Araştırma Makalesi
BibTex RIS Kaynak Göster

Farklı Arbüsküler Mikorizal Fungus Türlerinin Guava (Psidium Guajava L.) Çöğürlerinin Büyüme ve Gelişmesi Üzerine Etkileri

Yıl 2021, , 87 - 93, 15.11.2021
https://doi.org/10.53471/bahce.1005466

Öz

Guava’da, (Psidium Guajava L.) ticari bahçelerin kurulumunda aşıyla üretilmiş fidanlar tercih edilmektedir. Aşı ile çoğaltmada öncelikle aşı yapılacak çöğür ya da anaca ihtiyaç duyulmaktadır. Bu amaçla planlanan bu araştırmada, bazı arbüsküler mikorizal fungus (AMF) türlerinin, aşılamada kullanılacak guava çöğürlerinin büyüme ve gelişmesi üzerine etkilerinin belirlenmesi amaçlanmıştır. Çalışmada üç farklı AMF türü (Glomus mosseae, G. etinicatum, G. clarium) kullanılmıştır. Araştırma materyali olarak, pembe et rengine sahip guava genotipine ait çöğürler kullanılmıştır. Mikoriza aşılamaları, her bitkinin kök bölgesine 500 spor/bitki gelecek şekilde yapılmıştır. Aşılamadan 12 hafta sonra bitki gelişim parametreleri (bitki boyu, bitki çapı, kök uzunluğu, bitki ve kökün yaş-kuru ağırlıkları ve mikorizal kolonizasyon) ile ilgili ölçümler gerçekleştirilmiştir. Araştırma bulguları; bitki boyunun 74.9-83.9 cm, bitki çapının 5.6-6.5 mm, kök uzunluğunun 41.4-50.7 cm, bitki yaş-kuru ağırlıklarının 19.1-43.9 g - 7.9-17.2 g, kök yaş-kuru ağırlıklarının 9.6-27.8 g - 4.2-12.4 g ve kolonizasyon oranlarının %15-85 arasında değiştiğini göstermiştir. Araştırma sonucunda, guavada bitki büyüme ve gelişmesi üzerine mikoriza türlerinin etkisi farklı olmuştur. İncelenen tüm parametreler açısından en yüksek değerler G. etinicatum türünde elde edilmiş ve bunu sırasıyla G. mosseae ve G. clarium türleri izlemiştir.

