Araştırma Makalesi
BibTex RIS Kaynak Göster

Effects of Additional Led Light Applications Against Drought Stress on Morphological, Physiological and Biochemical Parameters in Grapevine Saplings

Yıl 2024, , 104 - 114, 16.07.2024
https://doi.org/10.53471/bahce.1481949

Öz

In recent years, LED light applications have been reported to be an effective strategy for controlling plant growth and development and increasing tolerance to different environmental stress conditions. In this study, the effects of additional LED light applications with different wavelengths including red, blue, green and daylight (control) on morphological, physiological and biochemical characteristics of grapevine rootstocks under drought stress were investigated. The experiment was conducted in the fully automated climate chamber and research laboratories at Yozgat Bozok University, Faculty of Agriculture in 2023. For this purpose, one-year cuttings of drought tolerant "1103 P" and sensitive "5 BB" American grapevine rootstocks were used. Approximately 6 weeks after planting, drought stressed saplings were subjected to limited irrigation by keeping the humidity of the growing medium at 30-40% of the field capacity, while the control groups were subjected to normal irrigation at 70-80% of the field capacity. After a total growing period of 60 days, the experiment was terminated and morphological, physiological and biochemical parameters of the grapevine saplings were analyzed. The results showed that red and blue additional LED light applications were the most effective treatments in terms of improving quality parameters and reducing drought stress damage in grapevine saplings. It is thought that this study will facilitate the studies to be carried out in order to improve the quality of scuba grapevine saplings grown under cover and to ensure more efficient use of irrigation water and will provide an important reference for the researches to be carried out to increase drought stress tolerance.

