Araştırma Makalesi
BibTex RIS Kaynak Göster

Fen Bilgisi Öğretmen Adaylarının Yapılandırılmış, Yarı-Yapılandırılmış ve Yapılandırılmamış Üç Boyutlu Modelleme Süreçlerine İlişkin Görüşleri

Yıl 2018, Cilt: 12 Sayı: 2, 382 - 414, 31.12.2018
https://doi.org/10.17522/balikesirnef.506453

Öz

Bu araştırmada
fen bilgisi öğretmen adaylarının çeşitli problemlere ilişkin farklı modelleme
süreçlerine ilişkin görüşlerinin belirlenmesi amaçlanmıştır. Bu doğrultuda
modelleme etkinlikleri yapılandırılmış (problem+materyaller+yapılış),
yarı-yapılandırılmış (problem+materyaller) ve yapılandırılmamış (problem) olmak
üzere üç farklı şekilde yürütülmüştür. İç içe geçmiş çoklu durum deseni
çerçevesinde planlanan bu araştırmada toplam 67 fen bilgisi öğretmen adayı
insanda solunum ve dolaşım sistemi ünitelerine ilişkin altı model
oluşturmuşlardır. Veri toplama araçları olarak “Odak Grup Görüşmesi”, “Video
Kayıtları” ve “Modellere Yönelik Etkinlik Dokümanları” kullanılmıştır. Toplanan
veriler karşılaştırmalı olarak incelenerek içerik analizi ile analiz
edilmiştir. Araştırma sonuçlarına göre bütün modelleme gruplarında ortak olarak
karşılaşılan zorluklar, katkıları, kullanılabilirlik, alternatif fikirler ve
özgünlük olmak üzere beş tema ortaya çıkmıştır. Genel olarak modelleme
aktivitelerinin teorik bilgi öğrenmeyi desteklediği, bilgilerin akılda kalıcı
olmasını desteklediği, eksik bilgilerin farkına varılmasını sağladığı, yaparak
öğrenmeyi sağladığı ve eğlenceli ortamda öğrenmeyi desteklediği gibi olumlu
sonuçların ortak olduğu belirlenmiştir. Olumsuz olarak ise modelleme
aktivitelerinde malzemeleri birleştirmenin zor ve yorucu olması dikkat çekici
bir sonuç olarak karşımıza çıkmaktadır.