Destekleyen Kurum

Batı Akdeniz Tarımsal Araştırma Enstitüsü Müdürlüğü

Kaynakça

  • 1. Samson, J.A. 1986. Tropical fruits. Tropical agriculture series, longman scientific and technical. Harlow, UK. pp: 235-255.
  • 2. Anonim, 2019. Top 10 largest guava producing countries in the world. The Daily Records, 2 January, (http://www.thedailyrecords.com/2018-2019-2020-2021/world-famous-top-10-list/world/largest-guava-producing-countries-world-fruits-states/6566/), (Erişim: Mart 2020).
  • 3. Martínez-De-Lara, J., Barrientos-Lara, M.C., Reyes-De Anda, A.C., Delgado, S.H., Padilla-Ramírez, J.S., Pérez, N. M. 2004. Diversidad fenotípica y genética en huertas de guayabo de calvillo, aguascalientes. Revista Fitotecnia Mexicana, Chapingo. 27 (3):243-249.
  • 4. Preece, J. E. 2003. A century of progress with vegetative plant propagation. Hortscience, Alexandria. 38 (5):1015-1025.
  • 5. Chandra, R., Kamle, M. Bajpai, A. 2010. Advances in horticulture biotechnology — regeneration systems — fruit crops, plantation crops and spices. Westville Publishing House, New Delhi. pp: 103-121.
  • 6. Pereira, F.M., Usman, M., Mayer, N.A., Nachtigal, J.C., Maphanga, O.R.M., Willemse, S. 2017. Advances in guava propagation. Revista Brasileira De Fruticultura 39 (4):228.
  • 7. Abbas, M.M., Javed, M.A., Ishfaq, M., Alvi, M. A. 2013. Grafting techniques in guava (Psidium guajava). J. Agric. Res. 51 (4):465-471.
  • 8. Menge, J.A., Mjarrell, W., Labanauskas, C.K., Ojala, J.C., Huszar, C., Johnson, E.L.V., Sibert, D. 1982. Predicting mycorrhizal dependency of troyer citrange on glomus fasciculatus in california citrus soils and nursery mixes. Soil Sci. Soc Am. J. 46:762- 768.
  • 9. Ortaş, İ., 1994. The effect of different forms and rates of nitrogen and different rates of phosphorus fertilizer on rhizosphere phandp uptake in mycorrhizal and non-mycorrhizal sorghum plants (PhD Thesis). University of Reading, UK, p. 270.
  • 10. Brundrett, M., Bougher, N., Dell, B., Grove, T., Malajczuk, N. 1996. Working with mycorrhizas in forestry and agriculture. ACIAR Monograph, Australia. p. 374.
  • 11. Azcón-Aguilar, C., Barea, J. 1997. Applying mycorrhiza biotechnology to horticulture: significance and potentials. Scientia Horticulturae 68:1-24.
  • 12. Ortas, I., 2000. Mikorizanın çevre biliminde kullanımı ve önemi. Gap Çevre Kongresi, 16-18 Ekim 2000. Sanlurfa. pp: 35-40.
  • 13. Davies, F. T. 2008. Opportunities from down under: how mycorrhizal fungi can benefit nursery propagation and production systems. Combined Proceedings International Plant Propagators’ Society pp: 539-548.
  • 14. Villeneuve, N., Le Tacon, F., Bouchard, D. 1991. Survival of inoculated Laccaria bicolor in competition with native ectomycorrhizal fungi and effects on the growth of out planted Douglas-fir seedlings. Plant and Soil 135:95–107.
  • 15. Singh, N.V., Singh, S.K., Singh, A.K., Meshram, D.T., Suroshe, S.S. 2012. Arbuscular mycorrhizal fungi (AMF) induced hardening of micropropagated pomegranate (Punica granatum L.) plantlets. Scientia Horticulturae 136:122-127.
  • 16. Nunes, J.L.S., Souza, P.V.D., Marodin, G.A.B., Fachınello, J.C. 2009. Efficiency of arbuscular mycorrhizal fungi on growth of 'aldrighi' peach tree rootstock. Bragantia 68 (4):931-940.
  • 17. Vinayak, K., Bagyaraj, D. J. 1990. Vesicular arbuscular mycorrhizae screened in troyer citrange. Biology and Fertility of Soils. 9 (4):311-314.
  • 18. Slawomir S., Aleksander, S. 2010. The influence of mycorrhizal fungi on the growth and yield of plum and sour cherry trees. Journal of Fruit and Ornamental Plant Research 18 (2):71-7.
  • 19. Joolka, N.K., Singh, R.R., Sharma, M.K. 2004. Influence of biofertilizers, GA3 and their combinations on the growth of pecan seedlings. Indian Journal of Horticulture 61 (3):226-228.
  • 20. Linderman, R.G., Davis, E. A. 2001. Comparative response of selected grapevine rootstocks and cultivars to inoculation with different mycorrhizal fungi. American Journal of Enology and Viticulture 52 (1):8-11.
  • 21. Ortakcı, D., Ortas, I. Ercan, S. 1998. The effect of different mycorrhizae species on citrus growth and nutrient uptake. International Symposium on Arid Region Soil. pp: 563-568.
  • 22. Mortin, Fortin, J.A., Hamel, C., Granger, R.L., Smith, D.L., 1994. Apple rootstock response to VA-mycorrhizal fungi in a high P soil. Journal of American Society of Horticultural Science. 119(3):578-583.
  • 23. Souza, P.V., D-de, Souza, de P.V.D., 2000. Effect of arbuscular mycorrhizae and gibberellic acid interactions on vegetative growth of Carrizo citrange seedlings. Cienicia Rural. 30(5):783-787.
