Araştırma Makalesi
BibTex RIS Kaynak Göster

Disiplinler Arası Öğretim Yaklaşımının Fen Bilgisi Öğretmen Adaylarının Enerji Kavramına Yönelik Bilişsel Yapılarına Etkisinin İncelenmesi

Yıl 2018, Cilt: 12 Sayı: 1, 249 - 281, 30.06.2018
https://doi.org/10.17522/balikesirnef.437753

Öz












Bu çalışmanın amacı, disiplinler arası öğretim yaklaşımına dayalı
enerji eğitiminin fen bilgisi öğretmen adaylarının enerji kavramına yönelik
bilişsel yapılarına ve kavramlar arası bağlantı kurmalarına olan etkisini
incelemektir. Araştırma 2016-2017 öğretim yılı güz döneminde bir devlet
üniversitesinin Fen Bilgisi Öğretmenliği Anabilim Dalı’nın
4. sınıfında öğrenim gören 66 öğretmen adayı üzerinde 10 hafta boyunca
gerçekleştirilmiştir. Araştırmada iki çalışma grubu belirlenmiş ve bu grupların
birinde disiplinler arası öğretim yaklaşımı ile, diğerinde ise mevcut
yaklaşımlar ile enerji eğitimi verilmiştir. Çalışmada veri toplama aracı olarak
“bağımsız kelime ilişkilendirme testi” ve “çizme-yazma tekniği” kullanılmıştır.
Verilerin analizinde, betimsel ve içerik analizleri kullanılarak veriler
çözümlenmiştir. Araştırma sonucunda, disiplinler arası öğretim uygulamalarının
öğretmen adaylarının enerji kavramına yönelik bilişsel yapılarını geliştirdiği
ve zenginleştirdiği görülmüştür.
















