Araştırma Makalesi
BibTex RIS Kaynak Göster

Alev Çalısının (Photinia × fraseri Dress.) Fidan Gelişimi Üzerine Amino Asit, Rizobakteri ve Mikoriza Uygulamalarının Etkileri

Yıl 2025, Cilt: 54 Sayı: Özel Sayı 1, 305 - 311, 25.03.2025

Öz

Alev çalısı (Photinia × fraseri Dress.), genç sürgünlerinin kırmızı rengi nedeniyle popüler bir dış mekân süs bitkisi olup, çit bitkisi olarak kullanılmaktadır. Kaliteli fidan gelişimi, bu bitkinin pazar değeri açısından önemlidir. Bu çalışmada, alev çalısının fidan gelişim özellikleri üzerine amino asit, rizobakteri ve mikoriza uygulamalarının etkileri incelenmiştir. Araştırmada bitki boyu, gövde çapı, kök uzunluğu ve yaprak sayısı gibi bazı parametreler üzerine amino asit (1.5 mL.L⁻¹ ve 3 mL.L⁻¹), rizobakteri (10 mL.L⁻¹ ve 50 mL.L⁻¹) ve mikoriza (10 g.L⁻¹ ve 50 g.L⁻¹) uygulamalarının etkileri değerlendirilmiştir. Çalışma sonucunda en uzun bitki boyu sırasıyla 32.1, 29.2 ve 29.0 cm ile 1.5 mL.L⁻¹ amino asit, 10 g.L⁻¹ ve 50 g.L⁻¹ mikoriza uygulamasından elde edilirken en kısa ise 24.5 cm ile kontrol uygulamasından elde edilmiştir. Bunun yanında en uzun yan sürgün uzunluğu 16 cm ile 3 mL.L⁻¹ amino asit uygulamasında tespit edilirken, en kısa ise 11 cm ile 1.5 mL.L⁻¹ aminoasit uygulamasında tespit edilmiştir. Ayrıca uygulamalar arasında kök uzunluğu 22-28 cm arasında değişkenlik göstermiştir. En yüksek kök kuru ağırlığı 10 g.L⁻¹ mikoriza uygulamasında, en yüksek bitki kuru ağırlığı ise 10 mL.L⁻¹ rizobakteri uygulamasında bulunmuştur. Sonuç olarak alev çalısı bitkisinin fidan gelişimi üzerine bitki gelişimi teşvik eden uygulamaların olumlu etkilerinin olduğu tespit edilmiştir.

Teşekkür

Çalışmada biyogübreleri temininde katkı sağlayan OR-SAM Tarım ve Sunever firmalarına teşekkür ederiz.