Kaynakça

  • Achieve, Inc. (2013). Next generation science standards. The National Academies Press. Retrieved August 8, 2013, from http://www.nextgenscience.org/nextgeneration-science-standards.
  • Akgün, L., Çiltaş, A., Deniz, D., Çiftçi, Z., & Işık, A. (2013). İlköğretim matematik öğretmenlerinin matematiksel modelleme ile ilgili farkındalıkları. Adıyaman Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 2013(12), 1-34.
  • Arslan, A., & Doğru, M. (2013). Modellemeye dayalı fen öğretiminin ilköğretim öğrencilerinin anlama, hatırda tutma, yaratıcılık düzeyleri ile zihinsel modelleri üzerine etkisi. Mediterranean Journal of Humanities, 4(2), 1-17. https://doi.org/10.13114/MJH.201428425.
  • Boo, H. K., & Watson, J. R. (2001). Progression in high school students’(aged 16–18) conceptualizations about chemical reactions in solution. Science education, 85(5), 568-585. https://doi.org/10.1002/sce.1024.
  • Gobert, J. D., & Buckley, B. C. (2000). Introduction to model-based teaching and learning in science education. International Journal of Science Education, 22(9), 891-894. https://doi.org/10.1080/095006900416839.
  • Berber, N. C., & Güzel, H. (2009). Fen ve matematik öğretmen adaylarının modellerin bilim ve fendeki rolüne ve amacına ilişkin algıları. Selçuk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 21, 87-97.
  • Büyüköztürk, Ş., Kılıç Çakmak, E., Akgün, Ö. E., Karadeniz, Ş., & Demirel, F. (2008). Bilimsel araştırma yöntemleri. Ankara: Pegem Yayınları.
  • Devetak, I., Hajzeri, M., Glažar, A. S., & Vogrinec, J. (2010). The influence of different models on 15-years oldstudents’ understanding of the solidstate of matter. Acta Chimica Slovenica, 57, 904-511.
  • Ekiz, D. (2003). Eğitimde araştırma yöntem ve metotlarına giriş. Ankara: Anı Yayıncılık.
  • Esendemir, G. (2014). Effect of physical modeling and computer animation implemented with social constructivist instruction on understanding of human reproductive system. Yayımlanmamış Doktora Tezi, Orta Doğu Teknik Üniversitesi, Ankara.
  • Falk, A., & Brodsky, L. (2013). Incorporating models into science teaching to meet the next generation science standards. Science Scope, 37(1), 61-69.
  • Ferreira, P. F. M., & Justi, R. D. S. (2008). Modelagem e o “fazerciência”. Química nova naescola, 28, 32-36.
  • Gilbert, J. K., & Justi, R. (2016). Modelling-basedteaching in scienceeducation (Vol. 9). Cham, Switzerland: Springer International Publishing. https://doi.org/10.1007/978-3-319-29039-3.
  • Giuliodori, M. J.,Lujan, H. L., Briggs, W. S., & DiCarlo, S. E. (2009). A model of locomotor-respiratory coupling in quadrupeds. Advances in physiologyeducation, 33(4), 315-318.
  • Halloun, I. A. (2006). Modeling theory in science education (Vol. 24). Springer, Dordrecht. Netherlands.
  • Harman, G. (2012). Fen bilgisi öğretmen adaylarının model ve modelleme ile ilgili bilgilerinin incelenmesi. X.Ulusal Fen Bilimleri ve Matematik Eğitimi Kongresi, 27-30 Haziran 2012, Niğde.
  • Henze, I., van Driel, J. H., &Verloop, N. (2007). Science teachers' knowledge about teaching models and modelling in the context of a new syllabus on public understanding of science. Research in ScienceEducation, 37(2), 99-122. https://doi.org/10.1007/s11165-006-9017-6.
  • Işık, A., & Mercan, E. (2015). Ortaokul matematik öğretmenlerinin model ve modelleme hakkındaki görüşlerinin incelenmesi. Kastamonu Eğitim Dergisi, 23(4), 1835-1850.
  • Justi, R. S., & Gilbert, J. K. (2002). Modelling, teachers' views on the nature of modelling, and implications for the education of modellers. International Journal of Science Education, 24(4), 369-387. https://doi.org/10.1080/09500690110110142.
  • Justi, R., & Gilbert, J. (2003). Teachers' views on thenature of models. International Journal of science education, 25(11), 1369-1386. https://doi.org/10.1080/0950069032000070324.
  • Kalkan, H., & Türk, C. (2012). Bilim merkezleri ve planetaryumların eğitimdeki yeri ve önemi. Uluslararası Katılımlı Türkiye Bilim Merkezleri Sempozyumu,4-5 Mayıs 2012, Bursa.
  • Khan, S. (2011). What’s missing in model-based teaching? Journal of Science Teacher Education, 22(6), 535–560. https://doi.org/10.1007/s10972-011-9248-x.
  • Lazarowitz, R., & Naim, R. (2013). Learning the cell structure swith three- dimensional models: Students’ achievement by methods, type of school and questions’ cognitive level. Journal of Science Educationand Technology, 22(4), 500-508. https://doi.org/10.1007/s10956-012-9409-5.
  • Louca, L. T., & Zacharia, Z. C. (2012). Modeling-based learning in science education: cognitive, metacognitive, social, material and epistemological contributions. Educational Review, 64(4), 471-492. https://doi.org/10.1080/00131911.2011.628748.
  • Louca, L. T., Zacharia, Z. T., & Constantinou, C. P. (2011). Inquest of productive modeling-based learning discourse in elementary school science. Journal of Research in Science Teaching, 48(8), 919–951. https://doi.org/10.1002/tea.20435.
