Amaç: Bu çalışmada ultraviyole ışık ve sıcak havayla kurutma uygulamalarının üç farklı kayısı çeşidindeki (Prunus armenica L., var. Hacıhaliloğlu, Prunus armenica L., var. Kabaaşı, Prunus armenica L., var. Şekerpare) yüzey mikroorganizma yüküne (psikrofilik ve mezofilik aerobik bakteriler, maya ve küf) etkileri araştırılmıştır. Materyal ve Yöntem: Ultraviyole ışık ortalama doz oranı 6.70 W/m2 ve ışıma maruziyeti (dozaj) 2.01 kJ/m2 olarak uygulanmıştır. Kurutma 70 °C de kayısıların nem içeriği %19’a düşünceye kadar yapılmıştır. Araştırma Bulguları: Çalışma sonucunda Şekerpare çeşidinin diğer iki kayısı çeşidine göre başlangıç mikrobiyal yükünün açıkça daha yüksek olduğu görülmüştür. Ultraviyole ışık ve sıcak hava ile kurutma uygulamaları kayısıların yüzeyinde bulunan doğal mikroflorayı azaltmıştır. Bu azalma, sıcak hava ile kurutma uygulaması için sadece Şekerpare çeşidinde önemli bulunmuştur. Ultraviyole ışık uygulamasının etkisi maya ve küf açısından tüm çeşitlerde önemsizken, mezofilik ve psikrofilik aerobik bakteriler için sadece Şekerpare çeşidinde, toplam mikrobiyal yük için ise Şekerpare ve Hacıhaliloğlu çeşidinde önemli olmuştur. Ultraviyole ışık ve ardından sıcak hava ile kurutma uygulanması durumunda ise meydana gelen azalma mezofilik aerobik bakteriler ile maya ve küf sayıları açısından Şekerpare çeşidinde, psikrofilik aerobik bakteri sayıları ve toplam mikrobiyal yük açısından ise tüm çeşitlerde önemli bulunmuştur. Sonuç: En etkili yöntem UVC ve sıcak hava ile kurutma uygulamasının birlikte uygulanması olduğu sonucuna varılmıştır. Bu yöntemlerin ayrı ayrı kullanılması durumunda etkinlik sırasının değiştiği ve yapılan uygulamaların en fazla psikrofilik aerobik bakteri sayınının azaltılmasında etkili olduğu da tespit edilmiştir.
Aarrouf, J., Urban, L. (2020). Flashes of UV-C light: An innovative method for stimulating plant defences. PLoS ONE, 15(7 July), 1–16. doi:10.1371/journal.pone.0235918
Barata, A., Malfeito-Ferreira, M., Loureiro, V. (2012). The microbial ecology of wine grape berries. International Journal of Food Microbiology, 153(3), 243–259.
doi:10.1016/j.ijfoodmicro.2011.11.025
Barbosa-Cánovas, G. V., Vega-Mercado, H. (1996). Cabinet and Bed Dryers. Dehydration of Foods, 157–184. doi:10.1007/978-1-4757-2456-1_5
Barth, M., Hankinson, T.R., Zhuang, H., Breidt, F. (2009). Microbiological Spoilage of Fruits and Vegetables. Sperber, W.H., Doyle, M.P. (eds.), Compendium of the
Food Microbiology and Food Safety
Begum, M., Hocking, A. D., Miskelly, D. (2009). Inactivation of food spoilage fungi by ultraviolet (UVC) irradiation. International Journal of Food Microbiology, 129(1), 74–77. doi:10.1016/j.ijfoodmicro.2008.11.020
Ben Said, M., Masahiro, O., Hassen, A. (2010). Detection of viable but non cultivable Escherichia coli after UV irradiation using a lytic Qβ phage. Annals of Microbiology, 60(1), 121–127. doi:10.1007/s13213-010-0017-4
Civello, P. M., Vicente, A. R., Martínez, G. A. (2006). UV-C technology to control postharvest diseases of fruits and vegetables. Recent Advances in Alternative Postharvest Technologies to Control Fungal Diseases in Fruits & Vegetables (C. 37).
