Yıl 2019, Cilt 21 , Sayı 2, Sayfalar 477 - 485 2019-08-15

Ayrışma Sürecinde Orman Karıncalarının (Formica rufa grup) Rolü: İlk Yıl Sonuçları
The role of wood ants (Formica rufa group) on decomposition process: preliminary result

Meriç ÇAKIR [1] , Tuğba TUNÇ [2]


Orman karıncaları (Formica rufa grup) ılıman kuşaktaki ibreli ormanlarda baskın olarak bulunan karınca grubudur. Toprak üstündeki büyük yuvalarını orman tabanından topladıkları organik materyal ve reçine ile inşa ederler. Bu yuvalar yüksek sıcaklık ve düşük nem içeriği bakımından çevrelerinden farklılık gösterirler.  Bu çalışmada bu özel çevresel şartların, ölüörtünün kütle kaybı ile karbon (C), azot (N), potasyum (K), fosfor (P), mangan (Mn), demir (Fe) ve alüminyum (Al)’u ayrışma sürecinde nasıl etkilediğine bakılmıştır. Çalışma Çankırı Karatekin Üniversitesi Orman Fakültesi Araştırma ve Uygulama Ormanında saf karaçam (Pinus nigra Arnold.) ormanında, ölüörtü kese yöntemi kullanılarak yürütülmüştür. Karaçam ibreleri karınca yuvalarının hemen kenarına ve yuvadan 10 m uzağa konulmuştur.

Karıncaların etkisi ve kurak yuva şartları nedeni ile ayrışmanın yavaş olmasını beklerken, karınca yuvalarının, karaçam ibrelerinin ayrışma sürecinde, kütle kaybı, karbon, azot, potasyum ve fosfor’un zamansal değişimi üzerinde istatistiksel olarak fark yaratacak etkiye sahip olmadığı belirlenmiştir. Fakat mangan, alüminyum ve demir gibi elementlerin zamansal değişiminde karınca yuvalarının, orman toprağına kıyasla bu elementlerin toprağa girişinde yavaşlatıcı etkiye sahip oldukları bulunmuştur.


Wood ants (Formica rufa group) are dominating ecosystem elements in coniferous forests of the temperate region. They build the large nests on aboveground with organic material and resin collected from the forest floor. These mounds have higher temperature and lower water content than the surrounding forest floor. We studied how these peculiar environmental conditions affected litter mass loss and carbon (C), nitrogen (N), potassium (K), phosphor (P), manganese (Mn), iron (Fe) and aluminium (Al) mineralisation of organic matter. The study conducted in temperate Black pine (Pinus nigra Arnold.) forest stands in Çankırı Karatekin University Faculty of Forestry Research Forest using the litterbag technique. Black pine needle litter was incubated in adjacent the wood ant nest and 10 m away from the nest edge.

While we expected decomposition to be slow due to the dryness of the mounds and effect of wood ants, the ant nests were not found to have a significant effect on the temporal variation of mass loss, carbon, nitrogen, potassium and phosphorus in the process of litter decomposition. However, the release of manganese, aluminium and iron is slower in ant nests compared to forest soil.