  • 24. Estrada-Luna A.A., Davies, F.T., Egilla, J. N. 2000. Mycorrhizal fungi enhancement of growth and gas exchange of micropropagated guava plantlets (Psidium guajava L.) during ex vitro acclimatization and plant establishment. Mycorrhiza 10 (1):1-8.
  • 25. Zarate, J.T., 1992. Effects of VA (vesicular arbuscular) mycorrhizal inoculation on 18 selected crops in a phosphorus deficient soil (PhD Thesis). University of the Philippines At Los Baños p.185.
  • 26. Schiavo, J.A., Martins, M. A. 2002. Produção de mudas de goiabeira (Psidium guajava L.) inoculadas com o fungo micorrízico arbuscular Glomus clarum, em substrato agroindustrial. Rev. Bras. Frutic. 24:519–523.
  • 27. Silva, M.A.C., Silva, F.S.B., Yano-Melo, A.M., Melo, N.F., Pedrosa, E.M.R., Maia, L.C. 2013. Responses of guava plants to inoculation with arbuscular mycorrhizal fungi in soil infested with meloidogyne enterolobii. Plant Pathol. J. 29 (3):242-248.
  • 28. Koske, R.E., Gamma, J.N. 1989. A modified procedure for staining roots to detect VAM. Mycological Research 92:486-505.
  • 29. Giovannetti, M., Mosse, B. 1980. An evaluation of techniques for measuring vesicular-arbuscular mycorrhiza in roots. New Phytologist 84:489-500.
  • 30. Chew, V., 1976. Uses and abuses of duncan's multiple range test. Proceedings of the Florida State Horticultural Society 89:251-253.
  • 31. Kumari, M., Prasad, H., Kumari, S., Samriti, S. 2017. Association of am (arbuscular mycorrhizal) fungi in fruit crops production: A review. The Pharma Innovation Journal 6 (6): 204-208.
  • 32. Khade, W.S., Rodrigues, B.F. 2009. Studies on arbuscular mycorrhisation of papaya. African Crop Science Journal 17 (3):155 – 165.
  • 33. Kamble, S.R., Navale, A.M., Sonawane, R.B. 2009. Response of mango seedlings to VA-mycorrhizal inoculation. International Journal of Plant Protection 2 (2):161-164.
  • 34. Andrade, S.A.L., Mazzafera, P., Sch Iav Inato, M.A., Silveira, A.P.D. 2009. Arbuscular mycorrhizal association in coffee. Journal of Agricultural Science 147:105–115.
  • 35. Watanarajanaporn N., Boankerd, N., Wongkaew, S., Prommanap, P., Teaumroong, N. 2011. Selection of arbuscular mycorrhizal fungi for citrus growth promotion and phytophthora suppression. Sci Hortic. 128:423-433.
  • 36. Mohandas S., Poovarasan, S., Panneerselvam, P., Saritha, B., Upreti, K.K., Kamal, R. 2013. Guava (Psidium guajava L.) rhizosphere Glomus mosseaee spores harbor actinobacteria with growth promoting and antifungal attributes. Sci. Hortic. 150: 371–376.
  • 37. Renaldelli, E., Mancuso, S. 1996. Response of young mycorrhizal and nonmycorrhizal plants of olive tree to saline condition. Short term electrophysiological and long term vegetative salt effects. Agrochimica 44 (34):151-159.
  • 38. Eswarappa, H., Sukhada, M., Gowda, K.N., Mohandas, S. 2002. Effect of VAM fungi on banana. Current Research 31 (5-6):69-70.
  • 39. Lakshmipathy, R., Balakrishna, A.N., Bagyaraj, D.J., Kumar, D.P. 2002. Symbiotic response of cashew root stocks to different VA mycorrhizal fungi. Cashew 14 (3):20- 24.
  • 40. Vaast, P., Zasoskı, R.J., Bledsoe, C.S. 1996. Effects of vesicular-arbuscular mycorrhizal inoculation at different soil P availabilities on growth and nutrient uptake of in vitro propagated coffee (Coffea arabica L.) plants. Mycorrhiza 6:493–497.
  • 41. Azcón-Aguilar, C., Padilla, I.G., Encina, C.L., Azcón, R., Barea, J.M. 1996. Arbuscular mycorrhizal inoculation enhances plant growth and changes root system morphology in micropropagated Annona cherimola Mill. Agronomie: Plant Genetics and Breeding pp: 647-652.
  • 42. Declerck S., Risede J.M., Delvaux B. 2002. Greenhouse response of micropropagated bananas inoculated with in vitro monoxenically produced arbuscular mycorrhizal fungi, Sci. Hort. 93:301–309.
  • 43. Gholamhoseini M., Ghalavand A., Dolatabadian, A., Jamshidi, E., Khodaei-Joghan, A. 2013. Effects of arbuscular mycorrhizal inoculation on growth, yield, nutrient uptake and irrigation water productivity of sunflowers grown under drought stress. Agric. Water Manag. 117:106-114.
  • 44. Abbaspour, H., Afshari, H., Abdel-Wahhab, M.A. 2012. Influence of salt stress on growth, pigments, soluble sugars and ion accumulation in three pistachio cultivars. Journal of Medicinal Plants Research, 6 (12):2468-2473.
  • 45. Wu Q., Srivastava, A.K., Zou, Y. 2013. AMF-induced tolerance to drought stress in citrus: A review. Scientia Horticulturae 164:77–87.
  • 46. Zhang Y., Yao1, Q., Li, J., Wang, Y., Liu1, X., Hu, Y., Chen, J. 2015. Contributions of an arbuscular mycorrhizal fungus to growth and physiology of loquat (Eriobotrya japonica) plants subjected to drought stress. Mycol Progress. 14:84.