Cote, S., Rodoni, L., Miceli, E., Concellón, A., Civello, P. M., Vicente, A. R. (2013). Effect of radiation intensity on the outcome of postharvest UV-C treatments. Postharvest Biology and Technology, 83, 83–89. doi:10.1016/j.postharvbio.2013.03.009
Dai, T., Vrahas, M. S., Murray, C. K., Hamblin, M. R. (2012). Ultraviolet C irradiation: An alternative antimicrobial approach to localized infections? Expert Review of Anti-Infective Therapy, 10(2), 185–195. doi:10.1586/eri.11.166
Droby, S., Wisniewski, M. (2018). The fruit microbiome: A new frontier for postharvest biocontrol and postharvest biology. Postharvest Biology and Technology, 140 (March), 107–112. doi:10.1016/j.postharvbio.2018.03.004
Dukare, A. S., Paul, S., Nambi, V. E., Gupta, R. K., Singh, R., Sharma, K., Vishwakarma, R. K. (2019). Exploitation of microbial antagonists for the control of postharvest diseases of fruits: a review. Critical Reviews in Food Science and Nutrition, 59(9), 1498–1513. doi:10.1080/10408398.2017.1417235
Durmaz, G., Çam, M., Kutlu, T., Hışıl, Y. (2010) Some Physical and Chemical Changes during Fruit Development of Five Common Apricot (Prunus armeniaca L.) Cultivars. Food Science and Technology Research, 16 (1), 71–78.
Fan, Xinguang, Zhao, H., Wang, X., Cao, J., Jiang, W. (2017). Sugar and organic acid composition of apricot and their contribution to sensory quality and consumer satisfaction. Scientia Horticulturae, 225(July), 553–560. doi:10.1016/j.scienta.2017.07.016
Fan, Xuetong, Huang, R., Chen, H. (2017). Application of ultraviolet C technology for surface decontamination of fresh produce. Trends in Food Science and Technology, 70 (September), 9–19. doi:10.1016/j.tifs.2017.10.004
FAOSTAT (2021). http://www.fao.org/faostat/en/#data/QC (Erişim tarihi : 19 Ocak 2021)
FDA (2020). Code of Federal Regulations Title 21 Food and drugs. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=880.6600 (Erişim tarihi: 19 Ocak 2021)
Hakguder Taze, B., Unluturk, S. (2018). Effect of postharvest UV-C treatment on the microbial quality of ‘Şalak’ apricot. Scientia Horticulturae, 233(August 2017), 370–377. doi:10.1016/j.scienta.2018.02.012
Igual, M., García-Martínez, E., Martín-Esparza, M. E., Martínez-Navarrete, N. (2012). Effect of processing on the drying kinetics and functional value of dried apricot. Food Research International, 47(2), 284–290. doi:10.1016/j.foodres.2011.07.019
Jiménez, A. M., Martínez-Tomé, M., Egea, I., Romojaro, F., Murcia, M. A. (2008). Effect of industrial processing and storage on antioxidant activity of apricot (Prunus armeniaca v. bulida). European Food Research and Technology, 227(1), 125–134. doi:10.1007/s00217-007-0701-1
Karabulut, I., Topcu, A., Duran, A., Turan, S., Ozturk, B. (2007). Effect of hot air drying and sun drying on color values and β-carotene content of apricot (Prunus armenica L.). LWT - Food Science and Technology, 40(5), 753–758. doi:10.1016/j.lwt.2006.05.001
Karathanos, V. T., Belessiotis, V. G. (1997). Sun and artificial air drying kinetics of some agricultural products. Journal of Food Engineering, 31(1), 35–46. doi:10.1016/S0260-8774(96)00050-7
Keyser, M., Muller, I. A., Cilliers, F. P., Nel, W., Gouws, P. A. (2008). Ultraviolet radiation as a non-thermal treatment for the inactivation of microorganisms in fruit juice. Innovative Food Science and Emerging Technologies, 9(3), 348–354. doi:10.1016/j.ifset.2007.09.002
Kramer, B., Muranyi, P. (2014). Effect of pulsed light on structural and physiological properties of Listeria innocua and Escherichia coli. Journal of Applied Microbiology, 116(3), 596–611. doi:10.1111/jam.12394
Liu, B., Jiao, W., Wang, B., Shen, J., Zhao, H., Jiang, W. (2019). Near freezing point storage compared with conventional low temperature storage on apricot fruit flavor quality (volatile, sugar, organic acid) promotion during storage and related shelf life. Scientia Horticulturae, 249(July 2018), 100–109. doi:10.1016/j.scienta.2019.01.048
Lüle, F., Koyuncu, T. (2015). Convective and Microwave Drying Characteristics of Sorbus Fruits (Sorbus domestica L.). Procedia - Social and Behavioral Sciences, 195, 2634–2643. doi:10.1016/j.sbspro.2015.06.467
Özelçi, M., Aslantaş, R., Özelçi, D., Çöçen, E. (2021) ‘Hacıhaliloğlu’ Kayısı Çeşidinde Meyve Gelişimi Sırasındaki Fiziksel ve Kimyasal Değişimlerin Belirlenmesi. Türk Tarım ve Doğa Bilimleri Dergisi 8(1): 58–65.
