Araştırma Makalesi
BibTex RIS Kaynak Göster

Toprak Makrofaunasının Saf ve Karışık Meşcerelerdeki Komünite Yapıları

Yıl 2021, Cilt: 23 Sayı: 1, 226 - 235, 15.04.2021
https://doi.org/10.24011/barofd.788658

Öz

Toprak makrofaunası, farklı trofik gruplar içeren ve boyutları 2mm’den büyük olan eklembacaklılar ile yumuşak vücutlu omurgasızları içermektedir. Makrofauna, ayrışma, besin döngüsü, toprak strüktürü ve hastalık yapan canlıların popülasyon yoğunluğunu dengede tutmak gibi önemli ekosistem fonksiyonlarını etkiler. Ayrıca bitkilerin çeşitliliğini, bolluğunu, süksesyonunu ve üretimini etkileyen biyojeokimyasal döngülerde çok önemli rolleri vardır. Saf meşe (Quercus petraea L.) ve kayın (Fagus orientalis L.) meşcereleri ile meşe-kayın karışık meşceresinde yürütülen çalışmada makrofaunanın miktar, çeşitlilik ve komünite yapılarının araştırılması amaçlanmıştır. İstanbul Belgrad Ormanı içerisinde yer alan Atatürk Arboretumu’unda yürütülen çalışmada makrofaunayı örneklemek için çukur tuzaklar kullanılmıştır. Örnekleme aylık olarak bir yıl boyunca yapılmıştır.
Meşe-kayın karışık meşceresinde (606 bry. m-2) makrofauna miktarı saf meşe (478 bry. m-2) ve saf kayın meşceresine (470 bry. m-2) kıyasla istatistiksel olarak fazla bulunmuştur. Shannon çeşitlilik indeksine göre makrofauna çeşitliliği meşe (H'=1,24), kayın (H'=1,29) ve meşe-kayın (H'=1,28) meşcereleri arasında önemli bir fark çıkmamıştır. Genel olarak saf ve karışık meşcerelerdeki en baskın trofik grubu yırtıcılar oluşturmaktadır.

Destekleyen Kurum

İstanbul Üniversitesi BAP

Proje Numarası

3122

Teşekkür

Bu makale, Meriç Çakır'ın doktora tezi sonuçlarını içermektedir. Ender Makineci yönetimindeki doktora tezi 2013 yılında İstanbul Üniversitesi Fen Bilimleri Enstitüsü'nde tamamlanmıştır. Bu çalışma, İstanbul Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi, Proje numarası: 3122 tarafından desteklenmiştir.