  • Maia, P. F., & Justi, R. (2009). Learning of chemical equilibrium through modelling‐based teaching. International Journal of Science Education, 31(5), 603-630. https://doi.org/10.1080/09500690802538045.
  • Malone, K. L. (2006). A comparative study of the cognitive and meta cognitive differences between modeling and non-modeling high school physics students. UnpublishedPh.DThesis,Department of Psychology Center forInnovation in Learning, Carnegie Mellon University.
  • Mendonça, P. C. C., & Justi, R. (2011). Contributions of the model of modelling diagram to the learning of ionic bonding: Analysis of a casestudy. Research in ScienceEducation, 41(4), 479-503. https://doi.org/10.1007/s11165-010-9176-3.
  • Milli Eğitim Bakanlığı (MEB). (2017). Fen bilimleri dersi öğretim programı (İlkokul ve ortaokul 3, 4, 5, 6, 7 ve 8. sınıflar), Talim ve Terbiye Kurulu Başkanlığı, Ankara.
  • National England Curriculum (NEC). (2013). TheNationalCurriculum in England, Keystages 1 and 2 Framework Document.
  • National Research Council (NRC) (2012). A frameworkfor K-12 sciencestandards: Practices, crosscuttingconcepts, andcoreideas. Washington, DC: National Academy of theSciences.
  • National Science Teachers Association (NSTA). (2012). NSTA Recommendations on NGSS May 11 PublicDraft. RetrievedfromNSTA’swebsite http:// www.nsta.org/about/standardsupdate/ recommendations2.aspx.
  • Next Generation Science Standards (NGSS). (2013). Next generation science standards for states, by states. http://www.nextgenscience.org/next-generation-science-standards.
  • Oh, P. S., & Oh, S. J. (2011). What teachers of science need to know about models: An overview. International Journal of Science Education, 33(8), 1109-1130. https://doi.org/10.1080/09500693.2010.502191.
  • Rotbain, Y., Marbach‐Ad, G., & Stavy, R. (2006). Effect of bead and illustrations models on high school students' achievement in molecular genetics. Journal of Research in Science Teaching, 43(5), 500-529. https://doi.org/10.1002/tea.20144.
  • Sadi, Ö. (2010). Bilişsel ve güdüsel değişkenler ile geleneksel ve öğrenme evresi sınıflarındaki öğrencilerin insanda dolaşım sistemi başarıları arasındaki ilişki. Yayımlanmamış Doktora Tezi, Orta Doğu Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Ankara.
  • Sandmann, A., & Haugwitz, M. (2010). Collaborative modelling of the vascular system – designing and evaluating a new learning method for secondary students. Journal of Biological Education, 44(3), 136-140. https://doi.org/10.1080/00219266.2010.9656210.
  • Schwarz, C. V., & Gwekwerere, Y. N. (2007). Using a guided inquiry and modeling instructional framework (EIMA) to support preservice K‐8 science teaching. Science education, 91(1), 158-186. https://doi.org/10.1002/sce.20177.
  • Schwarz, C., & Passmore, C. (2012). Preparingforthenextgenerationsciencestandards—developingandusingmodels. National Science Teachers Association Webinar. http://learningcenter.nsta.org/products/symposia_seminars/Ngss/webseminar6.aspx.
  • Shen, J.,Lei, J., Chang, H. Y., & Namdar, B. (2014). Technology-enhanced, modeling-based instruction (TMBI) in science education. In Handbook of research on educational communications and technology (pp. 529-540). Springer, New York, NY.
  • Sikošek, D., & Žuželj, M. (2013). Using chemical models for developing natural science competences in teaching chemistry: from pupils as model assemblers to pupils as creators of self-made models. Problems of Education in the 21st Century, 53, 89-98.
  • Smith, A. M. (1999). A model circulatory system foruse in undergraduate physiology laboratories. Advan in Physiol Edu, 22(1), 92-99. https://doi.org/10.1152/advances.1999.277.6.S92.
  • Sternberg, R. J., & Grigorenko, E. L. (2007). Teaching for successfu lintelligence: To increase student learning and achievement. CorwinPress.
  • Treagust, D. F., Chittleborough, G., & Mamiala, T. L. (2002). Students' understanding of the role of scientific models in learningscience. International Journal of Science Education, 24(4), 357-368. https://doi.org/10.1080/09500690110066485.
  • Türk, C., & Kalkan, H. (2017). The effect of teaching astronomy with models on students’ achievements and attitudes. Journal of Current Researches on Educational Studies, 7(2), 185-204. https://doi.org/10.26579/jocures-7.2.12.
  • Ünal Çoban, G. (2009). Modellemeye dayalı fen öğretiminin öğrencilerin kavramsal anlama düzeylerine, bilimsel süreç becerilerine, bilimsel bilgi ve varlık anlayışlarına etkisi: 7. sınıf ışık ünitesi örneği, Yayımlanmamış doktora tezi, Dokuz Eylül Üniversitesi Eğitim Bilimleri Enstitüsü, İzmir.
  • Windschitl, M. (2012). Ambitiousteaching as the “new normal” in Americans cience classrooms: How will we prepare the next generation of Professional educators. Lecture, Pennsylvania StateUniversity.
  • Yıldırım, A., & Şimşek, H. (2008). Sosyal bilimlerde nitel araştırma yöntemleri. Ankara: Seçkin Yayıncılık.
  • Yurdatapan, M., & Şahin, F. (2013). DNA kavramları ile ilgili animasyon ve model kullanılmasının fen bilgisi öğretmenliği öğrencilerinin öğrenmelerine etkisi. Electronic Turkish Studies, 8(8), 2303-2313