Sharma, R. R., Singh, D., Singh, R. (2009). Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: A review. Biological Control, 50(3), 205–221. doi:10.1016/j.biocontrol.2009.05.001
Srepong, K., Jitareerat, P., Uthairatanakij, A., Srilaong, V., Wongs-Aree, C., Tsuyumu, S. (2013). Induction of defense mechanisms on harvested mangoes by UV-C irradiation. Acta Horticulturae, 973(March 2016), 89–96. doi:10.17660/actahortic.2013.973.10
TEPGE (2019). Tarımsal Ekonomi ve Politika Geliştirme Enstitüsü, Kayısı. https://arastirma.tarimorman.gov.tr/tepge/Belgeler/PDF Tarım Ürünleri Piyasaları/2019-Temmuz Tarım Ürünleri Raporu/2019-Temmuz Kayısı.pdf (Erişim tarihi: 19 Ocak 2021)
Toǧrul, I. T., Pehlivan, D. (2003). Modelling of drying kinetics of single apricot. Journal of Food Engineering, 58(1), 23–32. doi:10.1016/S0260-8774(02)00329-1
Türkyılmaz, M., Tağı, Ş., Özkan, M., Öztürk, K., Öztürk, B. (2013). Chemical and microbial differences in dried apricots containing sulphur dioxide at different levels. Gıda /the Journal of Food, 38(5), 275–282. doi:10.5505/gida.2013.32032
Ubeyitoğulları, A., Çekmecelioğlu, D. (2016). Optimization of Hemicellulose Coating as Applied to Apricot Drying and Comparison with Chitosan Coating and Sulfite Treatment. Journal of Food Process Engineering, 39(6), 542–552. doi:10.1111/jfpe.12247
Usall, J., Ippolito, A., Sisquella, M., Neri, F. (2016). Physical treatments to control postharvest diseases of fresh fruits and vegetables. Postharvest Biology and Technology, 122(2015), 30–40. doi:10.1016/j.postharvbio.2016.05.002
Villarino, A., Rager, M. N., Grimont, P. A. D., Bouvet, O. M. M. (2003). Are UV-induced nonculturable Escherichia coli K-12 cells alive or dead? European Journal of Biochemistry, 270(12), 2689–2695. doi:10.1046/j.1432-1033.2003.03652.x
WHO (2020) Internationally peer reviewed chemical safety information. http://www.inchem.org/documents/jecfa/jecmono/v21je15.htm (Erişim tarihi: 28 Aralık 2020)
Yan, R., Liu, Y., Gurtler, J. B., Killinger, K., Fan, X. (2017). Sensitivity of pathogenic and attenuated E. coli O157:H7 strains to ultraviolet-C light as assessed by conventional plating methods and ethidium monoazide-PCR. Journal of Food Safety, 37(4). doi:10.1111/jfs.12346
Zhebentyayeva, T., Ledbetter, C., Burgos, L., Llácer, G. (2012). Apricot. Badenes, M.L. and Byrne, D.H. (eds.), Fruit breeding, Handbook of Plant Breeding 8. doi:10.1007/978-1-4419-0763-9
A potential application on reducing microorganism load in apricot drying: Ultraviolet C (UVC) + Hot air drying