Kaynakça

  • Çetiner, S., Zencirkıran, M. 2020. Alev çalısı (Photinia × fraseri Dress. ‘Red Robin’)’nın farklı saksı ve yetiştirme ortamlarında fidan büyüme özelliklerinin belirlenmesi. Bartın Orman Fakültesi Dergisi 22(2):294-306.
  • Costa, J.A.V., Freitas, B.C.B., Cruz, C.G., Silveira, J., Morais, M.G. 2019. Potential of micro algae as biopesticides to contribute to sustainable agriculture and environmental development. J. Environ. Sci. Health B, 54:366-375.
  • Singh, N., Joshi, E., Sasode, D.S., Dangi, R.S., Chouhan, N. 2020. Soil fertility, macro and micro nutrient uptake and their use efficiencies under integrated nutrient management in groundnut (Arachis hypogaea L.). Int. J. Chem. Stud. 8:1983-1987.
  • Glick, B.R. 1995. The enhancement of plant growth by free-living bacteria. Can. J. Microbiol. 41(2):109-117.
  • Igiehon, N.O., Babalola, O.O. 2017. Biofertilizers and sustainable agriculture: exploring arbuscular mycorrhizal fungi. Appl. Microbiol. Biotechnol. 101:4871-4881.
  • Caruso, G., De Pascale, S., Cozzolino, E., Cuciniello, A., Cenvinzo, V., Bonini, P., ... & Rouphael, Y. 2019. Yield and nutritional quality of Vesuvian Piennolo tomato PDO as affected by farming system and bio stimulant application. Agronomy 9(9):505.
  • Thomas, L., Singh, I. 2019. Microbial biofertilizers: types and applications. Biofertil. Sustain. Agric. Environ. 55:1-19.
  • Tadros, M.J., Omari, H.J., Turk, M.A. 2019. The morphological, physiological and biochemical responses of sweet corn to foliar application of amino acids bio stimulants sprayed at three growth stages. Australian Journal of Crop Science 13(3):412-417.
  • Daniel, A.I., Fadaka, A.O., Gokul, A., Bakare, O.O., Aina, O., Fisher, S., Burt, A.F., Mavumengwana, V., Keyster, M., Klein, A. 2022. Biofertilizer: the future of food security and food safety. Microorganisms 10:1220.
  • Kunicki, E., Grabowska, A., Sękara, A., Wojciechowska, R. 2010. The effect of cultivar type, time of cultivation, and bio stimulant treatment on the yield of spinach (L.). Folia Horticulturae 22(2):9-13.
  • Desoky, E.S.M., Elrys, A.S., Mansour, E., Eid, R. S., Selem, E., Rady, M.M., ... & Semida, W.M. 2021. Application of bio stimulants promotes growth and productivity by fortifying the antioxidant machinery and suppressing oxidative stress in faba bean under various abiotic stresses. Scientia Horticulturae 288:110340.
  • Ahkami, A.H., White, III, R.A., Handakumbura, P.P., Jansson, C. 2017. Rhizosphere engineering: enhancing sustainable plant ecosystem productivity. Rhizosphere 3:233-243.
  • Katiyar, D., Hemantaranjan, A., Singh, B. 2016. Plant growth promoting rhizobacteria-an efficient tool for agriculture promotion. Adv. Plants Agric. Res. 4(6):426-434.
  • Glick, B.R. 2012. Plant growth‐promoting bacteria: mechanisms and applications. Scientifica 2012(1):963401.
  • Glick, B.R. 2020. Beneficial plant-bacterial interactions. 2. ed., Springer: Berlin/Heidelberg, Germany, pp:383.
  • Hao, Y., Charles, T.C., Glick, B.R. 2007. ACC deaminase from plant growth-promoting bacteria affects crown gall development. Canadian Journal of Microbiology 53(12):1291-1299.
  • Vicente, C., Nascimento, F., Espada, M., Barbosa, P., Mota, M., Glick, B., Oliveira, S. 2012. The role of Bursaphelenchus xylophilus associated bacteria in pine wilt disease.
  • Akanmu, A.O., Babalola, O.O., Venturi, V., Ayilara, M.S., Adeleke, B.S., Amoo, A.E., ... & Glick, B.R. 2021. Plant disease management: leveraging on the plant-microbe-soil interface in the biorational use of organic amendments. Frontiers in Plant Science 12:700507.
  • Li, J., McConkey, B.J., Cheng, Z., Guo, S., Glick, B.R. 2013. Identification of plant growth-promoting bacteria-responsive proteins in cucumber roots under hypoxic stress using a proteomic approach. Journal of Proteomics 84:119-131.
  • Ali, S., Charles, T.C., Glick, B.R. 2014. Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase. Plant Physiology and Biochemistry 80:160-167.
  • van der Heijden M.G., Martin F.M., Selosse M.A., Sanders I.R. 2015. Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytologist 205(4):1406-1423, doi:https://doi.org/10.1111/nph.13288.
  • Smith, S.E., Smith, F.A. 2012. Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia 104(1):1-13.
  • Frey, S.D. 2019. Mycorrhizal fungi as mediators of soil organic matter dynamics. Annual Review of Ecology, Evolution and Systematics, 50(1), doi:https://doi.org/10.1146/annurev-ecolsys-110617-062331.