The Opinions of the Prospective Science Teachers’ on Structured, Semi-Structured and Unstructured Three-Dimensional Modeling Processes

Yıl 2018, Cilt: 12 Sayı: 2, 382 - 414, 31.12.2018
https://doi.org/10.17522/balikesirnef.506453

Öz

This research
aims to determine the opinions of prospective science teachers regarding structured,
semi-structured and unstructured three-dimensional modeling processes according
to several problems. Thus, modeling activities were conducted in three
different process as structured (problem+materials+process), semi-structured
(problem+materials) and unstructured (problem). In this research planned within
the framework of embedded multiple case study design, a total number of 67
prospective science teachers created six models concerning human circulation
and respiratory system. "Focus Group Discussions," "Video
Recordings," and "Model-Related Activity Documents" were used as
data collection tools. The collected data were analyzed comparatively using the
content analysis method. Five themes, which are a) challenges encountered, b)
contributions, c) availability, d) alternative ideas and e) originality, were
found to be common in all modeling groups. In general, it was determined that
modeling activities had some positive impacts such as supporting learning
theoretical information, enabling information to be remembered easily, ensuring
the recognition of incomplete information and learning by doing and supporting
learning in a fun environment. As a negative impact, on the other hand, it was
concluded that it was a hard and tiring task to attach materials during
modeling activities.