Objective: In this study, the effects of ultraviolet light and hot air drying applications on surface microbial load (psychrophilic and mesophilic aerobic bacteria, yeast and mold) of three different apricot varieties (Prunus armenica L., var. Hacıhaliloğlu, Prunus armenica L., var. Kabaaşı, Prunus armenica L., var. Şekerpare) investigated. Materials and Methods: The average ultraviolet light dose rate was 6.70 W/m2 and the radiation exposure (dosage) was 2.01 kJ/m2. Drying was carried out at 70 °C until the moisture content of apricots decreased to 19%. Results: As a result of the study, it was observed that the initial microbial load of Şekerpare variety was clearly higher than the other two apricot varieties. Ultraviolet light and hot air drying applications reduced the natural microflora on the surface of apricots. This reduction was found to be significant only in Şekerpare variety for hot air drying application. While the effect of ultraviolet light application was insignificant in terms of yeast and mold in all varieties, it was important for mesophilic and psychrophilic aerobic bacteria only in Şekerpare variety, and for total microbial load in Şekerpare and Hacıhaliloğlu varieties. In the case of application of ultraviolet light and subsequent hot air drying, the decrease in the number of mesophilic aerobic bacteria, yeast and mold was found to be significant in Şekerpare variety, and in all varieties in terms of psychrophilic aerobic bacteria numbers and total microbial load. Conclusion: The most effective method is to apply UVC and hot air drying application together. It has also been determined that the order of activity changes when these methods are used separately, and the applications are most effective in reducing the number of psychrophilic aerobic bacteria.
Aarrouf, J., Urban, L. (2020). Flashes of UV-C light: An innovative method for stimulating plant defences. PLoS ONE, 15(7 July), 1–16. doi:10.1371/journal.pone.0235918
Barata, A., Malfeito-Ferreira, M., Loureiro, V. (2012). The microbial ecology of wine grape berries. International Journal of Food Microbiology, 153(3), 243–259.
doi:10.1016/j.ijfoodmicro.2011.11.025
Barbosa-Cánovas, G. V., Vega-Mercado, H. (1996). Cabinet and Bed Dryers. Dehydration of Foods, 157–184. doi:10.1007/978-1-4757-2456-1_5
Barth, M., Hankinson, T.R., Zhuang, H., Breidt, F. (2009). Microbiological Spoilage of Fruits and Vegetables. Sperber, W.H., Doyle, M.P. (eds.), Compendium of the
Food Microbiology and Food Safety
Begum, M., Hocking, A. D., Miskelly, D. (2009). Inactivation of food spoilage fungi by ultraviolet (UVC) irradiation. International Journal of Food Microbiology, 129(1), 74–77. doi:10.1016/j.ijfoodmicro.2008.11.020
Ben Said, M., Masahiro, O., Hassen, A. (2010). Detection of viable but non cultivable Escherichia coli after UV irradiation using a lytic Qβ phage. Annals of Microbiology, 60(1), 121–127. doi:10.1007/s13213-010-0017-4
Civello, P. M., Vicente, A. R., Martínez, G. A. (2006). UV-C technology to control postharvest diseases of fruits and vegetables. Recent Advances in Alternative Postharvest Technologies to Control Fungal Diseases in Fruits & Vegetables (C. 37).