  • Sheng, Y., Cheng, H., Wang, L., Shen, J., Tang, M., Liang, M., ... & Song, Z. 2020. Foliar spraying with compound amino acid‐iron fertilizer increases leaf fresh weight, photosynthesis, and fe‐s cluster gene expression in peach (Prunus persica (L.) Batsch). BioMed Research International 2020(1):2854795.
  • Eroğlu, Ç.G., Cabral, C., Ravnskov, S., Bak Topbjerg, H., Wollenweber, B. 2020. Arbuscular mycorrhiza influences carbon‐use efficiency and grain yield of wheat grown under pre‐and post‐anthesis salinity stress. Plant Biology 22(5):863-871.
  • Vaingankar, J.D., Rodrigues, B.F. 2015. Effect of arbuscular mycorrhizal (AM) inoculation on growth and flowering in Crossandra infundibuliformis (L.) Nees. Journal of Plant Nutrition 38(10):1478-1488.
  • Nowak, J. 2004. Effects of arbuscular mycorrhizal fungi and organic fertilization on growth, flowering, nutrient uptake, photosynthesis and transpiration of geranium (Pelargonium hortorum LH Bailey ‘Tango Orange’. Symbiosis.
  • Anbi, A.A., Mirshekari, B., Eivazi, A., Yarnia, M., Behrouzyar, E.K. 2020. PGPRs affected photosynthetic capacity and nutrient uptake in different Salvia species. Journal of Plant Nutrition 43:108-121 doi:10.1080/01904167.2019.1659342.
  • Parlakova Karagöz, F.P., Dursun, A. 2019. Lale çeşitlerinde azot bağlayıcı ve fosfat çözücü bakterilerin büyüme ve soğan üretimi üzerine etkileri. Ege Üniversitesi Ziraat Fakültesi Dergisi 56(2):241-248.
  • Colla, G., Hoagland, L., Ruzzi, M., Cardarelli, M., Bonini, P., Canaguier, R., Rouphael, Y. 2017. Biostimulant action of protein hydrolysates: Unraveling their effects on plant physiology and microbiome. Frontiers in Plant Science, 8, 2202.
  • Tariq, U., Riaz, A., Jaskani, M.J., Zahir, Z.A. 2016. Screening of PGPR isolates for plant growth promotion of Rosa damascena Mill. Int. J. Agric. Biol. 18(5):2005-2009.
  • Gamez, R., Cardinale, M., Montes, M., Ramirez, S., Schnell, S., Rodriguez, F. 2019. Screening, plant growth promotion and root colonization pattern of two rhizobacteria (Pseudomonas fluorescens Ps006 and Bacillus amyloliquefaciens Bs006) on banana cv. Williams (Musa acuminata Colla). Microbiological Research 220:12-20.
  • Gangwar, R.K., Bhushan, G., Singh, J., Upadhyay, S.K., Singh, A.P. 2013. Combined effects of plant growth promoting rhizobacteria and fungi on mung bean (Vigna radiata L.). International Journal of Pharmaceutical Sciences and Research 4(11):4422.
  • Olgaç, Y., Kasım, R., Kasım, M.U. 2022. Süs bitkilerinde arbüskülar mikoriza kullanımı. Bursa Uludağ Üniversitesi Ziraat Fakültesi Dergisi 36(2):479-497.
  • Saini, I., Aggarwal, A., Kaushik, P. 2019. Inoculation with mycorrhizal fungi and other microbes to improve the morpho-physiological and floral traits of Gazania rigens (L.) Gaertn. Agriculture 9(3):51.
  • Kuldeep Yadav, K., Tanwar, A., Aggarwal, A. 2015. Impact of arbuscular mycorrhizal fungi and Pseudomonas fluorescens with various levels of superphosphate on growth enhancement and flowering response of Gerbera. Journal of Ornamental Plants 3(3):161-170.
  • Rao, G.V., Manoharachary, C., Rao, B.R. 2002. Beneficial influence of arbuscular mycorrhizal fungal association on growth, yield and nutrient uptake of rose-scented geranium (Pelargonium species). Philippine Journal of Science 131(1):49-58.
  • Prasad, K., Aggarwal, A., Yadav, K., Tanwar, A. 2012. Impact of different levels of superphosphate using arbuscular mycorrhizal fungi and Pseudomonasfluorescens on Chrysanthemum indicum L. Journal of Soil Science and Plant Nutrition 12(3):451-462.
  • Colla, G., Rouphael, Y., Canaguier, R., Svecova, E., Cardarelli, M. 2014. Biostimulant action of a plant-derived protein hydrolysate produced through enzymatic hydrolysis. Frontiers in Plant Science 5:448.
  • Şanlı, A., Ok, F.Z., Erbaş, S. 2023. Yapraktan amino asit uygulamalarının bazı şeker pancarı (Beta vulgaris var. saccharifera L.) çeşitlerinin verim ve kalitesine etkileri. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi 28(1):290-298.
  • İpek, M., Arıkan, Ş., Eşitken, A., Pırlak, L. 2018. Bitki gelişimini artırıcı rizobakterilerin “Heritage” ahududu (Rubus idaeus L.) çeşidinde bitki gelişimi, verim ve meyve kalitesi üzerine etkisi. Yuzuncu Yıl University Journal of Agricultural Sciences 28(1):42-48.
  • Wu, Q.S., Xia, R.X. 2006. Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. Journal of Plant Physiology 163(4):417-425.
  • Ertani, A., Schiavon, M., Muscolo, A., Nardi, S. 2013. Alfalfa plant-derived biostimulant stimulate short-term growth of salt stressed Zea mays L. plants. Plant and Soil 364:145-158.