Kaynakça

  • Akburak, S., Makineci, E. (2016). Thinning effects on soil and microbial respiration in a coppice-originated Carpinus betulus L. stand in Turkey. For Biogeosc For, 9; 783.
  • Aubert, M., Hedde, M., Decaëns, T., Bureau, F., Margerie, P., Alard, D. (2003). Effects of tree canopy composition on earthworms and other macro-invertebrates in beech forests of Upper Normandy (France): The 7th international symposium on earthworm ecology· Cardiff· Wales· 2002. Pedobiologia, 47; 904-912.
  • Barbier, S., Gosselin, F., Balandier, P. (2008). Influence of tree species on understory vegetation diversity and mechanisms involved—a critical review for temperate and boreal forests. Forest ecology and management, 254; 1-15.
  • Bardgett, R.D., van der Putten, W.H. (2014). Belowground biodiversity and ecosystem functioning. Nature, 515; 505-511.
  • Barros, E., Curmi, P., Hallaire, V., Chauvel, A., Lavelle, P. (2001). The role of macrofauna in the transformation and reversibility of soil structure of an oxisol in the process of forest to pasture conversion. Geoderma, 100; 193-213.
  • Binkley, D., Menyailo, O. (2005). Tree species effects on soils: implications for global change. Springer: Netherlands.
  • Cakir, M., Makineci, E. (2013). Humus characteristics and seasonal changes of soil arthropod communities in a natural sessile oak (Quercus petraea L.) stand and adjacent Austrian pine (Pinus nigra Arnold) plantation. Environmental Monitoring and Assessment, 185; 8943-8955.
  • Cavard, X., Macdonald, S.E., Bergeron, Y., Chen, H.Y. (2011). Importance of mixedwoods for biodiversity conservation: Evidence for understory plants, songbirds, soil fauna, and ectomycorrhizae in northern forests. Environmental Reviews, 19; 142-161.
  • Coleman, D.C., Crossley, D.A., Hendrix, P.F. (2004). Fundamentals of soil ecology. Academic Press: USA.
  • Çakır, M., Makineci, E. (2020). Litter decomposition in pure and mixed Quercus and Fagus stands as influenced by arthropods. The Journal of Forestry Research, 31; 1123–1137.
  • Çepel, N., Günay, T. (1984). Atatürk Arboretumu Toprak Raporu. Orman Toprak Tahlil Laboratuvarı, Eskişehir.
  • Dindal, D.L. (1990). Soil biology guide. Wiley: New York.
  • Frouz, J., Elhottová, D., Kuráž, V., Šourková, M. (2006). Effects of soil macrofauna on other soil biota and soil formation in reclaimed and unreclaimed post mining sites: results of a field microcosm experiment. Applied Soil Ecology, 33; 308-320.
  • Hättenschwiler, S., Gasser, P. (2005). Soil animals alter plant litter diversity effects on decomposition. Proceedings of the National Academy of Sciences of the United States of America, 102; 1519-1524.
  • Jactel, H., Brockerhoff, E.G. (2007). Tree diversity reduces herbivory by forest insects. Ecology letters, 10; 835-848.
  • Jones, C.G., Lawton, J.H., Shachak, M. (1994). Organisms as ecosystem engineers. Oikos; 373-386.
  • Karaöz, M.Ö. (1991). Atatürk arboretumu'ndaki bazı iğne yapraklı plantasyonlarda ölü örtünün kimyasal özellikleri üzerine araştırmalar. Journal of the Faculty of Forestry Istanbul University, 41; 68-86.
  • Kitamura, A.E., Tavares, R.L.M., Alves, M.C., Souza, Z.M.d., Siqueira, D.S. (2020). Soil macrofauna as bioindicator of the recovery of degraded Cerrado soil. Ciência Rural, 50.
  • Korboulewsky, N., Perez, G., Chauvat, M. (2016). How tree diversity affects soil fauna diversity: a review. Soil Biology and Biochemistry, 94; 94-106.
  • Leather, S. (2005). Insect sampling in forest ecosystems. Wiley-Blackwell: Oxfort, UK.
  • Lee, K., Foster, R. (1991). Soil fauna and soil structure. Soil Research, 29; 745-775.
  • Loranger-Merciris, G., Imbert, D., Bernhard-Reversat, F., Ponge, J.F., Lavelle, P. (2007). Soil fauna abundance and diversity in a secondary semi-evergreen forest in Guadeloupe (Lesser Antilles): influence of soil type and dominant tree species. Biology and Fertility of Soils, 44; 269-276.