Kaynakça

  • Greer, D.H., Weston, C. 2010. Heat stress affects flowering, berry growth, sugar accumulation and photosynthesis of Vitis vinifera cv. Semillon grapevines grown in a controlled environment. Functional Plant Biology 37:206-214.
  • Carvalho, L.C., Amâncio, S. 2018. Cutting the Gordian knot of abiotic stress in grapevine: From the test tube to climate change adaptation. Physiologia Plantarum 165:330-342.
  • Anonymous, 2007. IPCC: Climate Change 2007: The physical science basis. contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. [Solomon S., Qin D., Manning M., Chen Z., Marquis M., Averyt K.B., Tignor M., Miller H.L., (eds.)], Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  • Anonymous, 2013. IPCC: Climate Change 2013: The physical science basis. contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. [Solomon S., Qin D., Manning M., Chen Z., Marquis M., Averyt K.B., Tignor M., Miller H.L., (eds.)], Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  • Alston, J.M., Sambucci, O. 2019. Grapes in the world economy. In: Cantu D, Walker MA, eds. The grape genome. Cham: Springer, pp:1-24.
  • Gambetta, G.A., Herrera, J.C., Dayer, S., Feng, Q., Hochberg, U., Castellarin, S.D. 2020. The physiology of drought stress in grapevine: towards an integrative definition of drought tolerance. Journal of Experimental Botany 71(18):5717-5717.
  • Xu, W.R., Shen, W., Ma, J.J., Ya, R., Zheng, Q.L., Wu, N. 2020. Role of an Amur grape CBL-interacting protein kinase VaCIPK02 in drought tolerance by modulating ABA signaling and ROS production. Environmental and Experimental Botany, 172, 103999.
  • Anonymous, 2021. OIV: International Organization of Vine and Wine. https://www. oiv.int/public/medias/7909/oiv-state-of-the-world-vitivinicultural-sector-in-2020.pdf.
  • Fageria, N.K., Baligar, V.C., Clark, R.B. 2006. Physiology of Crop Production. Food Products Press, NY, USA.
  • Hatami, M., Hadian, J., Ghorbanpour, M. 2017. Mechanisms underlying toxicity and stimulatory role of single-walled carbon nanotubes in Hyoscyamus niger during drought stress simulated by polyethylene glycol. Journal of Hazardous Materials, 324, pp:306-320.
  • Guo, Y.Y. Yu, H.Y. Kong, D.S. Yan, F. Zhang, Y.J. 2016. Effects of drought stress on growth and chlorophyll fluorescence of Lycium ruthenicum Murr. seedlings. Photosynthetica, 54, 524-531.
  • Farooq, M., Wahid, A., Lee, D.J. 2009. Exogenously applied polyamines increase drought tolerance of rice by improving leaf water status, photosynthesis and membrane properties. Acta Physiol Plant 31:937-945.
  • Baiazidi-Aghdam, M.T., Mohammadi, H., Ghorbanpour, M. 2016. Effects of nanoparticulate anatase titanium dioxide on physiological and biochemical performance of Linum usitatissimum (Linaceae) under well-watered and drought stress conditions. Brazilian Journal of Botany 39:139-146.
  • Kumar, A., Bernier, J., Verulkar, S., Lafitte, H.R., Atlin, G.N. 2008. Breeding for drought tolerance: direct selection for yield, response to selection and use of drought-tolerant donors in upland and lowland-adapted populations. Field Crops Research, 107, pp:221-231.
  • Gholami Zali, A., Ehsanzadeh, P. 2018. Exogenous proline improves osmoregulation, physiological functions, essential oil, and seed yield of fennel. Industrial Crops and Products, 111, pp:133-140.
  • Zhang, X., Bao, Z., Gong, B., Shi, Q.H. 2020. S-adenosylmethionine synthetase 1 confers drought and salt tolerance in transgenic tomato. Environmental and Experimental Botany 179, 104226.
  • Still, D.W. 2007. Lettuce Vegetables. Springer, 140, Berlin.
  • Zhang, Q., Li, B., Huang, S., Nomura, H., Tanaka, H., Adachi, C. 2014. Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence. Nature Photonics 8(4):326-332.
  • Zhou, H., Chen, Q., Li, G., Luo, S., Song, T.B., Duan, H.S., Yang, Y. 2014. Interface engineering of highly efficient perovskite solar cells. Science, 345 (6196):542-546.
  • Çakırer, G., Selen, A., Demir, K., Yanmaz, R. 2017. Bahçe bitkilerinde kullanılan ışık kaynakları. Akademik Ziraat Dergisi, 6:63-70.
  • Ouzounis, T., Rosenqvist, E., Ottosen, C.O. 2015. Spectral effects of artificial light on plant physiology and secondary metabolism: a review. HortScience 50(8):1128-1135.
  • Bian, Z.H., Yang, Q.C., Liu, W.K. 2015. Effects of light quality on the accumulation of phytochemicals in vegetables produced in controlled environments: a review. Journal of the Science of Food and Agriculture 95(5):869-877.
  • Branas, C., Azcondo, F.J., Alonso, J.M. 2013. Solid‐State Lighting: A System Review, Industrial Electronics Magazine IEEE, 7:6‐14.
  • Silvestri, C., Caceres, M.E., Ceccarelli, M., Pica, A.L., Rugini, E., Cristofori, V. 2019. Influence of Continuous Spectrum Light on Morphological Traits and Leaf Anatomy of Hazelnut Plantlets. Frontiers in Plant Science 10:1318.
  • Falciatore, A., Bowler, C. 2005. The evolution and function of blue and red-light photoreceptors. Current Topics in Developmental Biology 68:317-350.
  • Hemming, S. 2009. Use of natural and artificial light in horticulture-interaction of plant and technology. Paper presented at the 6. International Symposium on Light in Horticulture 907:25-35.
  • Ruangrak, E., Khummueng, W. 2019. Effects of artificial light sources on accumulation of phytochemical contents in hydroponic lettuce. The Journal of Horticultural Science and Biotechnology 94(3):378-388.
  • Pennisi, G., Orsini, F., Blasioli, S., Cellini, A., Crepaldi, A., Braschi, I., Stanghellini, C. 2019. Resource use efficiency of indoor lettuce (Lactuca sativa L.) cultivation as affected by red: blue ratio provided by LED lighting. Scientific Reports 9(1):1-11.
  • Çelik, H. 1996. Bağcılıkta anaç kullanımı ve yetiştiricilikteki önemi. Anadolu Dergisi 6(2):127-48.
  • Ollat, N., Geny, L., Soyer, J. 1998. Les boutures fructifères de vigne : validation d, un modèle d, étude du développement de la physiologie de la vigne, I Caractéristiques de l’appareil végétative. Journal International des Sciences de la Vigne et du Vin 32 :1-9.
  • Rosario, D.A., Ocampo, E.M., Sumague, A.C., Paje, M.C.M. 1992. Adaptation of vegetable Legumes to drought stress. In: C.G. Kuo (Ed.) Adaptation of food crops to temperature and water stress. Proceedings of an international symposium, Taiwan, 13-18 August 1992. Asian Vegetable Research and Development Center (AVRDC), Shanhua, Taiwan, pp:360-371.
  • Geravandi, M., Farshadfar, E., Kahrizi, D. 2011. Evaluation of some physiological traits as indicators of drought tolerance in bread wheat genotypes. Russian Journal of Plant Physiology 58(1):69-75.
  • Yamasaki, S., Dillenburg, L.C. 1999. Measurements of leaf relative water content in Araucaria angustifolia. Revista Brasileira de Fisiologia Vegetal 11:69-75.