Kaynakça

  • Achieve, Inc. (2013). Next generation science standards. The National Academies Press. Retrieved August 8, 2013, from http://www.nextgenscience.org/nextgeneration-science-standards.
  • Akgün, L., Çiltaş, A., Deniz, D., Çiftçi, Z., & Işık, A. (2013). İlköğretim matematik öğretmenlerinin matematiksel modelleme ile ilgili farkındalıkları. Adıyaman Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 2013(12), 1-34.
  • Arslan, A., & Doğru, M. (2013). Modellemeye dayalı fen öğretiminin ilköğretim öğrencilerinin anlama, hatırda tutma, yaratıcılık düzeyleri ile zihinsel modelleri üzerine etkisi. Mediterranean Journal of Humanities, 4(2), 1-17. https://doi.org/10.13114/MJH.201428425.
  • Boo, H. K., & Watson, J. R. (2001). Progression in high school students’(aged 16–18) conceptualizations about chemical reactions in solution. Science education, 85(5), 568-585. https://doi.org/10.1002/sce.1024.
  • Gobert, J. D., & Buckley, B. C. (2000). Introduction to model-based teaching and learning in science education. International Journal of Science Education, 22(9), 891-894. https://doi.org/10.1080/095006900416839.
  • Berber, N. C., & Güzel, H. (2009). Fen ve matematik öğretmen adaylarının modellerin bilim ve fendeki rolüne ve amacına ilişkin algıları. Selçuk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 21, 87-97.
  • Büyüköztürk, Ş., Kılıç Çakmak, E., Akgün, Ö. E., Karadeniz, Ş., & Demirel, F. (2008). Bilimsel araştırma yöntemleri. Ankara: Pegem Yayınları.
  • Devetak, I., Hajzeri, M., Glažar, A. S., & Vogrinec, J. (2010). The influence of different models on 15-years oldstudents’ understanding of the solidstate of matter. Acta Chimica Slovenica, 57, 904-511.
  • Ekiz, D. (2003). Eğitimde araştırma yöntem ve metotlarına giriş. Ankara: Anı Yayıncılık.
  • Esendemir, G. (2014). Effect of physical modeling and computer animation implemented with social constructivist instruction on understanding of human reproductive system. Yayımlanmamış Doktora Tezi, Orta Doğu Teknik Üniversitesi, Ankara.
  • Falk, A., & Brodsky, L. (2013). Incorporating models into science teaching to meet the next generation science standards. Science Scope, 37(1), 61-69.
  • Ferreira, P. F. M., & Justi, R. D. S. (2008). Modelagem e o “fazerciência”. Química nova naescola, 28, 32-36.
  • Gilbert, J. K., & Justi, R. (2016). Modelling-basedteaching in scienceeducation (Vol. 9). Cham, Switzerland: Springer International Publishing. https://doi.org/10.1007/978-3-319-29039-3.
  • Giuliodori, M. J.,Lujan, H. L., Briggs, W. S., & DiCarlo, S. E. (2009). A model of locomotor-respiratory coupling in quadrupeds. Advances in physiologyeducation, 33(4), 315-318.
  • Halloun, I. A. (2006). Modeling theory in science education (Vol. 24). Springer, Dordrecht. Netherlands.
  • Harman, G. (2012). Fen bilgisi öğretmen adaylarının model ve modelleme ile ilgili bilgilerinin incelenmesi. X.Ulusal Fen Bilimleri ve Matematik Eğitimi Kongresi, 27-30 Haziran 2012, Niğde.
  • Henze, I., van Driel, J. H., &Verloop, N. (2007). Science teachers' knowledge about teaching models and modelling in the context of a new syllabus on public understanding of science. Research in ScienceEducation, 37(2), 99-122. https://doi.org/10.1007/s11165-006-9017-6.
  • Işık, A., & Mercan, E. (2015). Ortaokul matematik öğretmenlerinin model ve modelleme hakkındaki görüşlerinin incelenmesi. Kastamonu Eğitim Dergisi, 23(4), 1835-1850.
  • Justi, R. S., & Gilbert, J. K. (2002). Modelling, teachers' views on the nature of modelling, and implications for the education of modellers. International Journal of Science Education, 24(4), 369-387. https://doi.org/10.1080/09500690110110142.