  • Merlin, M., Perot, T., Perret, S., Korboulewsky, N., Vallet, P. (2015). Effects of stand composition and tree size on resistance and resilience to drought in sessile oak and Scots pine. Forest Ecology and Management, 339; 22-33.
  • MGM (2013). Orman ve Su İşleri Bakanlığı, Meteoroloji Genel Müdürlüğü, İstanbul-Kireçburnu istasyonu iklim verileri (2000-2013). In: İstanbul.
  • Özturna, A.G. (2013). Atatürk arboretumu (istanbul) topraklarının toprak kaynakları için dünya referans temeli’ne göre sınıflandırılması. Fenbilimleri Enstitüsü (Yüksek Lisans), İstanbul Üniversitesi, İstanbul.
  • Palacios-Vargas, J., Castano-Meneses, G., Gómez-Anaya, J., Martínez-Yrizar, A., Mejía-Recamier, B., Martínez-Sánchez, J. (2007). Litter and soil arthropods diversity and density in a tropical dry forest ecosystem in Western Mexico. Biodiversity and Conservation, 16; 3703-3717.
  • Paquin, P., Coderre, D. (1997). Changes in soil macroarthropod communities in relation to forest maturation through three successional stages in the Canadian boreal forest. Oecologia, 112; 104-111.
  • Petersen, H., Luxton, M. (1982). A comparative analysis of soil fauna populations and their role in decomposition processes. Oikos, 39; 288-388.
  • Pretzsch, H., Block, J., Dieler, J., Dong, P.H., Kohnle, U., Nagel, J., Spellmann, H., Zingg, A. (2010). Comparison between the productivity of pure and mixed stands of Norway spruce and European beech along an ecological gradient. Annals of Forest Science, 67; 712-724.
  • Rousseau, L., Fonte, S.J., Téllez, O., Van der Hoek, R., Lavelle, P. (2013). Soil macrofauna as indicators of soil quality and land use impacts in smallholder agroecosystems of western Nicaragua. Ecological indicators, 27; 71-82.
  • Salamon, J.A., Scheu, S., Schaefer, M. (2008). The Collembola community of pure and mixed stands of beech (Fagus sylvatica) and spruce (Picea abies) of different age. Pedobiologia, 51; 385-396.
  • Santos, S.A.P., Cabanas, J.E., Pereira, J.A. (2007). Abundance and diversity of soil arthropods in olive grove ecosystem (Portugal): Effect of pitfall trap type. European Journal of Soil Biology, 43; 77-83.
  • Scherer-Lorenzen, M., Schulze, E.-D. (2005). Forest diversity and function: temperate and boreal systems. Springer Science & Business Media: Germany.
  • Scheu, S. (2005). Linkages between tree diversity, soil fauna and ecosystem processes. In, Forest Diversity and Function. Springer pp. 211-233.
  • Scheu, S., Albers, D., Alphei, J., Buryn, R., Klages, U., Migge, S., Platner, C., Salamon, J.A. (2003). The soil fauna community in pure and mixed stands of beech and spruce of different age: trophic structure and structuring forces. Oikos, 101; 225-238.
  • Shannon, C., Weaver, W. (1949). The Mathematical Theory of Communication. University of Illinois Pres: Urbana.
  • SPSS (2011). IBM SPSS statistics base 20. SPSS Incorporated, Chicago, IL.
  • Swift, M.J., Heal, W., Anderson, J.M. (1979). Decomposition in Terrestrial Ecosystems. University of California Press: Berkeley.
  • Vallet, P., Pérot, T. (2011). Silver fir stand productivity is enhanced when mixed with Norway spruce: evidence based on large‐scale inventory data and a generic modelling approach. Journal of Vegetation Science, 22; 932-942.
  • Vehviläinen, H., Koricheva, J., Ruohomäki, K. (2008). Effects of stand tree species composition and diversity on abundance of predatory arthropods. Oikos, 117; 935-943.
  • Wardle, D.A., Bardgett, R.D., Klironomos, J.N., Setälä, H., Van Der Putten, W.H., Wall, D.H. (2004). Ecological linkages between aboveground and belowground biota. Science, 304; 1629-1633.
  • Wardle, D.A., Yeates, G.W., Barker, G.M., Bonner, K.I. (2006). The influence of plant litter diversity on decomposer abundance and diversity. Soil Biology and Biochemistry, 38; 1052-1062.
  • WRB (2006). IUSS Working Group, World reference base for soil resources 2006. 2nd edition. World Soil Resources Reports No. 103. FAO: Rome.