  • Nayyar, H. 2003. Accumulation of osmolytes and osmotic adjustment in water-stressed wheat (Triticum aestivum) and maize (Zea mays) as affected by calcium and its antagonists. Environmental and Experimental Botany 50(3):253-264.
  • Lutts, S., Kinet, J.M., Bouharmont, J. 1996. NaCl-Induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Annals of Botany 78:389-398.
  • Hao, X., Jing, M.Z., Little, C., Khosla, S. 2012. LED inter-lighting in year-round greenhouse mini-cucumber production. Acta Horticulturae 956, pp:335-340.
  • Jokinen, K., Särkkä, L.E., Näkkilä, J. 2012. Improving sweet pepper productivity by LED interlighting. Acta Horticulturae 956, pp:59-66.
  • Ohashi-Kaneko, K., Takase, M., Kon, N., Fujiwara, K., Kurata, K. 2007. Effect of light quality on growth and vegetable quality in leaf lettuce, spinach and komatsuna. Environmental Control in Biology 45(3):189-198.
  • Son, K.H., Oh, M.M. 2013. Leaf shape, growth, and antioxidant phenolic compounds of two lettuce cultivars grown under various combinations of blue and red light-emitting diodes. HortScience 48(8):988-995.
  • Lee, Y.J., Ha, J.Y., Oh, J.E., Cho, M.S. 2014. The effect of LED irradiation on the quality of cabbage stored at a low temperature. Food Science and Biotechnology 23(4):1087-1093.
  • Goins, G.D., Yorio, N.C., Sanwo, M.M., Brown, C.S. 1997. Photomorphogenesis, photosynthesis, and seed yield of wheat plants grown under red light-emitting diodes (leds) with and without supplemental blue lighting. Journal of Experimental Botany 48(7):1407-1413.
  • Hoenecke, M., Bula, R., Tibbitts, T. 1992. Importance of Blue’ Photon Levels for Lettuce Seedlings Grown under Red-light-emitting Diodes. HortScience 27(5):427-430.
  • Tanaka, M., Takamura, T., Watanabe, H., Endo, M., Yanagi, T., Okamoto, K. 1998. In vitro growth of Cymbidium plantlets cultured under super bright red and blue light-emitting diodes (LEDs). The Journal of Horticultural Science and Biotechnology 73(1):39-44.
  • Enache, I.M., Livadariu, O. 2016. Preliminary results regarding the testing of treatments with light-emitting diode (LED) on the seed germination of Artemisia dracunculus L. Scientific Bulletin. Series F. Biotechnologies. 20:51-56, ref.29.
  • Snowden, M.C., Cope, K.R., Bugbee, B. 2016. Sensitivity of seven diverse species to blue and green light: interactions with photon flux. PLoS One 11(10):e0163121.
  • Wollaeger, H.M., Runkle, E.S. 2014. Growth of impatiens, petunia, salvia, and tomato seedlings under blue, green, and red light-emitting diodes. HortScience 49(6):734-740.
  • Aguirre-Becerra, H., García-Trejo, J.F., Vázquez-Hernández, C., Alvarado, A.M., Feregrino-Pérez, A.A., Contreras-Medina, L.M., Guevara-Gonzalez, R.G. 2020. Effect of extended photoperiod with a fixed mixture of light wavelengths on tomato seedlings. HortScience 55(11):1832-1839.
  • Folta, K.M. 2004. Green light stimulates early stem elongation, antagonizing light mediated growth inhibition. Plant Physiology 135(3):1407-1416.
  • McCree, K.J. 1972. Test of current definitions of photosynthetically active radiation against leaf photosynthesis data. Agricultural Meteorology 10:443-453.
  • Vince-Prue, D. 1975. Photoperiodism in plants. Academic Press, 428, London.
  • Wheeler, R.M., Mackowiak, C.L., Sager, J.C. 1991. Soybean stem growth under high-pressure sodium with supplemental blue lighting. Agron. J. 83:903-906.
  • Loconsole, D., Cocetta, G., Santoro, P., Ferrante, A. 2019. Optimization of LED lighting and quality evaluation of romaine lettuce grown in an innovative indoor cultivation system. Sustainability 11(3):841.
  • Britz, S.J., Sager, J.C. 1990. Photomorphogenesis and photo assimilation in soybean and sorghum grown under broad spectrum or blue-deficient light sources. Plant Physiology 94(2):448-454.
  • Brown, C.S., Schuerger, A.C., Sager, J.C. 1995. Growth and photomorphogenesis of pepper plants under red light-emitting diodes with supplemental blue or far-red lighting. Journal of the American Society for Horticultural Science 120(5):808-813.
  • Yorio, N.C., Goins, G.D., Kagie, H.R., Wheeler, R.M., Sager, J.C. 2001. Improving spinach, radish, and lettuce growth under red light-emitting diodes (LEDs) with blue light supplementation. HortScience 36(2):380-383.
  • Kigel, J., Cosgrove, D.J. 1991. Photoinhibition of stem elongation by blue and red light: effects on hydraulic and cell wall properties. Plant Physiology 95(4):1049-1056.
  • Briggs, W.R., Christie, J.M. 2002. Phototropins 1 and 2: versatile plant blue-light receptors. Trends in Plant Science 7(5):204-210.
  • Johkan, M., Shoji, K., Goto, F., Hashida, S.N., Yoshihara, T. 2010. Blue light-emitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf lettuce. HortScience 45(12):1809-1814.
  • Savvides, A., Fanourakis, D., Van Ieperen, W. 2012. Co-ordination of hydraulic and stomatal conductances across light qualities in cucumber leaves. Journal of Experimental Botany 63(3):1135-1143.
  • Lanoue, J., Leonardos, E.D., Grodzinski, B. 2018. Effects of light quality and intensity on diurnal patterns and rates of photo-assimilate translocation and transpiration in tomato leaves. Frontiers in Plant Science 9:756.
  • Liu, H., Fu, Y., Hu, D., Yu, J., Liu, H. 2018. Effect of green, yellow and purple radiation on biomass, photosynthesis, morphology and soluble sugar content of leafy lettuce via spectral wavebands “knock out”. Scientia Horticulturae 236, pp:10-17.
  • Kopsell, D.A., Sams, C.E., Morrow, R.C. 2015. Blue wavelengths from LED lighting increase nutritionally important metabolites in specialty crops. HortScience 50(9):1285-1288.
  • Wollaeger, H.M., Runkle, E.S. 2015. Growth and acclimation of impatiens, salvia, petunia, and tomato seedlings to blue and red light. HortScience 50(4):522-529.
  • Xiaoying, L., Shirong, G., Taotao, C., Zhigang, X., Tezuka, T. 2012. Regulation of the growth and photosynthesis of cherry tomato seedlings by different light irradiations of light emitting diodes (LED). African Journal of Biotechnology 11(22):6169-6177. S amuolienė, G., Urbonavičiūtė, A., Brazaitytė, A., Šabajevienė, G., Sakalauskaitė, J., Duchovskis, P. 2011. The impact of LED illumination on antioxidant properties of sprouted seeds. Open Life Sciences 6(1):68-74.
  • Dong, C., Fu, Y., Liu, G., Liu, H. 2014. Growth, photosynthetic characteristics, antioxidant capacity and biomass yield and quality of wheat (Triticum aestivum L.) exposed to LED light sources with different spectra combinations. Journal of Agronomy and Crop Science 200(3):219-230.
  • Lekkham, P., Srilaong, V., Pongprasert, N., Kondo, S. 2016. Anthocyanin concentration and antioxidant activity in light-emitting diode (LED)-treated apples in a greenhouse environmental control system. Fruits 71(5):269-274.