  • Justi, R., & Gilbert, J. (2003). Teachers' views on thenature of models. International Journal of science education, 25(11), 1369-1386. https://doi.org/10.1080/0950069032000070324.
  • Kalkan, H., & Türk, C. (2012). Bilim merkezleri ve planetaryumların eğitimdeki yeri ve önemi. Uluslararası Katılımlı Türkiye Bilim Merkezleri Sempozyumu,4-5 Mayıs 2012, Bursa.
  • Khan, S. (2011). What’s missing in model-based teaching? Journal of Science Teacher Education, 22(6), 535–560. https://doi.org/10.1007/s10972-011-9248-x.
  • Lazarowitz, R., & Naim, R. (2013). Learning the cell structure swith three- dimensional models: Students’ achievement by methods, type of school and questions’ cognitive level. Journal of Science Educationand Technology, 22(4), 500-508. https://doi.org/10.1007/s10956-012-9409-5.
  • Louca, L. T., & Zacharia, Z. C. (2012). Modeling-based learning in science education: cognitive, metacognitive, social, material and epistemological contributions. Educational Review, 64(4), 471-492. https://doi.org/10.1080/00131911.2011.628748.
  • Louca, L. T., Zacharia, Z. T., & Constantinou, C. P. (2011). Inquest of productive modeling-based learning discourse in elementary school science. Journal of Research in Science Teaching, 48(8), 919–951. https://doi.org/10.1002/tea.20435.
  • Maia, P. F., & Justi, R. (2009). Learning of chemical equilibrium through modelling‐based teaching. International Journal of Science Education, 31(5), 603-630. https://doi.org/10.1080/09500690802538045.
  • Malone, K. L. (2006). A comparative study of the cognitive and meta cognitive differences between modeling and non-modeling high school physics students. UnpublishedPh.DThesis,Department of Psychology Center forInnovation in Learning, Carnegie Mellon University.
  • Mendonça, P. C. C., & Justi, R. (2011). Contributions of the model of modelling diagram to the learning of ionic bonding: Analysis of a casestudy. Research in ScienceEducation, 41(4), 479-503. https://doi.org/10.1007/s11165-010-9176-3.
  • Milli Eğitim Bakanlığı (MEB). (2017). Fen bilimleri dersi öğretim programı (İlkokul ve ortaokul 3, 4, 5, 6, 7 ve 8. sınıflar), Talim ve Terbiye Kurulu Başkanlığı, Ankara.
  • National England Curriculum (NEC). (2013). TheNationalCurriculum in England, Keystages 1 and 2 Framework Document.
  • National Research Council (NRC) (2012). A frameworkfor K-12 sciencestandards: Practices, crosscuttingconcepts, andcoreideas. Washington, DC: National Academy of theSciences.
  • National Science Teachers Association (NSTA). (2012). NSTA Recommendations on NGSS May 11 PublicDraft. RetrievedfromNSTA’swebsite http:// www.nsta.org/about/standardsupdate/ recommendations2.aspx.
  • Next Generation Science Standards (NGSS). (2013). Next generation science standards for states, by states. http://www.nextgenscience.org/next-generation-science-standards.
  • Oh, P. S., & Oh, S. J. (2011). What teachers of science need to know about models: An overview. International Journal of Science Education, 33(8), 1109-1130. https://doi.org/10.1080/09500693.2010.502191.
  • Rotbain, Y., Marbach‐Ad, G., & Stavy, R. (2006). Effect of bead and illustrations models on high school students' achievement in molecular genetics. Journal of Research in Science Teaching, 43(5), 500-529. https://doi.org/10.1002/tea.20144.
  • Sadi, Ö. (2010). Bilişsel ve güdüsel değişkenler ile geleneksel ve öğrenme evresi sınıflarındaki öğrencilerin insanda dolaşım sistemi başarıları arasındaki ilişki. Yayımlanmamış Doktora Tezi, Orta Doğu Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Ankara.