Effects of Different Arbuscular Mycorrhizal Fungi Species on Growth and Development of Guava (Psidium Guajava L.) Seedling

Yıl 2021, , 87 - 93, 15.11.2021
https://doi.org/10.53471/bahce.1005466

Öz

The grafted plants of guava are preferred for commercial planting. First, it is necessary to have seedlings and rootstock for propagation with grafting. The objective of the study is to evaluate the effects of some arbuscular mycorrhizal fungi (AMF) species on the growth and development of the guava seedlings to be used with grafting. Three different AMF species (Glomus mosseae, G. etinicatum, G. clarium) are used in this study. Pink flesh guava genotype was used as an experimental material. Mycorrhizal inoculations were applied using 500 spores per plant on the root zone of each plant. Plant measurement and parameter count (plant length, plant diameter, root length, plant and root fresh - dry weights and mycorrhizal colonization) were evaluated 12 weeks after inoculation. The results showed: plant length 74.9-83.9 cm, plant diameter 5.6-6.5 mm, root length 41.4-50.7 cm, plant fresh - dry weights 19.1-43.9 g - 7.9-17.2 g, root fresh - dry weights 9.6-27.8 g - 4.2-12.4 g and colonization rate varied between 15-85 % . The highest value in terms of investigation criteria was obtained with G. etinicatum and followed by G. mosseae and G. clarium.