Kuraklık Stresine Karşı Ek Led Işık Uygulamalarının Asma Fidanlarında Morfolojik, Fizyolojik ve Biyokimyasal Parametreler Üzerine Etkileri

Yıl 2024, , 104 - 114, 16.07.2024
https://doi.org/10.53471/bahce.1481949

Öz

Son yıllarda LED ışık uygulamalarının, bitki büyüme ve gelişiminin kontrol altına alınması ve farklı çevresel stres koşullarına karşı toleransın artırılması bakımından etkili bir strateji olduğu bildirilmektedir. Bu çalışmada kuraklık stresi altındaki asma anaçlarının morfolojik, fizyolojik ve biyokimyasal özellikleri üzerine kırmızı, mavi, yeşil ve gün ışığı (kontrol) olmak üzere farklı dalga boylarına sahip ek LED ışık uygulamalarının etkileri incelenmiştir. Deneme, 2023 yılında Yozgat Bozok Üniversitesi Ziraat Fakültesinde mevcut tam otomasyonlu iklim odası ve araştırma laboratuvarlarında yürütülmüştür. Bu amaçla, kuraklığa toleranslı “1103 P” ve hassas “5 BB” Amerikan asma anaçlarına ait bir yıllık çelikler kullanılmıştır. Dikim işleminden yaklaşık 6 hafta sonra kuraklık stresi uygulanan fidanlarda yetiştirme ortamlarının nemi, tarla kapasitesinin %30-40’ı aralığında tutularak kısıtlı sulama yapılmış; kontrol gruplarda ise tarla kapasitesinin %70-80’i aralığında normal sulama yapılmıştır. Toplam 60 günlük yetiştirme periyodunun ardından deneme sonlandırılarak, asma fidanlarına ait morfolojik, fizyolojik ve biyokimyasal parametreler analiz edilmiştir. Elde edilen bulgular, asma fidanlarında kalite parametrelerinin iyileştirilerek kuraklık stres zararının azaltılması bakımından en etkili uygulamaların kırmızı ve mavi ek LED ışık uygulamaları olduğunu göstermiştir. Bu çalışmanın, örtüaltında yetiştirilen tüplü asma fidanlarının kalitesinin yükseltilebilmesi ve sulama suyunun daha etkin kullanımının sağlanması amacıyla gerçekleştirilecek çalışmaları kolaylaştıracağı ve kuraklık stresine toleransın artırılmasına yönelik yürütülecek araştırmalara önemli bir referans sağlayacağı düşünülmektedir.