Effects of Amino Acid, Rhizobacteria and Mycorrhiza Applications on Sapling Development of Red Robin (Photinia × fraseri Dress.)

Yıl 2025, Cilt: 54 Sayı: Özel Sayı 1, 305 - 311, 25.03.2025

Öz

Red robin (Photinia × fraseri Dress.) is a popular outdoor ornamental plant due to the red colour of its young shoots and is commonly used as a hedge plant. Quality sapling development is important for its market value. In this study, the effects of amino acid, rhizobacteria, and mycorrhiza treatments on the sapling growth characteristics of the Red robin were investigated. The effects of amino acid (1.5 mL.L⁻¹ and 3 mL.L⁻¹), rhizobacteria (10 mL.L⁻¹ and 50 mL.L⁻¹), and mycorrhiza (10 g.L⁻¹ and 50 g.L⁻¹) treatments on various parameters such as plant height, stem diameter, root length, and leaf number were evaluated. As a result of the study, the longest plant height was obtained from 1.5 mL.L⁻¹ amino acid, 10 g.L⁻¹ and 50 g.L⁻¹ mycorrhiza treatments with 32.1 cm, 29.2 cm and 29.0 cm, respectively, while the shortest plant height was obtained from the control treatment with 24.5 cm. In addition, the longest shoot length was 16 cm in 3 mL.L⁻¹ amino acid treatment and the shortest was 11 cm in 1.5 mL.L⁻¹ amino acid treatment. In addition, root length varied between 22-28 cm among the treatments. The highest root dry weight was obtained from 10 g.L⁻¹ mycorrhiza treatment and the highest plant dry weight was obtained from 10 mL.L⁻¹ rhizobacteria treatment. As a result, it was determined that plant growth promoting applications had positive effects on the sapling development of red robin plant.

