Plant Pathology, 12, 245–250.
  • Barra-Bucarei, L., France Iglesias, A., Gerding González, M., Silva Aguayo, G., Carrasco-Fernández, J., Castro, J. F., & Ortiz Campos, J. (2019). Antifungal activity of Beauveria bassiana endophyte against Botrytis cinerea in two Solanaceae crops. Microorganisms, 8(1), 65. https://doi.org/10.3390/microorganisms8010065
  • Botero, D., Alvarado, C., & Bernal, A. (2018). Network analyses in plant pathogens. Frontiers in Microbiology, 9, 35. https://doi.org/10.3389/fmicb.2018.00035
  • Culebro-Ricaldi, J., Ruíz-Valdiviezo, V., Rodríguez-Mendiola, M. A., Ávila-Miranda, M. E., Gutiérrez-Miceli, F., Cruz-Rodríguez, R. I., Dendooven, L., & Montes-Molina, J. (2017). Antifungal properties of Beauveria bassiana strains against Fusarium oxysporum f. sp. lycopersici race 3 in tomato crop. Journal of Environmental Biology, 38(5), 821–827. http://doi.org/10.22438/jeb/38/5/MRN-412
  • Chandel, S., Allan, E. J., & Woodward, S. (2010). Biological control of Fusarium oxysporum f. sp. lycopersici on tomato by Brevibacillus brevis. Journal of phytopathology, 158(7‐8), 470-478.
  • Çiftçi, G., & Altınok, H. H. (2019). Patlıcan tohumlarında bitki büyüme düzenleyici rizobakteri uygulamalarının kurşuni küf (Botrytis cinerea Pers.: Fr.) hastalığına etkileri. KSÜ Tarım ve Doğa Dergisi, 22(3), 421–429. https://doi.org/10.18016/ksutarimdoga.vi.492824
  • Dannon, H. F., Dannon, A. E., Douro-Kpindou, O. K., Zinsou, A. V., Houndété, A. T., Toffa-Mehinto, J., Elégbédé, I. A. T. M., Olou, B. D., & Tamò, M. (2020). Toward the efficient use of Beauveria bassiana in integrated cotton insect pest management. Journal of Cotton Research, 3(1), 24. https://doi.org/10.1186/s42397-020-00061-5
  • Dennis, C., & Webster, J. (1971). Antagonistic properties of species-groups of Trichoderma. Transactions of the British Mycological Society, 57(1), 25–39. https://doi.org/10.1016/S0007-1536(71)80077-3
  • Domsch, K. H., Gams, W., & Anderson, T. (1993). Compendium of soil fungi. Academic Press.
  • Faria, M., & Wraight, S. P. (2001). Biological control of Bemisia tabaci with fungi. Crop Protection, 20(9), 767–778.
  • Faria, M. R., & Wraight, S. P. (2007). Mycoinsecticides and mycoacaricides: A comprehensive list with worldwide coverage and international classification of formulation types. Biological Control, 43(3), 237–256. https://doi.org/10.1016/j.biocontrol.2007.08.001
  • Fréchette, B., Ziani, J., Cormier, D., & diğerleri. (2009). Use of Beauveria bassiana against the plum curculio, Conotrachelus nenuphar, in apple orchards. Mirabel Agrifood Research Center.
  • Gothandapani, S., Boopalakrishnan, G., Prabhakaran, N., Chethana, B. S., Aravindhan, M., Saravanakumar, M., & Ganeshan, G. (2014). Evaluation of entomopathogenic fungus against Alternaria porri (Ellis) causing purple blotch disease of onion. Archives of Phytopathology and Plant Protection, 48(2), 135–144. https://doi.org/10.1080/03235408.2014.884532
  • Guo, J., Xu, Y., Liang, S., Zhou, Z., Zhang, C., Li, K., Peng, X., Qin, S., & Xing, K. (2023). Antifungal activity of volatile compounds from Bacillus tequilensis XK29 against Botrytis cinerea causing gray mold on cherry tomatoes. Postharvest Biology and Technology, 198, 111313. https://doi.org/10.1016/j.postharvbio.2022.112239
  • Gupta, R., & Bar, M. (2020). Plant immunity, priming, and systemic resistance as mechanisms for Trichoderma spp. biocontrol. In Trichoderma: Host-pathogen interactions and applications (pp. 81–110). Springer. https://doi.org/10.1007/978-981-15-3321-1_5
  • Gupta, R., Keppanan, R., Leibman-Markus, M., Rav-David, D., Elad, Y., Ment, D., & Bar, M. (2022). The entomopathogenic fungi Metarhizium brunneum and Beauveria bassiana promote systemic immunity and confer resistance to a broad range of pests and pathogens in tomato. Phytopathology, 112(4), 784–793. https://doi.org/10.1094/PHYTO-08-21-0343-R
  • Jaber, L. R., & Salem, N. M. (2014). Endophytic colonization of squash by the fungal entomopathogen Beauveria bassiana (Ascomycota: Hypocreales) for managing zucchini yellow mosaic virus in cucurbits. Biocontrol Sci. Tech. 24, 1096–1109. doi: 10.1080/09583157.2014.923379
  • Jamal, Z. (2008). Application of Beauveria bassiana against Lygus lineolaris (Palisot de Beauvois) (Hemiptera: Miridae) in vineyards. University of Quebec.