Kaynakça

  • Greer, D.H., Weston, C. 2010. Heat stress affects flowering, berry growth, sugar accumulation and photosynthesis of Vitis vinifera cv. Semillon grapevines grown in a controlled environment. Functional Plant Biology 37:206-214.
  • Carvalho, L.C., Amâncio, S. 2018. Cutting the Gordian knot of abiotic stress in grapevine: From the test tube to climate change adaptation. Physiologia Plantarum 165:330-342.
  • Anonymous, 2007. IPCC: Climate Change 2007: The physical science basis. contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. [Solomon S., Qin D., Manning M., Chen Z., Marquis M., Averyt K.B., Tignor M., Miller H.L., (eds.)], Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  • Anonymous, 2013. IPCC: Climate Change 2013: The physical science basis. contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. [Solomon S., Qin D., Manning M., Chen Z., Marquis M., Averyt K.B., Tignor M., Miller H.L., (eds.)], Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  • Alston, J.M., Sambucci, O. 2019. Grapes in the world economy. In: Cantu D, Walker MA, eds. The grape genome. Cham: Springer, pp:1-24.
  • Gambetta, G.A., Herrera, J.C., Dayer, S., Feng, Q., Hochberg, U., Castellarin, S.D. 2020. The physiology of drought stress in grapevine: towards an integrative definition of drought tolerance. Journal of Experimental Botany 71(18):5717-5717.
  • Xu, W.R., Shen, W., Ma, J.J., Ya, R., Zheng, Q.L., Wu, N. 2020. Role of an Amur grape CBL-interacting protein kinase VaCIPK02 in drought tolerance by modulating ABA signaling and ROS production. Environmental and Experimental Botany, 172, 103999.
  • Anonymous, 2021. OIV: International Organization of Vine and Wine. https://www. oiv.int/public/medias/7909/oiv-state-of-the-world-vitivinicultural-sector-in-2020.pdf.
  • Fageria, N.K., Baligar, V.C., Clark, R.B. 2006. Physiology of Crop Production. Food Products Press, NY, USA.
  • Hatami, M., Hadian, J., Ghorbanpour, M. 2017. Mechanisms underlying toxicity and stimulatory role of single-walled carbon nanotubes in Hyoscyamus niger during drought stress simulated by polyethylene glycol. Journal of Hazardous Materials, 324, pp:306-320.
  • Guo, Y.Y. Yu, H.Y. Kong, D.S. Yan, F. Zhang, Y.J. 2016. Effects of drought stress on growth and chlorophyll fluorescence of Lycium ruthenicum Murr. seedlings. Photosynthetica, 54, 524-531.
  • Farooq, M., Wahid, A., Lee, D.J. 2009. Exogenously applied polyamines increase drought tolerance of rice by improving leaf water status, photosynthesis and membrane properties. Acta Physiol Plant 31:937-945.
  • Baiazidi-Aghdam, M.T., Mohammadi, H., Ghorbanpour, M. 2016. Effects of nanoparticulate anatase titanium dioxide on physiological and biochemical performance of Linum usitatissimum (Linaceae) under well-watered and drought stress conditions. Brazilian Journal of Botany 39:139-146.
  • Kumar, A., Bernier, J., Verulkar, S., Lafitte, H.R., Atlin, G.N. 2008. Breeding for drought tolerance: direct selection for yield, response to selection and use of drought-tolerant donors in upland and lowland-adapted populations. Field Crops Research, 107, pp:221-231.
  • Gholami Zali, A., Ehsanzadeh, P. 2018. Exogenous proline improves osmoregulation, physiological functions, essential oil, and seed yield of fennel. Industrial Crops and Products, 111, pp:133-140.
  • Zhang, X., Bao, Z., Gong, B., Shi, Q.H. 2020. S-adenosylmethionine synthetase 1 confers drought and salt tolerance in transgenic tomato. Environmental and Experimental Botany 179, 104226.
  • Still, D.W. 2007. Lettuce Vegetables. Springer, 140, Berlin.
  • Zhang, Q., Li, B., Huang, S., Nomura, H., Tanaka, H., Adachi, C. 2014. Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence. Nature Photonics 8(4):326-332.
  • Zhou, H., Chen, Q., Li, G., Luo, S., Song, T.B., Duan, H.S., Yang, Y. 2014. Interface engineering of highly efficient perovskite solar cells. Science, 345 (6196):542-546.
  • Çakırer, G., Selen, A., Demir, K., Yanmaz, R. 2017. Bahçe bitkilerinde kullanılan ışık kaynakları. Akademik Ziraat Dergisi, 6:63-70.
  • Ouzounis, T., Rosenqvist, E., Ottosen, C.O. 2015. Spectral effects of artificial light on plant physiology and secondary metabolism: a review. HortScience 50(8):1128-1135.
  • Bian, Z.H., Yang, Q.C., Liu, W.K. 2015. Effects of light quality on the accumulation of phytochemicals in vegetables produced in controlled environments: a review. Journal of the Science of Food and Agriculture 95(5):869-877.
  • Branas, C., Azcondo, F.J., Alonso, J.M. 2013. Solid‐State Lighting: A System Review, Industrial Electronics Magazine IEEE, 7:6‐14.