  • Abay G, Ursavaş S (2009). Çankırı ili araştırma ormanı karayosunu (musci) flora ve ekolojisi. Bartın Orman Fakültesi Dergisi, 11: 61-70.
  • Aerts R (1997). Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos, 79: 439-449.
  • Berg B, Erhagen B, Johansson MB, Vesterdal L, Faituri M, Sanborn P, Nilsson M (2013). Manganese dynamics in decomposing needle and leaf litter—a synthesis. Canadian journal of forest research, 43: 1127-1136.
  • Berg B, McClaugherty C (2014). Plant litter, Decomposition, humus formation, carbon sequestration. Third Edition. Springer-Verlag, Berlin Heidelberg.
  • Berg B, Staaf H (1981). Leaching, acccumulation and release of nitrogen in decomposing forest litter. Terresterial Nitrogen Cycles. Ecological Bulletin, 33: 163-178.
  • Berg B, Steffen K, McClaugherty C (2007). Litter decomposition rate is dependent on litter Mn concentrations. Biogeochemistry, 82: 29-39.
  • Berger TW, Duboc O, Djukic I, Tatzber M, Gerzabek MH, Zehetner F (2015). Decomposition of beech (Fagus sylvatica) and pine (Pinus nigra) litter along an Alpine elevation gradient: decay and nutrient release. Geoderma, 251: 92-104.
  • Cammeraat E, Risch A (2008). The impact of ants on mineral soil properties and processes at different spatial scales. Journal of Applied Entomology, 132: 285-294.
  • Coleman DC, Crossley DA, Hendrix PF (2004). Fundamentals of soil ecology. Academic press, USA.
  • Çakır M, Akburak S (2017). Litterfall and nutrients return to soil in pure and mixed stands of oak and beech. Journal of The Faculty of Forestry Istanbul University, 67: 185-200.
  • Davey MP, Berg B, Emmett BA, Rowland P (2007). Decomposition of oak leaf litter is related to initial litter Mn concentrations. Botany, 85: 16-24.
  • Domisch T, Ohashi M, Finér L, Risch A, Sundström L, Kilpeläinen J, Niemelä P (2008). Decomposition of organic matter and nutrient mineralisation in wood ant (Formica rufa group) mounds in boreal coniferous forests of different age. Biology and Fertility of Soils, 44: 539-545.
  • Dutta RK, Agrawal MJP (2001). Litterfall, litter decomposition and nutrient release in five exotic plant species planted on coal mine spoils. 45: 298-312.
  • Frankland JC (1998). Fungal succession—unravelling the unpredictable. Mycological research, 102: 1-15.
  • Frouz J (2000). The effect of nest moisture on daily temperature regime in the nests of Formica polyctena wood ants. Insectes Sociaux, 47: 229-235.
  • Frouz J, Holec M, Kalčík J (2003). The effect of Lasius niger (Hymenoptera, Formicidae) ant nest on selected soil chemical properties. Pedobiologia, 47: 205-212.
  • Frouz J, Jílková V, Sorvari J (2016). Contribution of wood ants to nutrient cycling and ecosystem function. In: Stockan, J.A., Robinson, E.J.H. (Eds.), Wood Ant Ecology and Conservation. Cambridge University Press, U.K., p. 207.
  • Frouz J, Kalčík J, Cudlín P (2005). Accumulation of phosphorus in nests of red wood ants Formica s. str. Annales Zoologici Fennici, 42: 269-275.
  • Goya JF, Frangi JL, Pérez CA, Dalla Tea F (2008). Decomposition and nutrient release from leaf litter in Eucalyptus grandis plantations on three different soils in Entre Ríos, Argentina. Bosque, 29.
  • Göl C, Yılmaz H, Ediş S (2010). Orman fakültesi araştırma ve uygulama ormanı topraklarının bazı özellikleri ve sınıflandırması. In, III. Ulusal Karadeniz Ormancılık Kongresi, Artvin, pp. 941-952.
  • Güner Ş, Çömez A (2017). Biomass equations and changes in carbon stock in afforested black pine (Pinus nigra Arnold. subsp. pallasiana (Lamb.) Holmboe) stands in Turkey. Fresenius Environmental Bulletin, 26: 2368-2379.
  • Hoorens B, Aerts R, Stroetenga M (2003). Does initial litter chemistry explain litter mixture effects on decomposition? Oecologia, 137: 578-586.
  • Jílková V, Cajthaml T, Frouz J (2018). Relative importance of honeydew and resin for the microbial activity in wood ant nest and forest floor substrate–a laboratory study. Soil Biology Biochemistry, 117: 1-4.
  • Jílková V, Matějíček L, Frouz J (2011). Changes in the pH and other soil chemical parameters in soil surrounding wood ant (Formica polyctena) nests. European Journal of Soil Biology, 47: 72-76.
  • Jílková V, Šebek O, Frouz J (2012). Mechanisms of pH change in wood ant (Formica polyctena) nests. Pedobiologia, 55: 247-251.