Kaynakça

  • 1. Samson, J.A. 1986. Tropical fruits. Tropical agriculture series, longman scientific and technical. Harlow, UK. pp: 235-255.
  • 2. Anonim, 2019. Top 10 largest guava producing countries in the world. The Daily Records, 2 January, (http://www.thedailyrecords.com/2018-2019-2020-2021/world-famous-top-10-list/world/largest-guava-producing-countries-world-fruits-states/6566/), (Erişim: Mart 2020).
  • 3. Martínez-De-Lara, J., Barrientos-Lara, M.C., Reyes-De Anda, A.C., Delgado, S.H., Padilla-Ramírez, J.S., Pérez, N. M. 2004. Diversidad fenotípica y genética en huertas de guayabo de calvillo, aguascalientes. Revista Fitotecnia Mexicana, Chapingo. 27 (3):243-249.
  • 4. Preece, J. E. 2003. A century of progress with vegetative plant propagation. Hortscience, Alexandria. 38 (5):1015-1025.
  • 5. Chandra, R., Kamle, M. Bajpai, A. 2010. Advances in horticulture biotechnology — regeneration systems — fruit crops, plantation crops and spices. Westville Publishing House, New Delhi. pp: 103-121.
  • 6. Pereira, F.M., Usman, M., Mayer, N.A., Nachtigal, J.C., Maphanga, O.R.M., Willemse, S. 2017. Advances in guava propagation. Revista Brasileira De Fruticultura 39 (4):228.
  • 7. Abbas, M.M., Javed, M.A., Ishfaq, M., Alvi, M. A. 2013. Grafting techniques in guava (Psidium guajava). J. Agric. Res. 51 (4):465-471.
  • 8. Menge, J.A., Mjarrell, W., Labanauskas, C.K., Ojala, J.C., Huszar, C., Johnson, E.L.V., Sibert, D. 1982. Predicting mycorrhizal dependency of troyer citrange on glomus fasciculatus in california citrus soils and nursery mixes. Soil Sci. Soc Am. J. 46:762- 768.
  • 9. Ortaş, İ., 1994. The effect of different forms and rates of nitrogen and different rates of phosphorus fertilizer on rhizosphere phandp uptake in mycorrhizal and non-mycorrhizal sorghum plants (PhD Thesis). University of Reading, UK, p. 270.
  • 10. Brundrett, M., Bougher, N., Dell, B., Grove, T., Malajczuk, N. 1996. Working with mycorrhizas in forestry and agriculture. ACIAR Monograph, Australia. p. 374.
  • 11. Azcón-Aguilar, C., Barea, J. 1997. Applying mycorrhiza biotechnology to horticulture: significance and potentials. Scientia Horticulturae 68:1-24.
  • 12. Ortas, I., 2000. Mikorizanın çevre biliminde kullanımı ve önemi. Gap Çevre Kongresi, 16-18 Ekim 2000. Sanlurfa. pp: 35-40.
  • 13. Davies, F. T. 2008. Opportunities from down under: how mycorrhizal fungi can benefit nursery propagation and production systems. Combined Proceedings International Plant Propagators’ Society pp: 539-548.
  • 14. Villeneuve, N., Le Tacon, F., Bouchard, D. 1991. Survival of inoculated Laccaria bicolor in competition with native ectomycorrhizal fungi and effects on the growth of out planted Douglas-fir seedlings. Plant and Soil 135:95–107.
  • 15. Singh, N.V., Singh, S.K., Singh, A.K., Meshram, D.T., Suroshe, S.S. 2012. Arbuscular mycorrhizal fungi (AMF) induced hardening of micropropagated pomegranate (Punica granatum L.) plantlets. Scientia Horticulturae 136:122-127.
  • 16. Nunes, J.L.S., Souza, P.V.D., Marodin, G.A.B., Fachınello, J.C. 2009. Efficiency of arbuscular mycorrhizal fungi on growth of 'aldrighi' peach tree rootstock. Bragantia 68 (4):931-940.
  • 17. Vinayak, K., Bagyaraj, D. J. 1990. Vesicular arbuscular mycorrhizae screened in troyer citrange. Biology and Fertility of Soils. 9 (4):311-314.
  • 18. Slawomir S., Aleksander, S. 2010. The influence of mycorrhizal fungi on the growth and yield of plum and sour cherry trees. Journal of Fruit and Ornamental Plant Research 18 (2):71-7.
  • 19. Joolka, N.K., Singh, R.R., Sharma, M.K. 2004. Influence of biofertilizers, GA3 and their combinations on the growth of pecan seedlings. Indian Journal of Horticulture 61 (3):226-228.
  • 20. Linderman, R.G., Davis, E. A. 2001. Comparative response of selected grapevine rootstocks and cultivars to inoculation with different mycorrhizal fungi. American Journal of Enology and Viticulture 52 (1):8-11.
  • 21. Ortakcı, D., Ortas, I. Ercan, S. 1998. The effect of different mycorrhizae species on citrus growth and nutrient uptake. International Symposium on Arid Region Soil. pp: 563-568.
  • 22. Mortin, Fortin, J.A., Hamel, C., Granger, R.L., Smith, D.L., 1994. Apple rootstock response to VA-mycorrhizal fungi in a high P soil. Journal of American Society of Horticultural Science. 119(3):578-583.
  • 23. Souza, P.V., D-de, Souza, de P.V.D., 2000. Effect of arbuscular mycorrhizae and gibberellic acid interactions on vegetative growth of Carrizo citrange seedlings. Cienicia Rural. 30(5):783-787.
  • 24. Estrada-Luna A.A., Davies, F.T., Egilla, J. N. 2000. Mycorrhizal fungi enhancement of growth and gas exchange of micropropagated guava plantlets (Psidium guajava L.) during ex vitro acclimatization and plant establishment. Mycorrhiza 10 (1):1-8.