  • Sandmann, A., & Haugwitz, M. (2010). Collaborative modelling of the vascular system – designing and evaluating a new learning method for secondary students. Journal of Biological Education, 44(3), 136-140. https://doi.org/10.1080/00219266.2010.9656210.
  • Schwarz, C. V., & Gwekwerere, Y. N. (2007). Using a guided inquiry and modeling instructional framework (EIMA) to support preservice K‐8 science teaching. Science education, 91(1), 158-186. https://doi.org/10.1002/sce.20177.
  • Schwarz, C., & Passmore, C. (2012). Preparingforthenextgenerationsciencestandards—developingandusingmodels. National Science Teachers Association Webinar. http://learningcenter.nsta.org/products/symposia_seminars/Ngss/webseminar6.aspx.
  • Shen, J.,Lei, J., Chang, H. Y., & Namdar, B. (2014). Technology-enhanced, modeling-based instruction (TMBI) in science education. In Handbook of research on educational communications and technology (pp. 529-540). Springer, New York, NY.
  • Sikošek, D., & Žuželj, M. (2013). Using chemical models for developing natural science competences in teaching chemistry: from pupils as model assemblers to pupils as creators of self-made models. Problems of Education in the 21st Century, 53, 89-98.
  • Smith, A. M. (1999). A model circulatory system foruse in undergraduate physiology laboratories. Advan in Physiol Edu, 22(1), 92-99. https://doi.org/10.1152/advances.1999.277.6.S92.
  • Sternberg, R. J., & Grigorenko, E. L. (2007). Teaching for successfu lintelligence: To increase student learning and achievement. CorwinPress.
  • Treagust, D. F., Chittleborough, G., & Mamiala, T. L. (2002). Students' understanding of the role of scientific models in learningscience. International Journal of Science Education, 24(4), 357-368. https://doi.org/10.1080/09500690110066485.
  • Türk, C., & Kalkan, H. (2017). The effect of teaching astronomy with models on students’ achievements and attitudes. Journal of Current Researches on Educational Studies, 7(2), 185-204. https://doi.org/10.26579/jocures-7.2.12.
  • Ünal Çoban, G. (2009). Modellemeye dayalı fen öğretiminin öğrencilerin kavramsal anlama düzeylerine, bilimsel süreç becerilerine, bilimsel bilgi ve varlık anlayışlarına etkisi: 7. sınıf ışık ünitesi örneği, Yayımlanmamış doktora tezi, Dokuz Eylül Üniversitesi Eğitim Bilimleri Enstitüsü, İzmir.
  • Windschitl, M. (2012). Ambitiousteaching as the “new normal” in Americans cience classrooms: How will we prepare the next generation of Professional educators. Lecture, Pennsylvania StateUniversity.
  • Yıldırım, A., & Şimşek, H. (2008). Sosyal bilimlerde nitel araştırma yöntemleri. Ankara: Seçkin Yayıncılık.
  • Yurdatapan, M., & Şahin, F. (2013). DNA kavramları ile ilgili animasyon ve model kullanılmasının fen bilgisi öğretmenliği öğrencilerinin öğrenmelerine etkisi. Electronic Turkish Studies, 8(8), 2303-2313
Toplam 49 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Eda Demirhan 0000-0001-9414-0431

Fatma Şahin 0000-0002-6291-0013

Yayımlanma Tarihi 31 Aralık 2018
Gönderilme Tarihi 11 Nisan 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 12 Sayı: 2

Kaynak Göster

APA Demirhan, E., & Şahin, F. (2018). Fen Bilgisi Öğretmen Adaylarının Yapılandırılmış, Yarı-Yapılandırılmış ve Yapılandırılmamış Üç Boyutlu Modelleme Süreçlerine İlişkin Görüşleri. Necatibey Eğitim Fakültesi Elektronik Fen Ve Matematik Eğitimi Dergisi, 12(2), 382-414. https://doi.org/10.17522/balikesirnef.506453