  • Jiao, W., Liu, X., Li, Y., Li, B., Du, Y., Zhang, Z., Chen, Q., & Fu, M. (2022). Organic acid, a virulence factor for pathogenic fungi, causing postharvest decay in fruits. Molecular Plant Pathology, 23(2), 304–312. https://doi.org/10.1111/mpp.13159
  • Jiao, X., Takishita, Y., Zhou, G., & Smith, D. L. (2021). Plant associated rhizobacteria for biocontrol and plant growth enhancement. Frontiers in Plant Science, 12, 634796. https://doi.org/10.3389/fpls.2021.634796
  • Köhl, J., Kolnaar, R., & Ravensberg, W. J. (2019). Mode of action of microbial biological control agents against plant diseases: Relevance beyond efficacy. Frontiers in Plant Science, 10, 845. https://doi.org/10.3389/fpls.2019.00845
  • Kucera, M., & Samsinakova, A. (1968). Toxins of the entomophagous fungus Beauveria bassiana. Journal of Invertebrate Pathology, 12(3), 316–320. https://doi.org/10.1016/0022-2011(68)90333-9
  • Lacey, L. A., Grzywacz, D., Shapiro-Ilan, D. I., Frutos, R., Brownbridge, M., & Goettel, M. S. (2015). Insect pathogens as biological control agents: Back to the future. Journal of Invertebrate Pathology, 132, 1–41. https://doi.org/10.1016/j.jip.2015.07.009
  • Lambert, N. (2010). Biological control of pests: Applicability in Quebec. University of Sherbrooke. Lee, S.-M., Yeo, W.-H., Jee, H.-J., Shin, S.-C., & Moon, Y.-S. (1999). Effect of entomopathogenic fungi on growth of cucumber and Rhizoctonia solani. Journal of Forestry Science, 62, 118–125.
  • Li, T. T., Zhang, J. D., Tang, J. Q., Liu, Z. C., Li, Y. Q., Chen, J., & Zou, L. W. (2020). Trichoderma atroviride combined use of CCTCCSBW0199 and brassinolide to control infection in tomato. Plant Disease, 104, 1298–1304. https://doi.org/10.1094/PDIS-07-19-1568-RE
  • Li, Z. Z., Li, C. R., Huang, B., & Fan, M. Z. (2001). Discovery and demonstration of the teleomorph of Beauveria bassiana (Bals.) Vuill., an important entomogenous fungus. Chinese Science Bulletin, 46(9), 751–753. https://doi.org/10.1007/BF03187215
  • Lozano-Tovar, M. D., Ortiz-Urquiza, A., Garrido-Jurado, I., Trapero-Casas, A., & Quesada-Moraga, E. (2013). Assessment of entomopathogenic fungi and their extracts against a soil-dwelling pest and soil-borne pathogens of olive. Biological Control, 67, 409–420. https://doi.org/10.1016/j.biocontrol.2013.09.006
  • Mascarin, G. M., & Jaronski, S. T. (2016). The production and uses of Beauveria bassiana as a microbial insecticide. World Journal of Microbiology and Biotechnology, 32(11), Article 177. https://doi.org/10.1007/s11274-016-2131-3
  • Mehari, Z. H., Elad, Y., Rav-David, D., Graber, E. R., & Meller Harel, Y. (2015). Induced systemic resistance in tomato (Solanum lycopersicum) against Botrytis cinerea by biochar amendment involves jasmonic acid signaling. Plant and Soil, 395(1), 31–44. https://doi.org/10.1007/s11104-015-2445-1
  • Ownley, B. H., Dee, M. M., & Gwinn, K. (2008a). Effect of conidial seed treatment rate of entomopathogenic Beauveria bassiana 11-98 on endophytic colonization of tomato seedlings and control of Rhizoctonia disease. Phytopathology, 98(6), S118.
  • Ownley, B. H., Griffin, M. R., Klingeman, W. E., Gwinn, K. D., Moulton, J. K., & Pereira, R. M. (2008b). Beauveria bassiana: Endophytic colonization and plant disease control. Journal of Invertebrate Pathology, 98(3), 267–270. https://doi.org/10.1016/j.jip.2008.01.010
  • Patocha, J. (2016). Bioactive metabolites of entomopathogenic fungus Beauveria bassiana. Military Medical Science Letters, 85(2), 80–88. https://doi.org/10.31482/mmsl.2016.015
  • Posada, F., Aime, M. C., Peterson, S. W., Rehner, S. A., & Vega, F. E. (2007). Inoculation of coffee plants with the fungal entomopathogen Beauveria bassiana (Ascomycota: Hypocreales). Mycological Research, 111(6), 748–757. https://doi.org/10.1016/j.mycres.2007.03.006
  • Ravindran, K., Chitra, S., Wilson, A., & Sivaramakrishnan, S. (2014). Evaluation of antifungal activity of Metarhizium anisopliae against plant phytopathogenic fungi. In R. Kharwar, R. Upadhyay, N. Dubey, & R. Raghuwanshi (Eds.), Microbial Diversity and Biotechnology in Food Security (pp. 251-255). Springer. https://doi.org/10.1007/978-81-322-1801-2_22
  • Reisenzein, H., & Tiefenbrunner, W. (1997). Growth inhibiting effect of different isolates of the entomopathogenic fungus Beauveria bassiana (Bals) Vuill. to the plant parasitic fungi of the genera Fusarium, Armillaria and Rosellinia. Pflanzenschutzbericht, 57(1), 15–24.