  • 25. Zarate, J.T., 1992. Effects of VA (vesicular arbuscular) mycorrhizal inoculation on 18 selected crops in a phosphorus deficient soil (PhD Thesis). University of the Philippines At Los Baños p.185.
  • 26. Schiavo, J.A., Martins, M. A. 2002. Produção de mudas de goiabeira (Psidium guajava L.) inoculadas com o fungo micorrízico arbuscular Glomus clarum, em substrato agroindustrial. Rev. Bras. Frutic. 24:519–523.
  • 27. Silva, M.A.C., Silva, F.S.B., Yano-Melo, A.M., Melo, N.F., Pedrosa, E.M.R., Maia, L.C. 2013. Responses of guava plants to inoculation with arbuscular mycorrhizal fungi in soil infested with meloidogyne enterolobii. Plant Pathol. J. 29 (3):242-248.
  • 28. Koske, R.E., Gamma, J.N. 1989. A modified procedure for staining roots to detect VAM. Mycological Research 92:486-505.
  • 29. Giovannetti, M., Mosse, B. 1980. An evaluation of techniques for measuring vesicular-arbuscular mycorrhiza in roots. New Phytologist 84:489-500.
  • 30. Chew, V., 1976. Uses and abuses of duncan's multiple range test. Proceedings of the Florida State Horticultural Society 89:251-253.
  • 31. Kumari, M., Prasad, H., Kumari, S., Samriti, S. 2017. Association of am (arbuscular mycorrhizal) fungi in fruit crops production: A review. The Pharma Innovation Journal 6 (6): 204-208.
  • 32. Khade, W.S., Rodrigues, B.F. 2009. Studies on arbuscular mycorrhisation of papaya. African Crop Science Journal 17 (3):155 – 165.
  • 33. Kamble, S.R., Navale, A.M., Sonawane, R.B. 2009. Response of mango seedlings to VA-mycorrhizal inoculation. International Journal of Plant Protection 2 (2):161-164.
  • 34. Andrade, S.A.L., Mazzafera, P., Sch Iav Inato, M.A., Silveira, A.P.D. 2009. Arbuscular mycorrhizal association in coffee. Journal of Agricultural Science 147:105–115.
  • 35. Watanarajanaporn N., Boankerd, N., Wongkaew, S., Prommanap, P., Teaumroong, N. 2011. Selection of arbuscular mycorrhizal fungi for citrus growth promotion and phytophthora suppression. Sci Hortic. 128:423-433.
  • 36. Mohandas S., Poovarasan, S., Panneerselvam, P., Saritha, B., Upreti, K.K., Kamal, R. 2013. Guava (Psidium guajava L.) rhizosphere Glomus mosseaee spores harbor actinobacteria with growth promoting and antifungal attributes. Sci. Hortic. 150: 371–376.
  • 37. Renaldelli, E., Mancuso, S. 1996. Response of young mycorrhizal and nonmycorrhizal plants of olive tree to saline condition. Short term electrophysiological and long term vegetative salt effects. Agrochimica 44 (34):151-159.
  • 38. Eswarappa, H., Sukhada, M., Gowda, K.N., Mohandas, S. 2002. Effect of VAM fungi on banana. Current Research 31 (5-6):69-70.
  • 39. Lakshmipathy, R., Balakrishna, A.N., Bagyaraj, D.J., Kumar, D.P. 2002. Symbiotic response of cashew root stocks to different VA mycorrhizal fungi. Cashew 14 (3):20- 24.
  • 40. Vaast, P., Zasoskı, R.J., Bledsoe, C.S. 1996. Effects of vesicular-arbuscular mycorrhizal inoculation at different soil P availabilities on growth and nutrient uptake of in vitro propagated coffee (Coffea arabica L.) plants. Mycorrhiza 6:493–497.
  • 41. Azcón-Aguilar, C., Padilla, I.G., Encina, C.L., Azcón, R., Barea, J.M. 1996. Arbuscular mycorrhizal inoculation enhances plant growth and changes root system morphology in micropropagated Annona cherimola Mill. Agronomie: Plant Genetics and Breeding pp: 647-652.
  • 42. Declerck S., Risede J.M., Delvaux B. 2002. Greenhouse response of micropropagated bananas inoculated with in vitro monoxenically produced arbuscular mycorrhizal fungi, Sci. Hort. 93:301–309.
  • 43. Gholamhoseini M., Ghalavand A., Dolatabadian, A., Jamshidi, E., Khodaei-Joghan, A. 2013. Effects of arbuscular mycorrhizal inoculation on growth, yield, nutrient uptake and irrigation water productivity of sunflowers grown under drought stress. Agric. Water Manag. 117:106-114.
  • 44. Abbaspour, H., Afshari, H., Abdel-Wahhab, M.A. 2012. Influence of salt stress on growth, pigments, soluble sugars and ion accumulation in three pistachio cultivars. Journal of Medicinal Plants Research, 6 (12):2468-2473.
  • 45. Wu Q., Srivastava, A.K., Zou, Y. 2013. AMF-induced tolerance to drought stress in citrus: A review. Scientia Horticulturae 164:77–87.
  • 46. Zhang Y., Yao1, Q., Li, J., Wang, Y., Liu1, X., Hu, Y., Chen, J. 2015. Contributions of an arbuscular mycorrhizal fungus to growth and physiology of loquat (Eriobotrya japonica) plants subjected to drought stress. Mycol Progress. 14:84.
Toplam 46 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Bahçe Bitkileri Yetiştirme ve Islahı
Bölüm Makaleler
Yazarlar