Kaynakça

  • Çetiner, S., Zencirkıran, M. 2020. Alev çalısı (Photinia × fraseri Dress. ‘Red Robin’)’nın farklı saksı ve yetiştirme ortamlarında fidan büyüme özelliklerinin belirlenmesi. Bartın Orman Fakültesi Dergisi 22(2):294-306.
  • Costa, J.A.V., Freitas, B.C.B., Cruz, C.G., Silveira, J., Morais, M.G. 2019. Potential of micro algae as biopesticides to contribute to sustainable agriculture and environmental development. J. Environ. Sci. Health B, 54:366-375.
  • Singh, N., Joshi, E., Sasode, D.S., Dangi, R.S., Chouhan, N. 2020. Soil fertility, macro and micro nutrient uptake and their use efficiencies under integrated nutrient management in groundnut (Arachis hypogaea L.). Int. J. Chem. Stud. 8:1983-1987.
  • Glick, B.R. 1995. The enhancement of plant growth by free-living bacteria. Can. J. Microbiol. 41(2):109-117.
  • Igiehon, N.O., Babalola, O.O. 2017. Biofertilizers and sustainable agriculture: exploring arbuscular mycorrhizal fungi. Appl. Microbiol. Biotechnol. 101:4871-4881.
  • Caruso, G., De Pascale, S., Cozzolino, E., Cuciniello, A., Cenvinzo, V., Bonini, P., ... & Rouphael, Y. 2019. Yield and nutritional quality of Vesuvian Piennolo tomato PDO as affected by farming system and bio stimulant application. Agronomy 9(9):505.
  • Thomas, L., Singh, I. 2019. Microbial biofertilizers: types and applications. Biofertil. Sustain. Agric. Environ. 55:1-19.
  • Tadros, M.J., Omari, H.J., Turk, M.A. 2019. The morphological, physiological and biochemical responses of sweet corn to foliar application of amino acids bio stimulants sprayed at three growth stages. Australian Journal of Crop Science 13(3):412-417.
  • Daniel, A.I., Fadaka, A.O., Gokul, A., Bakare, O.O., Aina, O., Fisher, S., Burt, A.F., Mavumengwana, V., Keyster, M., Klein, A. 2022. Biofertilizer: the future of food security and food safety. Microorganisms 10:1220.
  • Kunicki, E., Grabowska, A., Sękara, A., Wojciechowska, R. 2010. The effect of cultivar type, time of cultivation, and bio stimulant treatment on the yield of spinach (L.). Folia Horticulturae 22(2):9-13.
  • Desoky, E.S.M., Elrys, A.S., Mansour, E., Eid, R. S., Selem, E., Rady, M.M., ... & Semida, W.M. 2021. Application of bio stimulants promotes growth and productivity by fortifying the antioxidant machinery and suppressing oxidative stress in faba bean under various abiotic stresses. Scientia Horticulturae 288:110340.
  • Ahkami, A.H., White, III, R.A., Handakumbura, P.P., Jansson, C. 2017. Rhizosphere engineering: enhancing sustainable plant ecosystem productivity. Rhizosphere 3:233-243.
  • Katiyar, D., Hemantaranjan, A., Singh, B. 2016. Plant growth promoting rhizobacteria-an efficient tool for agriculture promotion. Adv. Plants Agric. Res. 4(6):426-434.
  • Glick, B.R. 2012. Plant growth‐promoting bacteria: mechanisms and applications. Scientifica 2012(1):963401.
  • Glick, B.R. 2020. Beneficial plant-bacterial interactions. 2. ed., Springer: Berlin/Heidelberg, Germany, pp:383.
  • Hao, Y., Charles, T.C., Glick, B.R. 2007. ACC deaminase from plant growth-promoting bacteria affects crown gall development. Canadian Journal of Microbiology 53(12):1291-1299.
  • Vicente, C., Nascimento, F., Espada, M., Barbosa, P., Mota, M., Glick, B., Oliveira, S. 2012. The role of Bursaphelenchus xylophilus associated bacteria in pine wilt disease.
  • Akanmu, A.O., Babalola, O.O., Venturi, V., Ayilara, M.S., Adeleke, B.S., Amoo, A.E., ... & Glick, B.R. 2021. Plant disease management: leveraging on the plant-microbe-soil interface in the biorational use of organic amendments. Frontiers in Plant Science 12:700507.
  • Li, J., McConkey, B.J., Cheng, Z., Guo, S., Glick, B.R. 2013. Identification of plant growth-promoting bacteria-responsive proteins in cucumber roots under hypoxic stress using a proteomic approach. Journal of Proteomics 84:119-131.
  • Ali, S., Charles, T.C., Glick, B.R. 2014. Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase. Plant Physiology and Biochemistry 80:160-167.
  • van der Heijden M.G., Martin F.M., Selosse M.A., Sanders I.R. 2015. Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytologist 205(4):1406-1423, doi:https://doi.org/10.1111/nph.13288.
  • Smith, S.E., Smith, F.A. 2012. Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia 104(1):1-13.
  • Frey, S.D. 2019. Mycorrhizal fungi as mediators of soil organic matter dynamics. Annual Review of Ecology, Evolution and Systematics, 50(1), doi:https://doi.org/10.1146/annurev-ecolsys-110617-062331.