Kaynakça

  • Akpınar, E. & Ergin, Ö. (2004). Fen öğretiminde fizik kimya ve biyolojinin entegrasyonuna yönelik örnek bir uygulama. Atatürk Eğitim Fakültesi Eğitim Bilimleri Dergisi, 19(1), 1-16.
  • Aydın, G. & Balım, A. G. (2005). An interdisciplinary application based on constructivist approach: Teaching of energy topics. Ankara University Journal of Faculty of Educational Sciences, 38(2), 145-166.
  • Bahar, M. (2003). Biyoloji eğitiminde kavram yanılgıları ve kavram değişim stratejileri. Kuram ve Uygulamada Eğitim Bilimleri, 3(1), 55-64.
  • Bahar, M., Johnstone, A. H. & Sutcliffe, R. G. (1999). Investigation of students’ cognitive structure in elementary genetics through word association tests. Journal of Biological Education, 33(3), 134-141.
  • Bahar, M. & Tongaç, E. (2009). The Effect of Teaching Approaches on the Pattern of Pupils' Cognitive Structure: Some Evidence from the Field. Asia-Pacific Education Researcher, 18,1 21-45.
  • Bennett, J., Lubben, F. & Hogarth, S. (2007). Bringing science to life: A synthesis of the research evidence on the effects of context-based and STS approaches to science teaching. Science Education, 91(3), 347-370.
  • Bezen, S., Bayrak, C. & Aykutlu, I. (2016). Physics teachers’ views on teaching the concept of energy. Eurasian Journal of Educational Research, 64, 109-124.
  • Boylan, C. (2008). Exploring elementary students’ understanding of energy and climate change. International Electronic Journal of Elementary Education, 1(1), 1-15.
  • Chabalengula, V. M., Sanders, M. & Mumba, F. (2011). Diagnosing students’ understanding of energy and its related concepts in biological contexts. International Journal of Science and Mathematics Education, 10(2), 241-266.
  • Chen, K. L., Huang, S. H. & Liu, S. Y. (2013). Devising a framework for energy education in Taiwan using the analytic hierarchy process. Energy Policy, 55, 396-403.
  • Diakidoy, I. A. N., Kendeou, P. & Ioannides, C. (2003). Reading about energy: The effects of text structure in science learning and conceptual change. Contemporary Educational Psychology, 28(3), 335-356.
  • Dykstra, D. (1986). Science education in elementary school: Some observations. Journal of Research in Science Teaching, 23(9), 853-856.
  • Ellse, M. (1988). Transferring, not transforming energy. School Science Review, 69(248), 427-437.
  • Ercan, F., Taşdere, A. & Ercan, N. (2010). Kelime İlişkilendirme Testi Aracılığıyla Bilişsel Yapının ve Kavramsal Değişimin Gözlenmesi. Türk Fen Eğitimi Dergisi, 7 (2), 136-154.
  • Ertaş, H., Şen, A. İ., & Parmaksızoğlu, A. (2011). Okul dışı bilimsel etkinliklerin 9. sınıf öğrencilerinin enerji konusunu günlük hayatla ilişkilendirme düzeyine etkisi. Necatibey Eğitim Fakültesi Elektronik Fen ve Matematik Eğitimi Dergisi, 5(2), 178-198.
  • Gamez, M. C., Ruz, T. P. & Gallego, A. R. M. (2014). The interdisciplinary approach in textbooks: A study on energy issues. Multidisciplinary Journal for Education, Social and Technological Sciences, 1(2), 90-109.
  • Gilbert, J. K. & Boulter, C. J. (2000) Learning science through models and modeling. In K Tobin and B Frazer (Eds). The international handbook of science education (pp. 53-66). Dordrecht: Kluwer.
  • Gussarsky, E. & Gorodetsky, M. (1990). On the concept “chemical equilibrium: The associative framework. Journal of Research in Science Teaching, 27(3), 197-204.
  • Güneş, T., & Taştan-Akdağ, F. (2016). Determination of perceptions of science high school students on energy and their levels of interdiciplinary association. International Journal of Social Sciences and Education Research, 2(2), 774-787.
  • Güven, G., Yakar, A., & Sülün, Y. (2016, Mayıs-Haziran). Enerji okuryazarlığı: Bir ölçek uyarlama çalışması. III. International Eurasian Educational Research Congress, Muğla, Turkey.
  • Hinrichs, R. & Kleinbach, M. (2002). Energy: Its use and the environment. Boston: Thomson Learning.
  • Ispal, A., Ishak, M.Z., Ispal, M.A. & Abdullah, N. (2016). Energy concept development using the u slope. Researchers World: Journal of Arts, Science and Commerce, 7(1), 1-7.
  • Jin, H. & Anderson, C. W. (2012). A learning progression for energy in socio-ecological systems. Journal of Research in Science Teaching, 49(9), 1149-1180.
  • Keser, Ö. F. Özmen, H. & Akdeniz, F. (2003). Energy, environment and education relationship in devoloping countries' policies: A case study for Turkey. Energy sources, 25(2), 123-133.
  • Klemow, K. (2015). Undergraduate energy education: The interdisciplinary imperative. Journal of Sustainability Education, 8, 1-3.
  • Köse, S., Bağ, H., Sürücü, A. & Uçak, E. (2006). The opinions of prospective science teachers’ about energy sources for living organisms. Internatinal Journal of Environmental and Science Education, 1(2), 141-152.
  • Kruger, C. (1990). Some primary teachers’ ideas about energy. Physics Education, 25(2), 86-91.
  • Kurnaz, M. A. (2011). Enerji konusunda model tabanlı öğrenme yaklaşımına göre tasarlanan öğrenme ortamlarının zihinsel model gelişimine etkisi, (Yayımlanmamış Doktora Tezi). Karadeniz Teknik Üniversitesi, Eğitim Bilimleri Enstitüsü: Trabzon.