Gizem Güler 0000-0001-8763-5604

Murat Şimşek Bu kişi benim 0000-0003-1336-309X

Hamide Gübbük 0000-0003-3199-0660

Yayımlanma Tarihi 15 Kasım 2021
Gönderilme Tarihi 21 Temmuz 2020
Kabul Tarihi 22 Ekim 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Güler, G., Şimşek, M., & Gübbük, H. (2021). Farklı Arbüsküler Mikorizal Fungus Türlerinin Guava (Psidium Guajava L.) Çöğürlerinin Büyüme ve Gelişmesi Üzerine Etkileri. Bahçe, 50(2), 87-93. https://doi.org/10.53471/bahce.1005466
AMA Güler G, Şimşek M, Gübbük H. Farklı Arbüsküler Mikorizal Fungus Türlerinin Guava (Psidium Guajava L.) Çöğürlerinin Büyüme ve Gelişmesi Üzerine Etkileri. Bahçe. Kasım 2021;50(2):87-93. doi:10.53471/bahce.1005466
Chicago Güler, Gizem, Murat Şimşek, ve Hamide Gübbük. “Farklı Arbüsküler Mikorizal Fungus Türlerinin Guava (Psidium Guajava L.) Çöğürlerinin Büyüme Ve Gelişmesi Üzerine Etkileri”. Bahçe 50, sy. 2 (Kasım 2021): 87-93. https://doi.org/10.53471/bahce.1005466.
EndNote Güler G, Şimşek M, Gübbük H (01 Kasım 2021) Farklı Arbüsküler Mikorizal Fungus Türlerinin Guava (Psidium Guajava L.) Çöğürlerinin Büyüme ve Gelişmesi Üzerine Etkileri. Bahçe 50 2 87–93.
IEEE G. Güler, M. Şimşek, ve H. Gübbük, “Farklı Arbüsküler Mikorizal Fungus Türlerinin Guava (Psidium Guajava L.) Çöğürlerinin Büyüme ve Gelişmesi Üzerine Etkileri”, Bahçe, c. 50, sy. 2, ss. 87–93, 2021, doi: 10.53471/bahce.1005466.
ISNAD Güler, Gizem vd. “Farklı Arbüsküler Mikorizal Fungus Türlerinin Guava (Psidium Guajava L.) Çöğürlerinin Büyüme Ve Gelişmesi Üzerine Etkileri”. Bahçe 50/2 (Kasım 2021), 87-93. https://doi.org/10.53471/bahce.1005466.
JAMA Güler G, Şimşek M, Gübbük H. Farklı Arbüsküler Mikorizal Fungus Türlerinin Guava (Psidium Guajava L.) Çöğürlerinin Büyüme ve Gelişmesi Üzerine Etkileri. Bahçe. 2021;50:87–93.
MLA Güler, Gizem vd. “Farklı Arbüsküler Mikorizal Fungus Türlerinin Guava (Psidium Guajava L.) Çöğürlerinin Büyüme Ve Gelişmesi Üzerine Etkileri”. Bahçe, c. 50, sy. 2, 2021, ss. 87-93, doi:10.53471/bahce.1005466.
Vancouver Güler G, Şimşek M, Gübbük H. Farklı Arbüsküler Mikorizal Fungus Türlerinin Guava (Psidium Guajava L.) Çöğürlerinin Büyüme ve Gelişmesi Üzerine Etkileri. Bahçe. 2021;50(2):87-93.

BAHÇE Dergisi
bahcejournal@gmail.com
https://bahcejournal.org
Atatürk Bahçe Kültürleri Merkez Araştırma Enstitüsü, 77100 Yalova
X (Twitter)LinkedinFacebookInstagram