  • Sheng, Y., Cheng, H., Wang, L., Shen, J., Tang, M., Liang, M., ... & Song, Z. 2020. Foliar spraying with compound amino acid‐iron fertilizer increases leaf fresh weight, photosynthesis, and fe‐s cluster gene expression in peach (Prunus persica (L.) Batsch). BioMed Research International 2020(1):2854795.
  • Eroğlu, Ç.G., Cabral, C., Ravnskov, S., Bak Topbjerg, H., Wollenweber, B. 2020. Arbuscular mycorrhiza influences carbon‐use efficiency and grain yield of wheat grown under pre‐and post‐anthesis salinity stress. Plant Biology 22(5):863-871.
  • Vaingankar, J.D., Rodrigues, B.F. 2015. Effect of arbuscular mycorrhizal (AM) inoculation on growth and flowering in Crossandra infundibuliformis (L.) Nees. Journal of Plant Nutrition 38(10):1478-1488.
  • Nowak, J. 2004. Effects of arbuscular mycorrhizal fungi and organic fertilization on growth, flowering, nutrient uptake, photosynthesis and transpiration of geranium (Pelargonium hortorum LH Bailey ‘Tango Orange’. Symbiosis.
  • Anbi, A.A., Mirshekari, B., Eivazi, A., Yarnia, M., Behrouzyar, E.K. 2020. PGPRs affected photosynthetic capacity and nutrient uptake in different Salvia species. Journal of Plant Nutrition 43:108-121 doi:10.1080/01904167.2019.1659342.
  • Parlakova Karagöz, F.P., Dursun, A. 2019. Lale çeşitlerinde azot bağlayıcı ve fosfat çözücü bakterilerin büyüme ve soğan üretimi üzerine etkileri. Ege Üniversitesi Ziraat Fakültesi Dergisi 56(2):241-248.
  • Colla, G., Hoagland, L., Ruzzi, M., Cardarelli, M., Bonini, P., Canaguier, R., Rouphael, Y. 2017. Biostimulant action of protein hydrolysates: Unraveling their effects on plant physiology and microbiome. Frontiers in Plant Science, 8, 2202.
  • Tariq, U., Riaz, A., Jaskani, M.J., Zahir, Z.A. 2016. Screening of PGPR isolates for plant growth promotion of Rosa damascena Mill. Int. J. Agric. Biol. 18(5):2005-2009.
  • Gamez, R., Cardinale, M., Montes, M., Ramirez, S., Schnell, S., Rodriguez, F. 2019. Screening, plant growth promotion and root colonization pattern of two rhizobacteria (Pseudomonas fluorescens Ps006 and Bacillus amyloliquefaciens Bs006) on banana cv. Williams (Musa acuminata Colla). Microbiological Research 220:12-20.
  • Gangwar, R.K., Bhushan, G., Singh, J., Upadhyay, S.K., Singh, A.P. 2013. Combined effects of plant growth promoting rhizobacteria and fungi on mung bean (Vigna radiata L.). International Journal of Pharmaceutical Sciences and Research 4(11):4422.
  • Olgaç, Y., Kasım, R., Kasım, M.U. 2022. Süs bitkilerinde arbüskülar mikoriza kullanımı. Bursa Uludağ Üniversitesi Ziraat Fakültesi Dergisi 36(2):479-497.
  • Saini, I., Aggarwal, A., Kaushik, P. 2019. Inoculation with mycorrhizal fungi and other microbes to improve the morpho-physiological and floral traits of Gazania rigens (L.) Gaertn. Agriculture 9(3):51.
  • Kuldeep Yadav, K., Tanwar, A., Aggarwal, A. 2015. Impact of arbuscular mycorrhizal fungi and Pseudomonas fluorescens with various levels of superphosphate on growth enhancement and flowering response of Gerbera. Journal of Ornamental Plants 3(3):161-170.
  • Rao, G.V., Manoharachary, C., Rao, B.R. 2002. Beneficial influence of arbuscular mycorrhizal fungal association on growth, yield and nutrient uptake of rose-scented geranium (Pelargonium species). Philippine Journal of Science 131(1):49-58.
  • Prasad, K., Aggarwal, A., Yadav, K., Tanwar, A. 2012. Impact of different levels of superphosphate using arbuscular mycorrhizal fungi and Pseudomonasfluorescens on Chrysanthemum indicum L. Journal of Soil Science and Plant Nutrition 12(3):451-462.
  • Colla, G., Rouphael, Y., Canaguier, R., Svecova, E., Cardarelli, M. 2014. Biostimulant action of a plant-derived protein hydrolysate produced through enzymatic hydrolysis. Frontiers in Plant Science 5:448.
  • Şanlı, A., Ok, F.Z., Erbaş, S. 2023. Yapraktan amino asit uygulamalarının bazı şeker pancarı (Beta vulgaris var. saccharifera L.) çeşitlerinin verim ve kalitesine etkileri. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi 28(1):290-298.
  • İpek, M., Arıkan, Ş., Eşitken, A., Pırlak, L. 2018. Bitki gelişimini artırıcı rizobakterilerin “Heritage” ahududu (Rubus idaeus L.) çeşidinde bitki gelişimi, verim ve meyve kalitesi üzerine etkisi. Yuzuncu Yıl University Journal of Agricultural Sciences 28(1):42-48.
  • Wu, Q.S., Xia, R.X. 2006. Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. Journal of Plant Physiology 163(4):417-425.
  • Ertani, A., Schiavon, M., Muscolo, A., Nardi, S. 2013. Alfalfa plant-derived biostimulant stimulate short-term growth of salt stressed Zea mays L. plants. Plant and Soil 364:145-158.
Toplam 43 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Bahçe Bitkileri Yetiştirme ve Islahı (Diğer)
Bölüm Makaleler
Yazarlar