  • Silvestri, C., Caceres, M.E., Ceccarelli, M., Pica, A.L., Rugini, E., Cristofori, V. 2019. Influence of Continuous Spectrum Light on Morphological Traits and Leaf Anatomy of Hazelnut Plantlets. Frontiers in Plant Science 10:1318.
  • Falciatore, A., Bowler, C. 2005. The evolution and function of blue and red-light photoreceptors. Current Topics in Developmental Biology 68:317-350.
  • Hemming, S. 2009. Use of natural and artificial light in horticulture-interaction of plant and technology. Paper presented at the 6. International Symposium on Light in Horticulture 907:25-35.
  • Ruangrak, E., Khummueng, W. 2019. Effects of artificial light sources on accumulation of phytochemical contents in hydroponic lettuce. The Journal of Horticultural Science and Biotechnology 94(3):378-388.
  • Pennisi, G., Orsini, F., Blasioli, S., Cellini, A., Crepaldi, A., Braschi, I., Stanghellini, C. 2019. Resource use efficiency of indoor lettuce (Lactuca sativa L.) cultivation as affected by red: blue ratio provided by LED lighting. Scientific Reports 9(1):1-11.
  • Çelik, H. 1996. Bağcılıkta anaç kullanımı ve yetiştiricilikteki önemi. Anadolu Dergisi 6(2):127-48.
  • Ollat, N., Geny, L., Soyer, J. 1998. Les boutures fructifères de vigne : validation d, un modèle d, étude du développement de la physiologie de la vigne, I Caractéristiques de l’appareil végétative. Journal International des Sciences de la Vigne et du Vin 32 :1-9.
  • Rosario, D.A., Ocampo, E.M., Sumague, A.C., Paje, M.C.M. 1992. Adaptation of vegetable Legumes to drought stress. In: C.G. Kuo (Ed.) Adaptation of food crops to temperature and water stress. Proceedings of an international symposium, Taiwan, 13-18 August 1992. Asian Vegetable Research and Development Center (AVRDC), Shanhua, Taiwan, pp:360-371.
  • Geravandi, M., Farshadfar, E., Kahrizi, D. 2011. Evaluation of some physiological traits as indicators of drought tolerance in bread wheat genotypes. Russian Journal of Plant Physiology 58(1):69-75.
  • Yamasaki, S., Dillenburg, L.C. 1999. Measurements of leaf relative water content in Araucaria angustifolia. Revista Brasileira de Fisiologia Vegetal 11:69-75.
  • Nayyar, H. 2003. Accumulation of osmolytes and osmotic adjustment in water-stressed wheat (Triticum aestivum) and maize (Zea mays) as affected by calcium and its antagonists. Environmental and Experimental Botany 50(3):253-264.
  • Lutts, S., Kinet, J.M., Bouharmont, J. 1996. NaCl-Induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Annals of Botany 78:389-398.
  • Hao, X., Jing, M.Z., Little, C., Khosla, S. 2012. LED inter-lighting in year-round greenhouse mini-cucumber production. Acta Horticulturae 956, pp:335-340.
  • Jokinen, K., Särkkä, L.E., Näkkilä, J. 2012. Improving sweet pepper productivity by LED interlighting. Acta Horticulturae 956, pp:59-66.
  • Ohashi-Kaneko, K., Takase, M., Kon, N., Fujiwara, K., Kurata, K. 2007. Effect of light quality on growth and vegetable quality in leaf lettuce, spinach and komatsuna. Environmental Control in Biology 45(3):189-198.
  • Son, K.H., Oh, M.M. 2013. Leaf shape, growth, and antioxidant phenolic compounds of two lettuce cultivars grown under various combinations of blue and red light-emitting diodes. HortScience 48(8):988-995.
  • Lee, Y.J., Ha, J.Y., Oh, J.E., Cho, M.S. 2014. The effect of LED irradiation on the quality of cabbage stored at a low temperature. Food Science and Biotechnology 23(4):1087-1093.
  • Goins, G.D., Yorio, N.C., Sanwo, M.M., Brown, C.S. 1997. Photomorphogenesis, photosynthesis, and seed yield of wheat plants grown under red light-emitting diodes (leds) with and without supplemental blue lighting. Journal of Experimental Botany 48(7):1407-1413.
  • Hoenecke, M., Bula, R., Tibbitts, T. 1992. Importance of Blue’ Photon Levels for Lettuce Seedlings Grown under Red-light-emitting Diodes. HortScience 27(5):427-430.
  • Tanaka, M., Takamura, T., Watanabe, H., Endo, M., Yanagi, T., Okamoto, K. 1998. In vitro growth of Cymbidium plantlets cultured under super bright red and blue light-emitting diodes (LEDs). The Journal of Horticultural Science and Biotechnology 73(1):39-44.
  • Enache, I.M., Livadariu, O. 2016. Preliminary results regarding the testing of treatments with light-emitting diode (LED) on the seed germination of Artemisia dracunculus L. Scientific Bulletin. Series F. Biotechnologies. 20:51-56, ref.29.
  • Snowden, M.C., Cope, K.R., Bugbee, B. 2016. Sensitivity of seven diverse species to blue and green light: interactions with photon flux. PLoS One 11(10):e0163121.