  • Kurt, H. (2013). Determining biology teacher candidates' conceptual structures about energy and attitudes towards energy. Journal of Baltic Science Education, 12(4), 399-423.
  • Lancor, R. A. (2014). Using student-generated analogies to investigate conceptions of energy: A multidisciplinary study. International Journal of Science Education, 36(1), 1-23.
  • Lee, R. P. (2016). Misconceptions and biases in German students’ perception of multiple energy sources: Implications for science education. International Journal of Science Education, 38(6), 1036-1056.
  • Lee, H. S. & Liu, O. L. (2010). Assessing learning progression of energy concepts across middle school grades: The knowledge integration perspective. Science Education, 94(4), 665-688.
  • Liu, X. & McKeough, A. (2005). Developmental growth in students' concept of energy: Analysis of selected items from the TIMSS database. Journal of Research in Science Teaching, 42(5), 493-517.
  • Liu, X. & Tang, L. (2004). The progression of students’ conceptions of energy: A cross-grade, cross-cultural study. Canadian Journal of Science, Mathematics and Technology Education, 4(1), 43-57.
  • Milli Eğitim Bakanlığı [MEB], (2017). Fen bilimleri dersi öğretim programı (İlkokul ve Ortaokul 3, 4, 5, 6, 7 ve 8. sınıflar). Ankara: Milli Eğitim Yayınları.
  • Neumann, K., Viering, T., Boone, W. J. & Fischer, H. E. (2013). Towards a learning progression of energy. Journal of Research in Science Teaching, 50(2), 162-188.
  • Nordine, J., Krajcik, J. & Fortus, D. (2010). Transforming energy instruction in middle school to support integrated understanding and future learning. Science Education, 95(4), 670-699.
  • Opitz, S. (2016). Students' progressing understanding of the energy concept: an analysis of learning in biological and cross-disciplinary contexts, (Unpublished Doctoral Dissertation). Christian-Albrechts University: Kiel.
  • Opitz, S. T., Blankenstein, A. & Harms, U. (2016). Student conceptions about energy in biological contexts. Journal of Biological Education, 1-14.
  • Opitz, S. T., Harms, U., Neumann, K., Kowalzik, K. & Frank, A. (2015). Students’ energy concepts at the transition between primary and secondary school. Research in Science Education, 45(5), 691-715.
  • Osbaldiston, R. & Schmitz, H. (2011). Evaluation of an energy conservation program of 9th grade students. International Journal of Environmental and Science Education, 6(2), 161-172.
  • Panwar, N. L., Kaushik, S. C. & Kothari, S. (2011). Role of renewable energy sources in environmental protection: A review. Renewable and Sustainable Energy Reviews, 15(3), 1513-1524.
  • Park, M. (2013). Developing an instrument for assessing students' understanding of the energy concept across science disciplines, (Unpublished Doctoral Dissertation). State University of New York: Buffalo.
  • Park, M. & Liu, X. (2016). Assessing understanding of the energy concept in different science disciplines. Science Education, 100(3), 483-516.
  • Roberts, P. & Kellough, R. D. (2000). A guide for developing interdisciplinary thematic units. United States: Pearson Merrill Prentice Hall.
  • Sabo, H. C., Goodhew, L. M. & Robertson, A. D. (2016). University student conceptual resources for understanding energy. Physical Review Physics Education Research, 12(1), 1-28.
  • Seraphin, K. D., Philippoff, J., Parisky, A., Degnan, K. & Warren, D. P. (2013). Teaching energy science as inquiry: Reflections on professional development as a tool to build inquiry teaching skills for middle and high school teachers. Journal of Science Education and Technology, 22(3), 235-251.
  • Silverman, D. (2006). Interpreting Qualitative Data. London: Sage Publication.
  • Skemp, R. R. (1971). The psychology of learning mathematics. Middlesex, England:.Penguin Books.
  • Stavridou, H. & Solomonidou, C. (1998). Conceptual reorganization and construction of the chemical reaction concept during secondary school. International Journal of Science Education, 20(2), 205-221.
  • Trumper, R., Raviolo, A. & Shnersch, A. M. (2000). A cross-cultural survey of conceptions of energy among elementary school teachers in training empirical results from Israel and Argentina. Teaching and Teacher Education, 16(7), 697-714.
  • Watts, D. M. (1983). Some alternative view of energy. Physics Education, 18(5), 213-217.
  • White, R. T. & Gunstone, R. F. (2000). Probing understanding. The Falmer Press.
  • Worrell, E., Bernstein, L., Roy, J., Price, L. & Harnisch, J. (2009). Industrial energy efficiency and climate change mitigation. Energy Efficiency, 2, 109-123.
  • Yang, J. C., Chien, K. H. & Liu, T. C. (2012). A digital game-based learning system for energy education: An energy conservation pet. TOJET: The Turkish Online Journal of Educational Technology, 11(2), 27-37.
  • Yıldırım, A., & Şimşek, H. (2016). Sosyal bilimlerde nitel araştırma yöntemleri. Ankara: Seçkin Yayıncılık.
  • Yürümezoğlu, K., Ayaz, S. & Çökelez, A. (2009). Grade 7-9 students’ perceptions of energy and related concepts. Necatibey Faculty of Education Electronic Journal of Science and Mathematics Education, 3(2), 52-73.