Sefa Gün 0000-0002-9516-386X

Burhan Öztürk 0000-0002-0867-3942

Yayımlanma Tarihi 25 Mart 2025
Gönderilme Tarihi 1 Ekim 2024
Kabul Tarihi 26 Aralık 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 54 Sayı: Özel Sayı 1

Kaynak Göster

APA Gün, S., & Öztürk, B. (2025). Alev Çalısının (Photinia × fraseri Dress.) Fidan Gelişimi Üzerine Amino Asit, Rizobakteri ve Mikoriza Uygulamalarının Etkileri. Bahçe, 54(Özel Sayı 1), 305-311. https://doi.org/10.53471/bahce.1559714
AMA Gün S, Öztürk B. Alev Çalısının (Photinia × fraseri Dress.) Fidan Gelişimi Üzerine Amino Asit, Rizobakteri ve Mikoriza Uygulamalarının Etkileri. Bahçe. Mart 2025;54(Özel Sayı 1):305-311. doi:10.53471/bahce.1559714
Chicago Gün, Sefa, ve Burhan Öztürk. “Alev Çalısının (Photinia × Fraseri Dress.) Fidan Gelişimi Üzerine Amino Asit, Rizobakteri Ve Mikoriza Uygulamalarının Etkileri”. Bahçe 54, sy. Özel Sayı 1 (Mart 2025): 305-11. https://doi.org/10.53471/bahce.1559714.
EndNote Gün S, Öztürk B (01 Mart 2025) Alev Çalısının (Photinia × fraseri Dress.) Fidan Gelişimi Üzerine Amino Asit, Rizobakteri ve Mikoriza Uygulamalarının Etkileri. Bahçe 54 Özel Sayı 1 305–311.
IEEE S. Gün ve B. Öztürk, “Alev Çalısının (Photinia × fraseri Dress.) Fidan Gelişimi Üzerine Amino Asit, Rizobakteri ve Mikoriza Uygulamalarının Etkileri”, Bahçe, c. 54, sy. Özel Sayı 1, ss. 305–311, 2025, doi: 10.53471/bahce.1559714.
ISNAD Gün, Sefa - Öztürk, Burhan. “Alev Çalısının (Photinia × Fraseri Dress.) Fidan Gelişimi Üzerine Amino Asit, Rizobakteri Ve Mikoriza Uygulamalarının Etkileri”. Bahçe 54/Özel Sayı 1 (Mart 2025), 305-311. https://doi.org/10.53471/bahce.1559714.
JAMA Gün S, Öztürk B. Alev Çalısının (Photinia × fraseri Dress.) Fidan Gelişimi Üzerine Amino Asit, Rizobakteri ve Mikoriza Uygulamalarının Etkileri. Bahçe. 2025;54:305–311.
MLA Gün, Sefa ve Burhan Öztürk. “Alev Çalısının (Photinia × Fraseri Dress.) Fidan Gelişimi Üzerine Amino Asit, Rizobakteri Ve Mikoriza Uygulamalarının Etkileri”. Bahçe, c. 54, sy. Özel Sayı 1, 2025, ss. 305-11, doi:10.53471/bahce.1559714.
Vancouver Gün S, Öztürk B. Alev Çalısının (Photinia × fraseri Dress.) Fidan Gelişimi Üzerine Amino Asit, Rizobakteri ve Mikoriza Uygulamalarının Etkileri. Bahçe. 2025;54(Özel Sayı 1):305-11.

BAHÇE Dergisi
bahcejournal@gmail.com
https://bahcejournal.org
Atatürk Bahçe Kültürleri Merkez Araştırma Enstitüsü, 77100 Yalova
X (Twitter)LinkedinFacebookInstagram