  • Renwick, A., Campbell, R., & Coe, S. (1991). Assessment of in vivo screening systems for potential biocontrol agents of Gaeumannomyces graminis. Plant Pathology, 40(4), 524–532. https://doi.org/10.1111/j.1365-3059.1991.tb02415.x
  • Rhouma, A., Hajji-Hedfi, L., Kouadri, M. E., Atallaoui, K., Matrood, A. A. A., & Khrieba, M. I. (2023). Botrytis cinerea: The cause of tomatoes gray mold. Egyptian Journal of Phytopathology, 51(2), 68–75. https://doi.org/10.21608/ejp.2023.224842.1101
  • Roca-Couso, R., Flores-Félix, J. D., & Rivas, R. (2021). Mechanisms of action of microbial biocontrol agents against Botrytis cinerea. Journal of Fungi, 7(12), 1045. https://doi.org/10.3390/jof7121045
  • Rodriguez-Moreno, L., Ebert, M. K., Bolton, M. D., & Thomma, B. H. (2018). Tools of the crook-infection strategies of fungal plant pathogens. Plant Journal, 93(4), 664–674. https://doi.org/10.1111/tpj.13810
  • Sabbahi, R. (2008). Use of the entomopathogenic fungus Beauveria bassiana in a strategy of phytosanitary management of the main insect pests in strawberry plantations (Doctoral thesis, University of Quebec).
  • Sánchez-Rodríguez, A. R., Raya-Díaz, S., Zamarreño, Á. M., García-Mina, J. M., Campillo, M. D., & Quesada-Moraga, E. (2018). An endophytic Beauveria bassiana strain increases spike production in bread and durum wheat plants and effectively controls cotton leafworm (Spodoptera littoralis) larvae. Biol. Control 116, 90–102. doi: 10.1016/j.biocontrol.2017.01.012
  • Sarven, M. S., Hao, Q., Deng, J., Yang, F., Wang, G., Xiao, Y., & Xiao, X. (2020). Biological control of tomato gray mold caused by Botrytis cinerea with the entomopathogenic fungus Metarhizium anisopliae. Pathogens, 9(3), 213. https://doi.org/10.3390/pathogens9030213
  • Sasan, R. K., & Bidochka, M. J. (2013). Antagonism of the endophytic insect pathogenic fungus Metarhizium robertsii against the bean plant pathogen Fusarium solani f. sp. phaseoli. Canadian Journal of Plant Pathology, 35(3), 288–293. https://doi.org/10.1080/07060661.2013.823114
  • Sharma, A., Sharma, S., & Yadav, P. K. (2023). Entomopathogenic fungi and their relevance in sustainable agriculture: A review. Cogent Food & Agriculture, 9(1). https://doi.org/10.1080/23311932.2023.2180857
  • Sinno, M., Ranesi, M., Di Lelio, I., Iacomino, G., Becchimanzi, A., Barra, E., Molisso, D., Pennacchio, F., Digilio, M. C., Vitale, S., Turrà, D., Harizanova, V., Lorito, M., & Woo, S. L. (2021). Selection of Endophytic Beauveria bassiana as a Dual Biocontrol Agent of Tomato Pathogens and Pests. Pathogens, 10(10), 1242. https://doi.org/10.3390/pathogens10101242
  • Sui, L., Lu, Y., Zhou, L., Li, N., Li, Q., & Zhang, Z. (2023). Endophytic Beauveria bassiana promotes plant biomass growth and suppresses pathogen damage by directional recruitment. Frontiers in Microbiology, 14, 1227269. Teng, C. (1962). Studies on the biology of Beauveria bassiana (Bals.) Vuill. with reference to microbial control of insect pests. Acta Botanica Sinica, 10(3), 210–232.
  • Thongkamngam, T., & Jaenaksorn, T. (2016). Efficacy of culture filtrate from Fusarium oxysporum F221-B against plant pathogenic fungi in vitro and Fusarium root rot and wilt disease in hydroponics. International Journal of Agricultural Technology, 12(3), 513–526. https://doi.org/10.13140/RG.2.2.14348.23687
  • Tomilova, O. G., Shaldyaeva, E. M., Kryukova, N. A., Pilipova, Y. V., Schmidt, N. S., Danilov, V. P., Kryukov, V. Y., & Glupov, V. V. (2020). Entomopathogenic fungi decrease Rhizoctonia disease in potato in field conditions. PeerJ, 8, e9895. https://doi.org/10.7717/peerj.9895
  • Townsend, G. K., & Heuberger, J. W. (1943). Methods for estimating losses caused by diseases in fungicide experiments. Plant Disease Report, 27(17), 340–343.