Community Structure of Soil Macrofauna Under Pure and Mixed Forest Stands

Yıl 2021, Cilt: 23 Sayı: 1, 226 - 235, 15.04.2021
https://doi.org/10.24011/barofd.788658

Öz

Soil macrofauna includes arthropods and soft-bodied invertebrates with different trophic groups and sizes larger than 2mm. Macrofauna affects important ecosystem functions such as decomposition, nutrient cycling, soil structure, and suppression of population density of pathogens. Besides, they play an important role in biogeochemical cycles that affect plant diversity, abundance, succession, and production. The study conducted on pure oak (Quercus petraea L.) and beech (Fagus orientalis L.) stands and oak-beech mixed stands, it was aimed to investigate the density, diversity, and community structures of macrofauna. Pitfall traps were used to collect the macrofauna in the research area in the Atatürk Arboretum located in the Belgrad Forest of Istanbul. Sampling was done monthly for one year. Macrofauna density was found statistically higher in the oak-beech mixed stand (606 bry. m-2) compared to pure oak (478 bry. m-2) and pure beech stand (470 bry. m-2). According to the Shannon diversity index, there was no significant difference in macrofauna diversity between oak (H'= 1.24), beech (H' = 1.29) and oak-beech (H'= 1.28) stands. In general, predators constitute the most dominant trophic group in pure and mixed stands.