Investigation of the Effect of the Interdisciplinary Instructional Approach on Pre-service Science Teachers’ Cognitive Structure about the Concept of Energy

Yıl 2018, Cilt: 12 Sayı: 1, 249 - 281, 30.06.2018
https://doi.org/10.17522/balikesirnef.437753

Öz












The purpose of the current study is to investigate the effect of the
interdisciplinary instructional approach-based energy teaching on the
pre-service science teachers’ cognitive structure about the concept of energy
and their ability to create connections between the concepts. The study was
conducted on 66 fourth-year students attending the Science Teaching Department
at a state university in the fall term of 2016-2017 academic year for a period
of ten weeks. Two study groups were determined in the study, and one of these
groups was given the energy instruction by means of the interdisciplinary
teaching approach and the other group was given the energy instruction by using
the traditional methods. As the data collection tools, “The Independent Word
Association Test” and “The Drawing-Writing Technique” were used. In the
analysis of the collected data, the descriptive and content analyses were
employed. As a result of the study, it was found that the interdisciplinary
teaching applications developed and enriched the students’ cognitive structures
about the concept of energy. 



Kaynakça

  • Akpınar, E. & Ergin, Ö. (2004). Fen öğretiminde fizik kimya ve biyolojinin entegrasyonuna yönelik örnek bir uygulama. Atatürk Eğitim Fakültesi Eğitim Bilimleri Dergisi, 19(1), 1-16.
  • Aydın, G. & Balım, A. G. (2005). An interdisciplinary application based on constructivist approach: Teaching of energy topics. Ankara University Journal of Faculty of Educational Sciences, 38(2), 145-166.
  • Bahar, M. (2003). Biyoloji eğitiminde kavram yanılgıları ve kavram değişim stratejileri. Kuram ve Uygulamada Eğitim Bilimleri, 3(1), 55-64.
  • Bahar, M., Johnstone, A. H. & Sutcliffe, R. G. (1999). Investigation of students’ cognitive structure in elementary genetics through word association tests. Journal of Biological Education, 33(3), 134-141.
  • Bahar, M. & Tongaç, E. (2009). The Effect of Teaching Approaches on the Pattern of Pupils' Cognitive Structure: Some Evidence from the Field. Asia-Pacific Education Researcher, 18,1 21-45.
  • Bennett, J., Lubben, F. & Hogarth, S. (2007). Bringing science to life: A synthesis of the research evidence on the effects of context-based and STS approaches to science teaching. Science Education, 91(3), 347-370.
  • Bezen, S., Bayrak, C. & Aykutlu, I. (2016). Physics teachers’ views on teaching the concept of energy. Eurasian Journal of Educational Research, 64, 109-124.
  • Boylan, C. (2008). Exploring elementary students’ understanding of energy and climate change. International Electronic Journal of Elementary Education, 1(1), 1-15.
  • Chabalengula, V. M., Sanders, M. & Mumba, F. (2011). Diagnosing students’ understanding of energy and its related concepts in biological contexts. International Journal of Science and Mathematics Education, 10(2), 241-266.
  • Chen, K. L., Huang, S. H. & Liu, S. Y. (2013). Devising a framework for energy education in Taiwan using the analytic hierarchy process. Energy Policy, 55, 396-403.
  • Diakidoy, I. A. N., Kendeou, P. & Ioannides, C. (2003). Reading about energy: The effects of text structure in science learning and conceptual change. Contemporary Educational Psychology, 28(3), 335-356.
  • Dykstra, D. (1986). Science education in elementary school: Some observations. Journal of Research in Science Teaching, 23(9), 853-856.
  • Ellse, M. (1988). Transferring, not transforming energy. School Science Review, 69(248), 427-437.
  • Ercan, F., Taşdere, A. & Ercan, N. (2010). Kelime İlişkilendirme Testi Aracılığıyla Bilişsel Yapının ve Kavramsal Değişimin Gözlenmesi. Türk Fen Eğitimi Dergisi, 7 (2), 136-154.
  • Ertaş, H., Şen, A. İ., & Parmaksızoğlu, A. (2011). Okul dışı bilimsel etkinliklerin 9. sınıf öğrencilerinin enerji konusunu günlük hayatla ilişkilendirme düzeyine etkisi. Necatibey Eğitim Fakültesi Elektronik Fen ve Matematik Eğitimi Dergisi, 5(2), 178-198.