Cote, S., Rodoni, L., Miceli, E., Concellón, A., Civello, P. M., Vicente, A. R. (2013). Effect of radiation intensity on the outcome of postharvest UV-C treatments. Postharvest Biology and Technology, 83, 83–89. doi:10.1016/j.postharvbio.2013.03.009
Dai, T., Vrahas, M. S., Murray, C. K., Hamblin, M. R. (2012). Ultraviolet C irradiation: An alternative antimicrobial approach to localized infections? Expert Review of Anti-Infective Therapy, 10(2), 185–195. doi:10.1586/eri.11.166
Droby, S., Wisniewski, M. (2018). The fruit microbiome: A new frontier for postharvest biocontrol and postharvest biology. Postharvest Biology and Technology, 140 (March), 107–112. doi:10.1016/j.postharvbio.2018.03.004
Dukare, A. S., Paul, S., Nambi, V. E., Gupta, R. K., Singh, R., Sharma, K., Vishwakarma, R. K. (2019). Exploitation of microbial antagonists for the control of postharvest diseases of fruits: a review. Critical Reviews in Food Science and Nutrition, 59(9), 1498–1513. doi:10.1080/10408398.2017.1417235
Durmaz, G., Çam, M., Kutlu, T., Hışıl, Y. (2010) Some Physical and Chemical Changes during Fruit Development of Five Common Apricot (Prunus armeniaca L.) Cultivars. Food Science and Technology Research, 16 (1), 71–78.
Fan, Xinguang, Zhao, H., Wang, X., Cao, J., Jiang, W. (2017). Sugar and organic acid composition of apricot and their contribution to sensory quality and consumer satisfaction. Scientia Horticulturae, 225(July), 553–560. doi:10.1016/j.scienta.2017.07.016
Fan, Xuetong, Huang, R., Chen, H. (2017). Application of ultraviolet C technology for surface decontamination of fresh produce. Trends in Food Science and Technology, 70 (September), 9–19. doi:10.1016/j.tifs.2017.10.004
FAOSTAT (2021). http://www.fao.org/faostat/en/#data/QC (Erişim tarihi : 19 Ocak 2021)
FDA (2020). Code of Federal Regulations Title 21 Food and drugs. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=880.6600 (Erişim tarihi: 19 Ocak 2021)
Hakguder Taze, B., Unluturk, S. (2018). Effect of postharvest UV-C treatment on the microbial quality of ‘Şalak’ apricot. Scientia Horticulturae, 233(August 2017), 370–377. doi:10.1016/j.scienta.2018.02.012
Igual, M., García-Martínez, E., Martín-Esparza, M. E., Martínez-Navarrete, N. (2012). Effect of processing on the drying kinetics and functional value of dried apricot. Food Research International, 47(2), 284–290. doi:10.1016/j.foodres.2011.07.019
Jiménez, A. M., Martínez-Tomé, M., Egea, I., Romojaro, F., Murcia, M. A. (2008). Effect of industrial processing and storage on antioxidant activity of apricot (Prunus armeniaca v. bulida). European Food Research and Technology, 227(1), 125–134. doi:10.1007/s00217-007-0701-1
Karabulut, I., Topcu, A., Duran, A., Turan, S., Ozturk, B. (2007). Effect of hot air drying and sun drying on color values and β-carotene content of apricot (Prunus armenica L.). LWT - Food Science and Technology, 40(5), 753–758. doi:10.1016/j.lwt.2006.05.001
Karathanos, V. T., Belessiotis, V. G. (1997). Sun and artificial air drying kinetics of some agricultural products. Journal of Food Engineering, 31(1), 35–46. doi:10.1016/S0260-8774(96)00050-7
Keyser, M., Muller, I. A., Cilliers, F. P., Nel, W., Gouws, P. A. (2008). Ultraviolet radiation as a non-thermal treatment for the inactivation of microorganisms in fruit juice. Innovative Food Science and Emerging Technologies, 9(3), 348–354. doi:10.1016/j.ifset.2007.09.002
Kramer, B., Muranyi, P. (2014). Effect of pulsed light on structural and physiological properties of Listeria innocua and Escherichia coli. Journal of Applied Microbiology, 116(3), 596–611. doi:10.1111/jam.12394
Liu, B., Jiao, W., Wang, B., Shen, J., Zhao, H., Jiang, W. (2019). Near freezing point storage compared with conventional low temperature storage on apricot fruit flavor quality (volatile, sugar, organic acid) promotion during storage and related shelf life. Scientia Horticulturae, 249(July 2018), 100–109. doi:10.1016/j.scienta.2019.01.048
Lüle, F., Koyuncu, T. (2015). Convective and Microwave Drying Characteristics of Sorbus Fruits (Sorbus domestica L.). Procedia - Social and Behavioral Sciences, 195, 2634–2643. doi:10.1016/j.sbspro.2015.06.467
Özelçi, M., Aslantaş, R., Özelçi, D., Çöçen, E. (2021) ‘Hacıhaliloğlu’ Kayısı Çeşidinde Meyve Gelişimi Sırasındaki Fiziksel ve Kimyasal Değişimlerin Belirlenmesi. Türk Tarım ve Doğa Bilimleri Dergisi 8(1): 58–65.