  • Vega, F. E., Goettel, M. S., Blackwell, M., Chandler, D., Jackson, M. A., Keller, S., Koike, M., Maniania, N. K., Monzón, A., Ownley, B., et al. (2009). Fungal entomopathogens: New insights on their ecology. Fungal Ecology, 2(4), 149–159. https://doi.org/10.1016/j.funeco.2009.05.001
  • Vega, F. E., Posada, F., Catherine Aime, M., Pava-Ripoll, M., Infante, F., & Rehner, S. A. (2008). Entomopathogenic fungal endophytes. Biological Control, 46(1), 72–82. https://doi.org/10.1016/j.biocontrol.2008.01.008
  • Vesely, D., & Koubova, D. (1994). In vitro effect of the entomopathogenic fungi Beauveria bassiana (Bals.-Criv.) Vuill. and B. brongniartii (Sacc.) Petch on phytopathogenic fungi. Ochrana Rostlin, 30, 113–120.
  • Vos, C. M. F., De Cremer, K., Cammue, B. P. A., & De Coninck, B. (2015). The toolbox of Trichoderma spp. in the biocontrol of Botrytis cinerea disease. Molecular Plant Pathology, 16(4), 400–412. https://doi.org/10.1111/mpp.12189
  • Wang, X., Zhou, X., Cai, Z., Guo, L., Chen, X., Chen, X., Liu, J., Feng, M., Qiu, Y., Zhang, Y., et al. (2021). A biocontrol strain of Pseudomonas aeruginosa CQ-40 promotes growth and controls Botrytis cinerea in tomato. Pathogens, 10(1), 22. https://doi.org/10.3390/pathogens10010022
  • Xu, Y., Orozco, R., Kithsiri Wijeratne, E. M., Espinosa Artiles, P., Leslie Gunatilaka, A. A., Patricia Stock, S., & Molnár, I. (2009). Biosynthesis of the cyclooligomer depsipeptide bassianolide, an insecticidal virulence factor of Beauveria bassiana. Fungal Genetics and Biology, 46(5), 353–364. https://doi.org/10.1016/j.fgb.2009.03.001
  • Yun, H. G., Kim, D. J., Gwak, W. S., Shin, T. Y., & Woo, S. D. (2017). Entomopathogenic fungi as dual control agents against both the pest Myzus persicae and phytopathogen Botrytis cinerea. Mycobiology, 45(3), 192–198. https://doi.org/10.5941/MYCO.2017.45.3.192.

Determination of the Effectiveness of Beauveria bassiana Against Tomato Gray Mold (Botrytis cinerea) Under In vitro and In vivo Conditions

Yıl 2025, Cilt: 14 Sayı: 2, 216 - 227, 29.12.2025
https://doi.org/10.29278/azd.1792442

Öz

Objective: The aim of this study was to investigate the effectiveness of culture filtrates from Beauveria bassiana BIM and BY2 isolates at different concentrations against Botrytis cinerea, the causative agent of gray mold disease in tomato, under both in vitro and in vivo conditions.
Materials and Methods: In this study, B. cinerea Ant-4 isolate, which was isolated from tomato greenhouses in Antalya, and culture filtrates from B. bassiana BIM and BY2 isolates were used. Under in vitro conditions, the antifungal effects of culture filtrates from the BIM and BY2 isolates of B. bassiana at different concentrations were evaluated on the mycelial growth of B. cinerea using the agar well diffusion method (0, 20, 40, 60, 80, and 100%) and on PDA media supplemented with culture filtrates at concentrations of 10, 25, and 50%. The culture filtrates of the BIM isolate, which exhibited the best antagonistic effect, were applied at concentrations of 50%, 80%, and 100% to tomato plants using three different methods (leaf spray, stem injection, and root applications) and two different application schemes (single application and five applications with a 5-day interval) to evaluate their effectiveness against B. cinerea under in vivo conditions. The plant material used was seedlings of the H-2274 tomato variety.
Result: In the agar well method, the culture filtrates of B. bassiana BIM and BY2 isolates at concentrations of 20%, 40%, 60%, 80%, and 100% did not inhibit B. cinerea mycelial growth, and no inhibition zones were observed. The direct incorporation of culture filtrates from both entomopathogenic fungal isolates into PDA medium at concentrations of 10, 25, and 50% inhibited the mycelial growth of B. cinerea. The most effective culture filtrate was from B. bassiana BIM at a concentration of 50%, which resulted in 100% inhibition of B. cinerea mycelial growth. The culture filtrate of B. bassiana BY2 was found to be less effective than BIM, with the most effective dose being 50%, which inhibited mycelial growth by 41.9%. The culture filtrates of B. bassiana BIM at concentrations of 50%, 80%, and 100% were applied to tomato plants using three different methods (leaf spray, stem injection, and root applications) and two different application schemes (single application and five applications with a 5-day interval) under in vivo conditions. Stem injection with a single application at concentrations of 50% to 100%, as well as five applications with a 5-day interval using the 80% concentration for leaf spray, were as effective as fungicide treatments and completely suppressed B. cinerea.