  • Jurgensen M, Finer L, Domisch T, Kilpeläinen J, Punttila P, Ohashi M, Niemelä P, Sundström L, Neuvonen S, Risch A (2008). Organic mound‐building ants: their impact on soil properties in temperate and boreal forests. Journal of Applied Entomology, 132: 266-275.
  • Kilpeläinen J, Finér L, Niemelä P, Domisch T, Neuvonen S, Ohashi M, Risch A, Sundström L (2007). Carbon, nitrogen and phosphorus dynamics of ant mounds (Formica rufa group) in managed boreal forests of different successional stages. Applied Soil Ecology, 36: 156-163.
  • Kristiansen S, Amelung W (2001). Abandoned anthills of Formica polyctena and soil heterogeneity in a temperate deciduous forest: morphology and organic matter composition. European Journal of Soil Science, 52: 355-363.
  • Laakso J, Setälä H (1997). Nest mounds of red wood ants (Formica aquilonia): hot spots for litter-dwelling earthworms. Oecologia, 111: 565-569.
  • Laakso J, Setälä H (1998). Composition and trophic structure of detrital food web in ant nest mounds of Formica aquilonia and in the surrounding forest soil. Oikos: 266-278.
  • Laakso J, Setälä H (2000). Impacts of wood ants (Formica aquilonia Yarr.) on the invertebrate food web of the boreal forest floor. Annales Zoologici Fennici, 37: 93-100.
  • Lenoir L, Bengtsson J, Persson T (2003). Effects of Formica ants on soil fauna-results from a short-term exclusion and a long-term natural experiment. Oecologia, 134: 423-430.
  • Lenoir L, Persson T, Bengtsson J (2001). Wood ant nests as potential hot spots for carbon and nitrogen mineralisation. Biology and fertility of Soils, 34: 235-240.
  • Manzoni S, Trofymow JA, Jackson RB, Porporato A (2010). Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter. Ecological Monographs, 80: 89-106.
  • Nkem JN, Lobry de Bruyn LA, Grant CD, Hulugalle NR (2000). The impact of ant bioturbation and foraging activities on surrounding soil properties. Pedobiologia, 44: 609-621.
  • Olson JS (1963). Energy storage and the balance of producers and decomposers in ecological systems. Ecology, 44: 322-331.
  • Risch AC, Ellis S, Wiswell H (2016). Where and why? Wood Ant Population Ecology. In: Stockan, J.A., Robinson, E.J.H. (Eds.), Wood Ant Ecology and Conservation. Cambridge, U.K.
  • Rosengren R, Fortelius W, Lindström K, Luther A (1987). Phenology and causation of nest heating and thermoregulation in red wood ants of the Formica rufa group studied in coniferous forest habitats in southern Finland. Annales Zoologici Fennici: 147-155.
  • Sarıyıldız T, Varan S, Duman A (2008). Ölü örtü ayrışma oranları üzerinde kimyasal bileşenlerin ve yetişme ortamı özelliklerinin etkisi: Artvin ve Ankara yöresine ait örnek bir çalışma. Kastamonu Ünivirsitesi Orman Fakültesi Dergisi, 8: 109-119.
  • SPSS (2011). IBM SPSS statistics base 20. SPSS Incorpo- rated, Chicago, IL.
  • Staaf H, Berg B (1981). Plant litter input to soil. In: Clark, F.E., Rosswall, T. (Eds.), Terrestrial nitrogen cycles. Processes, ecosystem strategies and management impacts. Ecological Bulletin pp. 147-167.
  • Stadler B, Schramm A, Kalbitz K (2006). Ant-mediated effects on spruce litter decomposition, solution chemistry, and microbial activity. Soil Biology and Biochemistry, 38: 561-572.
  • Stockan JA, Robinson EJ (2016). Wood ant ecology and conservation. Cambridge University Press,
  • Swift MJ, Heal W, Anderson JM (1979). Decomposition in Terrestrial Ecosystems. University of California Press, Berkeley.
  • Tolunay D (2009). Carbon concentrations of tree components, forest floor and understorey in young Pinus sylvestris stands in north-western Turkey. Scandinavian Journal of Forest Research, 24: 394-402.
  • Virzo De Santo A, Fierro A, Berg B, Rutigliano F, De Marco A (2002). Heavy metals and litter decomposition in coniferous forests. In: Violante, A., Huang, P.M., Bollag, J.M., Gianfreda, L. (Eds.), Developments in Soil Science. Elsevier pp. 63-78.
  • Voříšková J, Baldrian P (2013). Fungal community on decomposing leaf litter undergoes rapid successional changes. The ISME journal, 7: 477.
  • Wardle DA (2002). Communities and ecosystems: linking the aboveground and belowground components. Princeton University Press, Princeton.
  • Wardle DA, Hyodo F, Bardgett RD, Yeates GW, Nilsson M-C (2011). Long‐term aboveground and belowground consequences of red wood ant exclusion in boreal forest. Ecology, 92: 645-656.
Birincil Dil tr
Konular Orman Mühendisliği
Bölüm Biodiversity, Environmental Management and Policy, Sustainable Forestry
Yazarlar