  • Gamez, M. C., Ruz, T. P. & Gallego, A. R. M. (2014). The interdisciplinary approach in textbooks: A study on energy issues. Multidisciplinary Journal for Education, Social and Technological Sciences, 1(2), 90-109.
  • Gilbert, J. K. & Boulter, C. J. (2000) Learning science through models and modeling. In K Tobin and B Frazer (Eds). The international handbook of science education (pp. 53-66). Dordrecht: Kluwer.
  • Gussarsky, E. & Gorodetsky, M. (1990). On the concept “chemical equilibrium: The associative framework. Journal of Research in Science Teaching, 27(3), 197-204.
  • Güneş, T., & Taştan-Akdağ, F. (2016). Determination of perceptions of science high school students on energy and their levels of interdiciplinary association. International Journal of Social Sciences and Education Research, 2(2), 774-787.
  • Güven, G., Yakar, A., & Sülün, Y. (2016, Mayıs-Haziran). Enerji okuryazarlığı: Bir ölçek uyarlama çalışması. III. International Eurasian Educational Research Congress, Muğla, Turkey.
  • Hinrichs, R. & Kleinbach, M. (2002). Energy: Its use and the environment. Boston: Thomson Learning.
  • Ispal, A., Ishak, M.Z., Ispal, M.A. & Abdullah, N. (2016). Energy concept development using the u slope. Researchers World: Journal of Arts, Science and Commerce, 7(1), 1-7.
  • Jin, H. & Anderson, C. W. (2012). A learning progression for energy in socio-ecological systems. Journal of Research in Science Teaching, 49(9), 1149-1180.
  • Keser, Ö. F. Özmen, H. & Akdeniz, F. (2003). Energy, environment and education relationship in devoloping countries' policies: A case study for Turkey. Energy sources, 25(2), 123-133.
  • Klemow, K. (2015). Undergraduate energy education: The interdisciplinary imperative. Journal of Sustainability Education, 8, 1-3.
  • Köse, S., Bağ, H., Sürücü, A. & Uçak, E. (2006). The opinions of prospective science teachers’ about energy sources for living organisms. Internatinal Journal of Environmental and Science Education, 1(2), 141-152.
  • Kruger, C. (1990). Some primary teachers’ ideas about energy. Physics Education, 25(2), 86-91.
  • Kurnaz, M. A. (2011). Enerji konusunda model tabanlı öğrenme yaklaşımına göre tasarlanan öğrenme ortamlarının zihinsel model gelişimine etkisi, (Yayımlanmamış Doktora Tezi). Karadeniz Teknik Üniversitesi, Eğitim Bilimleri Enstitüsü: Trabzon.
  • Kurt, H. (2013). Determining biology teacher candidates' conceptual structures about energy and attitudes towards energy. Journal of Baltic Science Education, 12(4), 399-423.
  • Lancor, R. A. (2014). Using student-generated analogies to investigate conceptions of energy: A multidisciplinary study. International Journal of Science Education, 36(1), 1-23.
  • Lee, R. P. (2016). Misconceptions and biases in German students’ perception of multiple energy sources: Implications for science education. International Journal of Science Education, 38(6), 1036-1056.
  • Lee, H. S. & Liu, O. L. (2010). Assessing learning progression of energy concepts across middle school grades: The knowledge integration perspective. Science Education, 94(4), 665-688.
  • Liu, X. & McKeough, A. (2005). Developmental growth in students' concept of energy: Analysis of selected items from the TIMSS database. Journal of Research in Science Teaching, 42(5), 493-517.
  • Liu, X. & Tang, L. (2004). The progression of students’ conceptions of energy: A cross-grade, cross-cultural study. Canadian Journal of Science, Mathematics and Technology Education, 4(1), 43-57.
  • Milli Eğitim Bakanlığı [MEB], (2017). Fen bilimleri dersi öğretim programı (İlkokul ve Ortaokul 3, 4, 5, 6, 7 ve 8. sınıflar). Ankara: Milli Eğitim Yayınları.
  • Neumann, K., Viering, T., Boone, W. J. & Fischer, H. E. (2013). Towards a learning progression of energy. Journal of Research in Science Teaching, 50(2), 162-188.
  • Nordine, J., Krajcik, J. & Fortus, D. (2010). Transforming energy instruction in middle school to support integrated understanding and future learning. Science Education, 95(4), 670-699.