Conclusion: According to the results obtained from this study, the entomopathogenic fungus B. bassiana isolate BIM shows potential for use against grey mold disease (B. cinerea) in tomato.

Proje Numarası

Bu çalışma, ISUBÜ Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından 2022-YL1-0171 No’lu proje ile desteklenen ve (YOK Tez No:10718281 olan) yüksek lisans tezinden üretilmiştir.

Kaynakça

  • Abbott, W. S. (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18(2), 265–267. https://doi.org/10.1093/jee/18.2.265a
  • Althouse, C., Petersen, B. & McEwen, L. (1997). Effects on Young American Kestrels (Falco sparverius) Exposed to Beauveria bassiana Bioinsecticide.
  • Bulletin of Environmental Contamination and Toxicology, 59, 507–512. https://doi.org/10.1007/s001289900507
  • Bark, Y. G., Lee, D. G., Kim, Y. H., & Kang, S. C. (1996). Antibiotic properties of an entomopathogenic fungus, Beauveria bassiana, on Fusarium oxysporum and Botrytis cinerea. Korean Journal of Plant Pathology, 12, 245–250.
  • Barra-Bucarei, L., France Iglesias, A., Gerding González, M., Silva Aguayo, G., Carrasco-Fernández, J., Castro, J. F., & Ortiz Campos, J. (2019). Antifungal activity of Beauveria bassiana endophyte against Botrytis cinerea in two Solanaceae crops. Microorganisms, 8(1), 65. https://doi.org/10.3390/microorganisms8010065
  • Botero, D., Alvarado, C., & Bernal, A. (2018). Network analyses in plant pathogens. Frontiers in Microbiology, 9, 35. https://doi.org/10.3389/fmicb.2018.00035
  • Culebro-Ricaldi, J., Ruíz-Valdiviezo, V., Rodríguez-Mendiola, M. A., Ávila-Miranda, M. E., Gutiérrez-Miceli, F., Cruz-Rodríguez, R. I., Dendooven, L., & Montes-Molina, J. (2017). Antifungal properties of Beauveria bassiana strains against Fusarium oxysporum f. sp. lycopersici race 3 in tomato crop. Journal of Environmental Biology, 38(5), 821–827. http://doi.org/10.22438/jeb/38/5/MRN-412
  • Chandel, S., Allan, E. J., & Woodward, S. (2010). Biological control of Fusarium oxysporum f. sp. lycopersici on tomato by Brevibacillus brevis. Journal of phytopathology, 158(7‐8), 470-478.
  • Çiftçi, G., & Altınok, H. H. (2019). Patlıcan tohumlarında bitki büyüme düzenleyici rizobakteri uygulamalarının kurşuni küf (Botrytis cinerea Pers.: Fr.) hastalığına etkileri. KSÜ Tarım ve Doğa Dergisi, 22(3), 421–429. https://doi.org/10.18016/ksutarimdoga.vi.492824
  • Dannon, H. F., Dannon, A. E., Douro-Kpindou, O. K., Zinsou, A. V., Houndété, A. T., Toffa-Mehinto, J., Elégbédé, I. A. T. M., Olou, B. D., & Tamò, M. (2020). Toward the efficient use of Beauveria bassiana in integrated cotton insect pest management. Journal of Cotton Research, 3(1), 24. https://doi.org/10.1186/s42397-020-00061-5
  • Dennis, C., & Webster, J. (1971). Antagonistic properties of species-groups of Trichoderma. Transactions of the British Mycological Society, 57(1), 25–39. https://doi.org/10.1016/S0007-1536(71)80077-3
  • Domsch, K. H., Gams, W., & Anderson, T. (1993). Compendium of soil fungi. Academic Press.
  • Faria, M., & Wraight, S. P. (2001). Biological control of Bemisia tabaci with fungi. Crop Protection, 20(9), 767–778.
  • Faria, M. R., & Wraight, S. P. (2007). Mycoinsecticides and mycoacaricides: A comprehensive list with worldwide coverage and international classification of formulation types. Biological Control, 43(3), 237–256. https://doi.org/10.1016/j.biocontrol.2007.08.001
  • Fréchette, B., Ziani, J., Cormier, D., & diğerleri. (2009). Use of Beauveria bassiana against the plum curculio, Conotrachelus nenuphar, in apple orchards. Mirabel Agrifood Research Center.