Sharma, R. R., Singh, D., Singh, R. (2009). Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: A review. Biological Control, 50(3), 205–221. doi:10.1016/j.biocontrol.2009.05.001
Srepong, K., Jitareerat, P., Uthairatanakij, A., Srilaong, V., Wongs-Aree, C., Tsuyumu, S. (2013). Induction of defense mechanisms on harvested mangoes by UV-C irradiation. Acta Horticulturae, 973(March 2016), 89–96. doi:10.17660/actahortic.2013.973.10
TEPGE (2019). Tarımsal Ekonomi ve Politika Geliştirme Enstitüsü, Kayısı. https://arastirma.tarimorman.gov.tr/tepge/Belgeler/PDF Tarım Ürünleri Piyasaları/2019-Temmuz Tarım Ürünleri Raporu/2019-Temmuz Kayısı.pdf (Erişim tarihi: 19 Ocak 2021)
Toǧrul, I. T., Pehlivan, D. (2003). Modelling of drying kinetics of single apricot. Journal of Food Engineering, 58(1), 23–32. doi:10.1016/S0260-8774(02)00329-1
Türkyılmaz, M., Tağı, Ş., Özkan, M., Öztürk, K., Öztürk, B. (2013). Chemical and microbial differences in dried apricots containing sulphur dioxide at different levels. Gıda /the Journal of Food, 38(5), 275–282. doi:10.5505/gida.2013.32032
Ubeyitoğulları, A., Çekmecelioğlu, D. (2016). Optimization of Hemicellulose Coating as Applied to Apricot Drying and Comparison with Chitosan Coating and Sulfite Treatment. Journal of Food Process Engineering, 39(6), 542–552. doi:10.1111/jfpe.12247
Usall, J., Ippolito, A., Sisquella, M., Neri, F. (2016). Physical treatments to control postharvest diseases of fresh fruits and vegetables. Postharvest Biology and Technology, 122(2015), 30–40. doi:10.1016/j.postharvbio.2016.05.002
Villarino, A., Rager, M. N., Grimont, P. A. D., Bouvet, O. M. M. (2003). Are UV-induced nonculturable Escherichia coli K-12 cells alive or dead? European Journal of Biochemistry, 270(12), 2689–2695. doi:10.1046/j.1432-1033.2003.03652.x
WHO (2020) Internationally peer reviewed chemical safety information. http://www.inchem.org/documents/jecfa/jecmono/v21je15.htm (Erişim tarihi: 28 Aralık 2020)
Yan, R., Liu, Y., Gurtler, J. B., Killinger, K., Fan, X. (2017). Sensitivity of pathogenic and attenuated E. coli O157:H7 strains to ultraviolet-C light as assessed by conventional plating methods and ethidium monoazide-PCR. Journal of Food Safety, 37(4). doi:10.1111/jfs.12346
Zhebentyayeva, T., Ledbetter, C., Burgos, L., Llácer, G. (2012). Apricot. Badenes, M.L. and Byrne, D.H. (eds.), Fruit breeding, Handbook of Plant Breeding 8. doi:10.1007/978-1-4419-0763-9
Özer Uyar, G. E., & Koçkan, C. (2022). Kayısı kurutulmasında mikrobiyal yükün azaltılmasında potansiyel uygulama: Ultraviyole C (UVC) + Sıcak hava kurutma. Akademik Ziraat Dergisi, 11(1), 155-164. https://doi.org/10.29278/azd.904952