  • Opitz, S. (2016). Students' progressing understanding of the energy concept: an analysis of learning in biological and cross-disciplinary contexts, (Unpublished Doctoral Dissertation). Christian-Albrechts University: Kiel.
  • Opitz, S. T., Blankenstein, A. & Harms, U. (2016). Student conceptions about energy in biological contexts. Journal of Biological Education, 1-14.
  • Opitz, S. T., Harms, U., Neumann, K., Kowalzik, K. & Frank, A. (2015). Students’ energy concepts at the transition between primary and secondary school. Research in Science Education, 45(5), 691-715.
  • Osbaldiston, R. & Schmitz, H. (2011). Evaluation of an energy conservation program of 9th grade students. International Journal of Environmental and Science Education, 6(2), 161-172.
  • Panwar, N. L., Kaushik, S. C. & Kothari, S. (2011). Role of renewable energy sources in environmental protection: A review. Renewable and Sustainable Energy Reviews, 15(3), 1513-1524.
  • Park, M. (2013). Developing an instrument for assessing students' understanding of the energy concept across science disciplines, (Unpublished Doctoral Dissertation). State University of New York: Buffalo.
  • Park, M. & Liu, X. (2016). Assessing understanding of the energy concept in different science disciplines. Science Education, 100(3), 483-516.
  • Roberts, P. & Kellough, R. D. (2000). A guide for developing interdisciplinary thematic units. United States: Pearson Merrill Prentice Hall.
  • Sabo, H. C., Goodhew, L. M. & Robertson, A. D. (2016). University student conceptual resources for understanding energy. Physical Review Physics Education Research, 12(1), 1-28.
  • Seraphin, K. D., Philippoff, J., Parisky, A., Degnan, K. & Warren, D. P. (2013). Teaching energy science as inquiry: Reflections on professional development as a tool to build inquiry teaching skills for middle and high school teachers. Journal of Science Education and Technology, 22(3), 235-251.
  • Silverman, D. (2006). Interpreting Qualitative Data. London: Sage Publication.
  • Skemp, R. R. (1971). The psychology of learning mathematics. Middlesex, England:.Penguin Books.
  • Stavridou, H. & Solomonidou, C. (1998). Conceptual reorganization and construction of the chemical reaction concept during secondary school. International Journal of Science Education, 20(2), 205-221.
  • Trumper, R., Raviolo, A. & Shnersch, A. M. (2000). A cross-cultural survey of conceptions of energy among elementary school teachers in training empirical results from Israel and Argentina. Teaching and Teacher Education, 16(7), 697-714.
  • Watts, D. M. (1983). Some alternative view of energy. Physics Education, 18(5), 213-217.
  • White, R. T. & Gunstone, R. F. (2000). Probing understanding. The Falmer Press.
  • Worrell, E., Bernstein, L., Roy, J., Price, L. & Harnisch, J. (2009). Industrial energy efficiency and climate change mitigation. Energy Efficiency, 2, 109-123.
  • Yang, J. C., Chien, K. H. & Liu, T. C. (2012). A digital game-based learning system for energy education: An energy conservation pet. TOJET: The Turkish Online Journal of Educational Technology, 11(2), 27-37.
  • Yıldırım, A., & Şimşek, H. (2016). Sosyal bilimlerde nitel araştırma yöntemleri. Ankara: Seçkin Yayıncılık.
  • Yürümezoğlu, K., Ayaz, S. & Çökelez, A. (2009). Grade 7-9 students’ perceptions of energy and related concepts. Necatibey Faculty of Education Electronic Journal of Science and Mathematics Education, 3(2), 52-73.
Toplam 57 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Gökhan Güven

Yusuf Sülün

Yayımlanma Tarihi 30 Haziran 2018
Gönderilme Tarihi 21 Aralık 2017
Yayımlandığı Sayı Yıl 2018 Cilt: 12 Sayı: 1

Kaynak Göster

APA Güven, G., & Sülün, Y. (2018). Disiplinler Arası Öğretim Yaklaşımının Fen Bilgisi Öğretmen Adaylarının Enerji Kavramına Yönelik Bilişsel Yapılarına Etkisinin İncelenmesi. Necatibey Eğitim Fakültesi Elektronik Fen Ve Matematik Eğitimi Dergisi, 12(1), 249-281. https://doi.org/10.17522/balikesirnef.437753