  • Gothandapani, S., Boopalakrishnan, G., Prabhakaran, N., Chethana, B. S., Aravindhan, M., Saravanakumar, M., & Ganeshan, G. (2014). Evaluation of entomopathogenic fungus against Alternaria porri (Ellis) causing purple blotch disease of onion. Archives of Phytopathology and Plant Protection, 48(2), 135–144. https://doi.org/10.1080/03235408.2014.884532
  • Guo, J., Xu, Y., Liang, S., Zhou, Z., Zhang, C., Li, K., Peng, X., Qin, S., & Xing, K. (2023). Antifungal activity of volatile compounds from Bacillus tequilensis XK29 against Botrytis cinerea causing gray mold on cherry tomatoes. Postharvest Biology and Technology, 198, 111313. https://doi.org/10.1016/j.postharvbio.2022.112239
  • Gupta, R., & Bar, M. (2020). Plant immunity, priming, and systemic resistance as mechanisms for Trichoderma spp. biocontrol. In Trichoderma: Host-pathogen interactions and applications (pp. 81–110). Springer. https://doi.org/10.1007/978-981-15-3321-1_5
  • Gupta, R., Keppanan, R., Leibman-Markus, M., Rav-David, D., Elad, Y., Ment, D., & Bar, M. (2022). The entomopathogenic fungi Metarhizium brunneum and Beauveria bassiana promote systemic immunity and confer resistance to a broad range of pests and pathogens in tomato. Phytopathology, 112(4), 784–793. https://doi.org/10.1094/PHYTO-08-21-0343-R
  • Jaber, L. R., & Salem, N. M. (2014). Endophytic colonization of squash by the fungal entomopathogen Beauveria bassiana (Ascomycota: Hypocreales) for managing zucchini yellow mosaic virus in cucurbits. Biocontrol Sci. Tech. 24, 1096–1109. doi: 10.1080/09583157.2014.923379
  • Jamal, Z. (2008). Application of Beauveria bassiana against Lygus lineolaris (Palisot de Beauvois) (Hemiptera: Miridae) in vineyards. University of Quebec.
  • Jiao, W., Liu, X., Li, Y., Li, B., Du, Y., Zhang, Z., Chen, Q., & Fu, M. (2022). Organic acid, a virulence factor for pathogenic fungi, causing postharvest decay in fruits. Molecular Plant Pathology, 23(2), 304–312. https://doi.org/10.1111/mpp.13159
  • Jiao, X., Takishita, Y., Zhou, G., & Smith, D. L. (2021). Plant associated rhizobacteria for biocontrol and plant growth enhancement. Frontiers in Plant Science, 12, 634796. https://doi.org/10.3389/fpls.2021.634796
  • Köhl, J., Kolnaar, R., & Ravensberg, W. J. (2019). Mode of action of microbial biological control agents against plant diseases: Relevance beyond efficacy. Frontiers in Plant Science, 10, 845. https://doi.org/10.3389/fpls.2019.00845
  • Kucera, M., & Samsinakova, A. (1968). Toxins of the entomophagous fungus Beauveria bassiana. Journal of Invertebrate Pathology, 12(3), 316–320. https://doi.org/10.1016/0022-2011(68)90333-9
  • Lacey, L. A., Grzywacz, D., Shapiro-Ilan, D. I., Frutos, R., Brownbridge, M., & Goettel, M. S. (2015). Insect pathogens as biological control agents: Back to the future. Journal of Invertebrate Pathology, 132, 1–41. https://doi.org/10.1016/j.jip.2015.07.009
  • Lambert, N. (2010). Biological control of pests: Applicability in Quebec. University of Sherbrooke. Lee, S.-M., Yeo, W.-H., Jee, H.-J., Shin, S.-C., & Moon, Y.-S. (1999). Effect of entomopathogenic fungi on growth of cucumber and Rhizoctonia solani. Journal of Forestry Science, 62, 118–125.
  • Li, T. T., Zhang, J. D., Tang, J. Q., Liu, Z. C., Li, Y. Q., Chen, J., & Zou, L. W. (2020). Trichoderma atroviride combined use of CCTCCSBW0199 and brassinolide to control infection in tomato. Plant Disease, 104, 1298–1304. https://doi.org/10.1094/PDIS-07-19-1568-RE
  • Li, Z. Z., Li, C. R., Huang, B., & Fan, M. Z. (2001). Discovery and demonstration of the teleomorph of Beauveria bassiana (Bals.) Vuill., an important entomogenous fungus. Chinese Science Bulletin, 46(9), 751–753. https://doi.org/10.1007/BF03187215
  • Lozano-Tovar, M. D., Ortiz-Urquiza, A., Garrido-Jurado, I., Trapero-Casas, A., & Quesada-Moraga, E. (2013). Assessment of entomopathogenic fungi and their extracts against a soil-dwelling pest and soil-borne pathogens of olive. Biological Control, 67, 409–420. https://doi.org/10.1016/j.biocontrol.2013.09.006
  • Mascarin, G. M., & Jaronski, S. T. (2016). The production and uses of Beauveria bassiana as a microbial insecticide. World Journal of Microbiology and Biotechnology, 32(11), Article 177. https://doi.org/10.1007/s11274-016-2131-3
  • Mehari, Z. H., Elad, Y., Rav-David, D., Graber, E. R., & Meller Harel, Y. (2015). Induced systemic resistance in tomato (Solanum lycopersicum) against Botrytis cinerea by biochar amendment involves jasmonic acid signaling. Plant and Soil, 395(1), 31–44. https://doi.org/10.1007/s11104-015-2445-1
  • Ownley, B. H., Dee, M. M., & Gwinn, K. (2008a). Effect of conidial seed treatment rate of entomopathogenic Beauveria bassiana 11-98 on endophytic colonization of tomato seedlings and control of Rhizoctonia disease. Phytopathology, 98(6), S118.