Orcid: 0000-0001-8402-5114
Yazar: Meriç ÇAKIR (Sorumlu Yazar)
Kurum: CANKIRI KARATEKIN UNIVERSITY, FACULTY OF FOREST
Ülke: Turkey


Orcid: 0000-0002-6291-4751
Yazar: Tuğba TUNÇ
Kurum: ÇANKIRI KARATEKİN ÜNİVERSİTESİ, FEN BİLİMLERİ ENSTİTÜSÜ
Ülke: Turkey


Destekleyen Kurum TÜBİTAK
Proje Numarası 1919B011402186
Teşekkür Bu çalışma, TÜBİTAK 2209 Üniversite Öğrencileri Yurt İçi Araştırma Projeleri Destekleme Programı’nın 1919B011402186 nolu projesi tarafından desteklenmiştir.
Tarihler

Yayımlanma Tarihi : 15 Ağustos 2019

Bibtex @araştırma makalesi { barofd531698, journal = {Bartın Orman Fakültesi Dergisi}, issn = {1302-0943}, eissn = {1308-5875}, address = {}, publisher = {Bartın Üniversitesi}, year = {2019}, volume = {21}, pages = {477 - 485}, doi = {}, title = {Ayrışma Sürecinde Orman Karıncalarının (Formica rufa grup) Rolü: İlk Yıl Sonuçları}, key = {cite}, author = {ÇAKIR, Meriç and TUNÇ, Tuğba} }
APA ÇAKIR, M , TUNÇ, T . (2019). Ayrışma Sürecinde Orman Karıncalarının (Formica rufa grup) Rolü: İlk Yıl Sonuçları. Bartın Orman Fakültesi Dergisi , 21 (2) , 477-485 . Retrieved from https://dergipark.org.tr/tr/pub/barofd/issue/43738/531698
MLA ÇAKIR, M , TUNÇ, T . "Ayrışma Sürecinde Orman Karıncalarının (Formica rufa grup) Rolü: İlk Yıl Sonuçları". Bartın Orman Fakültesi Dergisi 21 (2019 ): 477-485 <https://dergipark.org.tr/tr/pub/barofd/issue/43738/531698>
Chicago ÇAKIR, M , TUNÇ, T . "Ayrışma Sürecinde Orman Karıncalarının (Formica rufa grup) Rolü: İlk Yıl Sonuçları". Bartın Orman Fakültesi Dergisi 21 (2019 ): 477-485
RIS TY - JOUR T1 - Ayrışma Sürecinde Orman Karıncalarının (Formica rufa grup) Rolü: İlk Yıl Sonuçları AU - Meriç ÇAKIR , Tuğba TUNÇ Y1 - 2019 PY - 2019 N1 - DO - T2 - Bartın Orman Fakültesi Dergisi JF - Journal JO - JOR SP - 477 EP - 485 VL - 21 IS - 2 SN - 1302-0943-1308-5875 M3 - UR - Y2 - 2019 ER -
EndNote %0 Bartın Orman Fakültesi Dergisi Ayrışma Sürecinde Orman Karıncalarının (Formica rufa grup) Rolü: İlk Yıl Sonuçları %A Meriç ÇAKIR , Tuğba TUNÇ %T Ayrışma Sürecinde Orman Karıncalarının (Formica rufa grup) Rolü: İlk Yıl Sonuçları %D 2019 %J Bartın Orman Fakültesi Dergisi %P 1302-0943-1308-5875 %V 21 %N 2 %R %U
ISNAD ÇAKIR, Meriç , TUNÇ, Tuğba . "Ayrışma Sürecinde Orman Karıncalarının (Formica rufa grup) Rolü: İlk Yıl Sonuçları". Bartın Orman Fakültesi Dergisi 21 / 2 (Ağustos 2019): 477-485 .
AMA ÇAKIR M , TUNÇ T . Ayrışma Sürecinde Orman Karıncalarının (Formica rufa grup) Rolü: İlk Yıl Sonuçları. Bartın Orman Fakültesi Dergisi. 2019; 21(2): 477-485.
Vancouver ÇAKIR M , TUNÇ T . Ayrışma Sürecinde Orman Karıncalarının (Formica rufa grup) Rolü: İlk Yıl Sonuçları. Bartın Orman Fakültesi Dergisi. 2019; 21(2): 485-477.