  • Wollaeger, H.M., Runkle, E.S. 2014. Growth of impatiens, petunia, salvia, and tomato seedlings under blue, green, and red light-emitting diodes. HortScience 49(6):734-740.
  • Aguirre-Becerra, H., García-Trejo, J.F., Vázquez-Hernández, C., Alvarado, A.M., Feregrino-Pérez, A.A., Contreras-Medina, L.M., Guevara-Gonzalez, R.G. 2020. Effect of extended photoperiod with a fixed mixture of light wavelengths on tomato seedlings. HortScience 55(11):1832-1839.
  • Folta, K.M. 2004. Green light stimulates early stem elongation, antagonizing light mediated growth inhibition. Plant Physiology 135(3):1407-1416.
  • McCree, K.J. 1972. Test of current definitions of photosynthetically active radiation against leaf photosynthesis data. Agricultural Meteorology 10:443-453.
  • Vince-Prue, D. 1975. Photoperiodism in plants. Academic Press, 428, London.
  • Wheeler, R.M., Mackowiak, C.L., Sager, J.C. 1991. Soybean stem growth under high-pressure sodium with supplemental blue lighting. Agron. J. 83:903-906.
  • Loconsole, D., Cocetta, G., Santoro, P., Ferrante, A. 2019. Optimization of LED lighting and quality evaluation of romaine lettuce grown in an innovative indoor cultivation system. Sustainability 11(3):841.
  • Britz, S.J., Sager, J.C. 1990. Photomorphogenesis and photo assimilation in soybean and sorghum grown under broad spectrum or blue-deficient light sources. Plant Physiology 94(2):448-454.
  • Brown, C.S., Schuerger, A.C., Sager, J.C. 1995. Growth and photomorphogenesis of pepper plants under red light-emitting diodes with supplemental blue or far-red lighting. Journal of the American Society for Horticultural Science 120(5):808-813.
  • Yorio, N.C., Goins, G.D., Kagie, H.R., Wheeler, R.M., Sager, J.C. 2001. Improving spinach, radish, and lettuce growth under red light-emitting diodes (LEDs) with blue light supplementation. HortScience 36(2):380-383.
  • Kigel, J., Cosgrove, D.J. 1991. Photoinhibition of stem elongation by blue and red light: effects on hydraulic and cell wall properties. Plant Physiology 95(4):1049-1056.
  • Briggs, W.R., Christie, J.M. 2002. Phototropins 1 and 2: versatile plant blue-light receptors. Trends in Plant Science 7(5):204-210.
  • Johkan, M., Shoji, K., Goto, F., Hashida, S.N., Yoshihara, T. 2010. Blue light-emitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf lettuce. HortScience 45(12):1809-1814.
  • Savvides, A., Fanourakis, D., Van Ieperen, W. 2012. Co-ordination of hydraulic and stomatal conductances across light qualities in cucumber leaves. Journal of Experimental Botany 63(3):1135-1143.
  • Lanoue, J., Leonardos, E.D., Grodzinski, B. 2018. Effects of light quality and intensity on diurnal patterns and rates of photo-assimilate translocation and transpiration in tomato leaves. Frontiers in Plant Science 9:756.
  • Liu, H., Fu, Y., Hu, D., Yu, J., Liu, H. 2018. Effect of green, yellow and purple radiation on biomass, photosynthesis, morphology and soluble sugar content of leafy lettuce via spectral wavebands “knock out”. Scientia Horticulturae 236, pp:10-17.
  • Kopsell, D.A., Sams, C.E., Morrow, R.C. 2015. Blue wavelengths from LED lighting increase nutritionally important metabolites in specialty crops. HortScience 50(9):1285-1288.
  • Wollaeger, H.M., Runkle, E.S. 2015. Growth and acclimation of impatiens, salvia, petunia, and tomato seedlings to blue and red light. HortScience 50(4):522-529.
  • Xiaoying, L., Shirong, G., Taotao, C., Zhigang, X., Tezuka, T. 2012. Regulation of the growth and photosynthesis of cherry tomato seedlings by different light irradiations of light emitting diodes (LED). African Journal of Biotechnology 11(22):6169-6177. S amuolienė, G., Urbonavičiūtė, A., Brazaitytė, A., Šabajevienė, G., Sakalauskaitė, J., Duchovskis, P. 2011. The impact of LED illumination on antioxidant properties of sprouted seeds. Open Life Sciences 6(1):68-74.
  • Dong, C., Fu, Y., Liu, G., Liu, H. 2014. Growth, photosynthetic characteristics, antioxidant capacity and biomass yield and quality of wheat (Triticum aestivum L.) exposed to LED light sources with different spectra combinations. Journal of Agronomy and Crop Science 200(3):219-230.
  • Lekkham, P., Srilaong, V., Pongprasert, N., Kondo, S. 2016. Anthocyanin concentration and antioxidant activity in light-emitting diode (LED)-treated apples in a greenhouse environmental control system. Fruits 71(5):269-274.
Toplam 66 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Bahçe Bitkileri Yetiştirme ve Islahı (Diğer)
Bölüm Makaleler
Yazarlar