  • Ownley, B. H., Griffin, M. R., Klingeman, W. E., Gwinn, K. D., Moulton, J. K., & Pereira, R. M. (2008b). Beauveria bassiana: Endophytic colonization and plant disease control. Journal of Invertebrate Pathology, 98(3), 267–270. https://doi.org/10.1016/j.jip.2008.01.010
  • Patocha, J. (2016). Bioactive metabolites of entomopathogenic fungus Beauveria bassiana. Military Medical Science Letters, 85(2), 80–88. https://doi.org/10.31482/mmsl.2016.015
  • Posada, F., Aime, M. C., Peterson, S. W., Rehner, S. A., & Vega, F. E. (2007). Inoculation of coffee plants with the fungal entomopathogen Beauveria bassiana (Ascomycota: Hypocreales). Mycological Research, 111(6), 748–757. https://doi.org/10.1016/j.mycres.2007.03.006
  • Ravindran, K., Chitra, S., Wilson, A., & Sivaramakrishnan, S. (2014). Evaluation of antifungal activity of Metarhizium anisopliae against plant phytopathogenic fungi. In R. Kharwar, R. Upadhyay, N. Dubey, & R. Raghuwanshi (Eds.), Microbial Diversity and Biotechnology in Food Security (pp. 251-255). Springer. https://doi.org/10.1007/978-81-322-1801-2_22
  • Reisenzein, H., & Tiefenbrunner, W. (1997). Growth inhibiting effect of different isolates of the entomopathogenic fungus Beauveria bassiana (Bals) Vuill. to the plant parasitic fungi of the genera Fusarium, Armillaria and Rosellinia. Pflanzenschutzbericht, 57(1), 15–24.
  • Renwick, A., Campbell, R., & Coe, S. (1991). Assessment of in vivo screening systems for potential biocontrol agents of Gaeumannomyces graminis. Plant Pathology, 40(4), 524–532. https://doi.org/10.1111/j.1365-3059.1991.tb02415.x
  • Rhouma, A., Hajji-Hedfi, L., Kouadri, M. E., Atallaoui, K., Matrood, A. A. A., & Khrieba, M. I. (2023). Botrytis cinerea: The cause of tomatoes gray mold. Egyptian Journal of Phytopathology, 51(2), 68–75. https://doi.org/10.21608/ejp.2023.224842.1101
  • Roca-Couso, R., Flores-Félix, J. D., & Rivas, R. (2021). Mechanisms of action of microbial biocontrol agents against Botrytis cinerea. Journal of Fungi, 7(12), 1045. https://doi.org/10.3390/jof7121045
  • Rodriguez-Moreno, L., Ebert, M. K., Bolton, M. D., & Thomma, B. H. (2018). Tools of the crook-infection strategies of fungal plant pathogens. Plant Journal, 93(4), 664–674. https://doi.org/10.1111/tpj.13810
  • Sabbahi, R. (2008). Use of the entomopathogenic fungus Beauveria bassiana in a strategy of phytosanitary management of the main insect pests in strawberry plantations (Doctoral thesis, University of Quebec).
  • Sánchez-Rodríguez, A. R., Raya-Díaz, S., Zamarreño, Á. M., García-Mina, J. M., Campillo, M. D., & Quesada-Moraga, E. (2018). An endophytic Beauveria bassiana strain increases spike production in bread and durum wheat plants and effectively controls cotton leafworm (Spodoptera littoralis) larvae. Biol. Control 116, 90–102. doi: 10.1016/j.biocontrol.2017.01.012
  • Sarven, M. S., Hao, Q., Deng, J., Yang, F., Wang, G., Xiao, Y., & Xiao, X. (2020). Biological control of tomato gray mold caused by Botrytis cinerea with the entomopathogenic fungus Metarhizium anisopliae. Pathogens, 9(3), 213. https://doi.org/10.3390/pathogens9030213
  • Sasan, R. K., & Bidochka, M. J. (2013). Antagonism of the endophytic insect pathogenic fungus Metarhizium robertsii against the bean plant pathogen Fusarium solani f. sp. phaseoli. Canadian Journal of Plant Pathology, 35(3), 288–293. https://doi.org/10.1080/07060661.2013.823114
  • Sharma, A., Sharma, S., & Yadav, P. K. (2023). Entomopathogenic fungi and their relevance in sustainable agriculture: A review. Cogent Food & Agriculture, 9(1). https://doi.org/10.1080/23311932.2023.2180857
  • Sinno, M., Ranesi, M., Di Lelio, I., Iacomino, G., Becchimanzi, A., Barra, E., Molisso, D., Pennacchio, F., Digilio, M. C., Vitale, S., Turrà, D., Harizanova, V., Lorito, M., & Woo, S. L. (2021). Selection of Endophytic Beauveria bassiana as a Dual Biocontrol Agent of Tomato Pathogens and Pests. Pathogens, 10(10), 1242. https://doi.org/10.3390/pathogens10101242
  • Sui, L., Lu, Y., Zhou, L., Li, N., Li, Q., & Zhang, Z. (2023). Endophytic Beauveria bassiana promotes plant biomass growth and suppresses pathogen damage by directional recruitment. Frontiers in Microbiology, 14, 1227269. Teng, C. (1962). Studies on the biology of Beauveria bassiana (Bals.) Vuill. with reference to microbial control of insect pests. Acta Botanica Sinica, 10(3), 210–232.