Selda Daler 0000-0003-0422-1444

Adem Yağcı 0000-0002-3650-4679

Rüstem Cangi 0000-0002-8264-9844

Muhammed Tevfik Güvenç Bu kişi benim 0009-0001-2080-7747

Yayımlanma Tarihi 16 Temmuz 2024
Gönderilme Tarihi 16 Ağustos 2023
Kabul Tarihi 30 Ağustos 2023
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Daler, S., Yağcı, A., Cangi, R., Güvenç, M. T. (2024). Kuraklık Stresine Karşı Ek Led Işık Uygulamalarının Asma Fidanlarında Morfolojik, Fizyolojik ve Biyokimyasal Parametreler Üzerine Etkileri. Bahçe, 53(Özel Sayı 1), 104-114. https://doi.org/10.53471/bahce.1481949
AMA Daler S, Yağcı A, Cangi R, Güvenç MT. Kuraklık Stresine Karşı Ek Led Işık Uygulamalarının Asma Fidanlarında Morfolojik, Fizyolojik ve Biyokimyasal Parametreler Üzerine Etkileri. Bahçe. Temmuz 2024;53(Özel Sayı 1):104-114. doi:10.53471/bahce.1481949
Chicago Daler, Selda, Adem Yağcı, Rüstem Cangi, ve Muhammed Tevfik Güvenç. “Kuraklık Stresine Karşı Ek Led Işık Uygulamalarının Asma Fidanlarında Morfolojik, Fizyolojik Ve Biyokimyasal Parametreler Üzerine Etkileri”. Bahçe 53, sy. Özel Sayı 1 (Temmuz 2024): 104-14. https://doi.org/10.53471/bahce.1481949.
EndNote Daler S, Yağcı A, Cangi R, Güvenç MT (01 Temmuz 2024) Kuraklık Stresine Karşı Ek Led Işık Uygulamalarının Asma Fidanlarında Morfolojik, Fizyolojik ve Biyokimyasal Parametreler Üzerine Etkileri. Bahçe 53 Özel Sayı 1 104–114.
IEEE S. Daler, A. Yağcı, R. Cangi, ve M. T. Güvenç, “Kuraklık Stresine Karşı Ek Led Işık Uygulamalarının Asma Fidanlarında Morfolojik, Fizyolojik ve Biyokimyasal Parametreler Üzerine Etkileri”, Bahçe, c. 53, sy. Özel Sayı 1, ss. 104–114, 2024, doi: 10.53471/bahce.1481949.
ISNAD Daler, Selda vd. “Kuraklık Stresine Karşı Ek Led Işık Uygulamalarının Asma Fidanlarında Morfolojik, Fizyolojik Ve Biyokimyasal Parametreler Üzerine Etkileri”. Bahçe 53/Özel Sayı 1 (Temmuz 2024), 104-114. https://doi.org/10.53471/bahce.1481949.
JAMA Daler S, Yağcı A, Cangi R, Güvenç MT. Kuraklık Stresine Karşı Ek Led Işık Uygulamalarının Asma Fidanlarında Morfolojik, Fizyolojik ve Biyokimyasal Parametreler Üzerine Etkileri. Bahçe. 2024;53:104–114.
MLA Daler, Selda vd. “Kuraklık Stresine Karşı Ek Led Işık Uygulamalarının Asma Fidanlarında Morfolojik, Fizyolojik Ve Biyokimyasal Parametreler Üzerine Etkileri”. Bahçe, c. 53, sy. Özel Sayı 1, 2024, ss. 104-1, doi:10.53471/bahce.1481949.
Vancouver Daler S, Yağcı A, Cangi R, Güvenç MT. Kuraklık Stresine Karşı Ek Led Işık Uygulamalarının Asma Fidanlarında Morfolojik, Fizyolojik ve Biyokimyasal Parametreler Üzerine Etkileri. Bahçe. 2024;53(Özel Sayı 1):104-1.

BAHÇE Dergisi
bahcejournal@gmail.com
https://bahcejournal.org
Atatürk Bahçe Kültürleri Merkez Araştırma Enstitüsü, 77100 Yalova
X (Twitter)LinkedinFacebookInstagram