  • Thongkamngam, T., & Jaenaksorn, T. (2016). Efficacy of culture filtrate from Fusarium oxysporum F221-B against plant pathogenic fungi in vitro and Fusarium root rot and wilt disease in hydroponics. International Journal of Agricultural Technology, 12(3), 513–526. https://doi.org/10.13140/RG.2.2.14348.23687
  • Tomilova, O. G., Shaldyaeva, E. M., Kryukova, N. A., Pilipova, Y. V., Schmidt, N. S., Danilov, V. P., Kryukov, V. Y., & Glupov, V. V. (2020). Entomopathogenic fungi decrease Rhizoctonia disease in potato in field conditions. PeerJ, 8, e9895. https://doi.org/10.7717/peerj.9895
  • Townsend, G. K., & Heuberger, J. W. (1943). Methods for estimating losses caused by diseases in fungicide experiments. Plant Disease Report, 27(17), 340–343.
  • Vega, F. E., Goettel, M. S., Blackwell, M., Chandler, D., Jackson, M. A., Keller, S., Koike, M., Maniania, N. K., Monzón, A., Ownley, B., et al. (2009). Fungal entomopathogens: New insights on their ecology. Fungal Ecology, 2(4), 149–159. https://doi.org/10.1016/j.funeco.2009.05.001
  • Vega, F. E., Posada, F., Catherine Aime, M., Pava-Ripoll, M., Infante, F., & Rehner, S. A. (2008). Entomopathogenic fungal endophytes. Biological Control, 46(1), 72–82. https://doi.org/10.1016/j.biocontrol.2008.01.008
  • Vesely, D., & Koubova, D. (1994). In vitro effect of the entomopathogenic fungi Beauveria bassiana (Bals.-Criv.) Vuill. and B. brongniartii (Sacc.) Petch on phytopathogenic fungi. Ochrana Rostlin, 30, 113–120.
  • Vos, C. M. F., De Cremer, K., Cammue, B. P. A., & De Coninck, B. (2015). The toolbox of Trichoderma spp. in the biocontrol of Botrytis cinerea disease. Molecular Plant Pathology, 16(4), 400–412. https://doi.org/10.1111/mpp.12189
  • Wang, X., Zhou, X., Cai, Z., Guo, L., Chen, X., Chen, X., Liu, J., Feng, M., Qiu, Y., Zhang, Y., et al. (2021). A biocontrol strain of Pseudomonas aeruginosa CQ-40 promotes growth and controls Botrytis cinerea in tomato. Pathogens, 10(1), 22. https://doi.org/10.3390/pathogens10010022
  • Xu, Y., Orozco, R., Kithsiri Wijeratne, E. M., Espinosa Artiles, P., Leslie Gunatilaka, A. A., Patricia Stock, S., & Molnár, I. (2009). Biosynthesis of the cyclooligomer depsipeptide bassianolide, an insecticidal virulence factor of Beauveria bassiana. Fungal Genetics and Biology, 46(5), 353–364. https://doi.org/10.1016/j.fgb.2009.03.001
  • Yun, H. G., Kim, D. J., Gwak, W. S., Shin, T. Y., & Woo, S. D. (2017). Entomopathogenic fungi as dual control agents against both the pest Myzus persicae and phytopathogen Botrytis cinerea. Mycobiology, 45(3), 192–198. https://doi.org/10.5941/MYCO.2017.45.3.192.
Toplam 59 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Fitopatoloji
Bölüm Araştırma Makalesi
Yazarlar

Melike Yıldırım 0009-0008-0706-3406

Şerife Evrim Arıcı 0000-0001-5453-5869

Proje Numarası Bu çalışma, ISUBÜ Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından 2022-YL1-0171 No’lu proje ile desteklenen ve (YOK Tez No:10718281 olan) yüksek lisans tezinden üretilmiştir.
Gönderilme Tarihi 29 Eylül 2025
Kabul Tarihi 23 Aralık 2025
Yayımlanma Tarihi 29 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 14 Sayı: 2

Kaynak Göster

APA Yıldırım, M., & Arıcı, Ş. E. (2025). Beauveria bassiana’nın Domateste Kurşuni Küf (Botrytis cinerea) Hastalığına Karşı In vitro ve In vivo Koşullarda Etkinliğinin Belirlenmesi. Akademik Ziraat Dergisi, 14(2), 216-227. https://doi.org/10.29278/azd.1792442