Proje Numarası

3122

Kaynakça

  • Akburak, S., Makineci, E. (2016). Thinning effects on soil and microbial respiration in a coppice-originated Carpinus betulus L. stand in Turkey. For Biogeosc For, 9; 783.
  • Aubert, M., Hedde, M., Decaëns, T., Bureau, F., Margerie, P., Alard, D. (2003). Effects of tree canopy composition on earthworms and other macro-invertebrates in beech forests of Upper Normandy (France): The 7th international symposium on earthworm ecology· Cardiff· Wales· 2002. Pedobiologia, 47; 904-912.
  • Barbier, S., Gosselin, F., Balandier, P. (2008). Influence of tree species on understory vegetation diversity and mechanisms involved—a critical review for temperate and boreal forests. Forest ecology and management, 254; 1-15.
  • Bardgett, R.D., van der Putten, W.H. (2014). Belowground biodiversity and ecosystem functioning. Nature, 515; 505-511.
  • Barros, E., Curmi, P., Hallaire, V., Chauvel, A., Lavelle, P. (2001). The role of macrofauna in the transformation and reversibility of soil structure of an oxisol in the process of forest to pasture conversion. Geoderma, 100; 193-213.
  • Binkley, D., Menyailo, O. (2005). Tree species effects on soils: implications for global change. Springer: Netherlands.
  • Cakir, M., Makineci, E. (2013). Humus characteristics and seasonal changes of soil arthropod communities in a natural sessile oak (Quercus petraea L.) stand and adjacent Austrian pine (Pinus nigra Arnold) plantation. Environmental Monitoring and Assessment, 185; 8943-8955.
  • Cavard, X., Macdonald, S.E., Bergeron, Y., Chen, H.Y. (2011). Importance of mixedwoods for biodiversity conservation: Evidence for understory plants, songbirds, soil fauna, and ectomycorrhizae in northern forests. Environmental Reviews, 19; 142-161.
  • Coleman, D.C., Crossley, D.A., Hendrix, P.F. (2004). Fundamentals of soil ecology. Academic Press: USA.
  • Çakır, M., Makineci, E. (2020). Litter decomposition in pure and mixed Quercus and Fagus stands as influenced by arthropods. The Journal of Forestry Research, 31; 1123–1137.
  • Çepel, N., Günay, T. (1984). Atatürk Arboretumu Toprak Raporu. Orman Toprak Tahlil Laboratuvarı, Eskişehir.
  • Dindal, D.L. (1990). Soil biology guide. Wiley: New York.
  • Frouz, J., Elhottová, D., Kuráž, V., Šourková, M. (2006). Effects of soil macrofauna on other soil biota and soil formation in reclaimed and unreclaimed post mining sites: results of a field microcosm experiment. Applied Soil Ecology, 33; 308-320.
  • Hättenschwiler, S., Gasser, P. (2005). Soil animals alter plant litter diversity effects on decomposition. Proceedings of the National Academy of Sciences of the United States of America, 102; 1519-1524.
  • Jactel, H., Brockerhoff, E.G. (2007). Tree diversity reduces herbivory by forest insects. Ecology letters, 10; 835-848.
  • Jones, C.G., Lawton, J.H., Shachak, M. (1994). Organisms as ecosystem engineers. Oikos; 373-386.
  • Karaöz, M.Ö. (1991). Atatürk arboretumu'ndaki bazı iğne yapraklı plantasyonlarda ölü örtünün kimyasal özellikleri üzerine araştırmalar. Journal of the Faculty of Forestry Istanbul University, 41; 68-86.
  • Kitamura, A.E., Tavares, R.L.M., Alves, M.C., Souza, Z.M.d., Siqueira, D.S. (2020). Soil macrofauna as bioindicator of the recovery of degraded Cerrado soil. Ciência Rural, 50.
  • Korboulewsky, N., Perez, G., Chauvat, M. (2016). How tree diversity affects soil fauna diversity: a review. Soil Biology and Biochemistry, 94; 94-106.
  • Leather, S. (2005). Insect sampling in forest ecosystems. Wiley-Blackwell: Oxfort, UK.
  • Lee, K., Foster, R. (1991). Soil fauna and soil structure. Soil Research, 29; 745-775.
  • Loranger-Merciris, G., Imbert, D., Bernhard-Reversat, F., Ponge, J.F., Lavelle, P. (2007). Soil fauna abundance and diversity in a secondary semi-evergreen forest in Guadeloupe (Lesser Antilles): influence of soil type and dominant tree species. Biology and Fertility of Soils, 44; 269-276.
  • Merlin, M., Perot, T., Perret, S., Korboulewsky, N., Vallet, P. (2015). Effects of stand composition and tree size on resistance and resilience to drought in sessile oak and Scots pine. Forest Ecology and Management, 339; 22-33.
  • MGM (2013). Orman ve Su İşleri Bakanlığı, Meteoroloji Genel Müdürlüğü, İstanbul-Kireçburnu istasyonu iklim verileri (2000-2013). In: İstanbul.
  • Özturna, A.G. (2013). Atatürk arboretumu (istanbul) topraklarının toprak kaynakları için dünya referans temeli’ne göre sınıflandırılması. Fenbilimleri Enstitüsü (Yüksek Lisans), İstanbul Üniversitesi, İstanbul.
  • Palacios-Vargas, J., Castano-Meneses, G., Gómez-Anaya, J., Martínez-Yrizar, A., Mejía-Recamier, B., Martínez-Sánchez, J. (2007). Litter and soil arthropods diversity and density in a tropical dry forest ecosystem in Western Mexico. Biodiversity and Conservation, 16; 3703-3717.
  • Paquin, P., Coderre, D. (1997). Changes in soil macroarthropod communities in relation to forest maturation through three successional stages in the Canadian boreal forest. Oecologia, 112; 104-111.
  • Petersen, H., Luxton, M. (1982). A comparative analysis of soil fauna populations and their role in decomposition processes. Oikos, 39; 288-388.
  • Pretzsch, H., Block, J., Dieler, J., Dong, P.H., Kohnle, U., Nagel, J., Spellmann, H., Zingg, A. (2010). Comparison between the productivity of pure and mixed stands of Norway spruce and European beech along an ecological gradient. Annals of Forest Science, 67; 712-724.
  • Rousseau, L., Fonte, S.J., Téllez, O., Van der Hoek, R., Lavelle, P. (2013). Soil macrofauna as indicators of soil quality and land use impacts in smallholder agroecosystems of western Nicaragua. Ecological indicators, 27; 71-82.
  • Salamon, J.A., Scheu, S., Schaefer, M. (2008). The Collembola community of pure and mixed stands of beech (Fagus sylvatica) and spruce (Picea abies) of different age. Pedobiologia, 51; 385-396.
  • Santos, S.A.P., Cabanas, J.E., Pereira, J.A. (2007). Abundance and diversity of soil arthropods in olive grove ecosystem (Portugal): Effect of pitfall trap type. European Journal of Soil Biology, 43; 77-83.
  • Scherer-Lorenzen, M., Schulze, E.-D. (2005). Forest diversity and function: temperate and boreal systems. Springer Science & Business Media: Germany.
  • Scheu, S. (2005). Linkages between tree diversity, soil fauna and ecosystem processes. In, Forest Diversity and Function. Springer pp. 211-233.
  • Scheu, S., Albers, D., Alphei, J., Buryn, R., Klages, U., Migge, S., Platner, C., Salamon, J.A. (2003). The soil fauna community in pure and mixed stands of beech and spruce of different age: trophic structure and structuring forces. Oikos, 101; 225-238.
  • Shannon, C., Weaver, W. (1949). The Mathematical Theory of Communication. University of Illinois Pres: Urbana.
  • SPSS (2011). IBM SPSS statistics base 20. SPSS Incorporated, Chicago, IL.
  • Swift, M.J., Heal, W., Anderson, J.M. (1979). Decomposition in Terrestrial Ecosystems. University of California Press: Berkeley.
  • Vallet, P., Pérot, T. (2011). Silver fir stand productivity is enhanced when mixed with Norway spruce: evidence based on large‐scale inventory data and a generic modelling approach. Journal of Vegetation Science, 22; 932-942.
  • Vehviläinen, H., Koricheva, J., Ruohomäki, K. (2008). Effects of stand tree species composition and diversity on abundance of predatory arthropods. Oikos, 117; 935-943.
  • Wardle, D.A., Bardgett, R.D., Klironomos, J.N., Setälä, H., Van Der Putten, W.H., Wall, D.H. (2004). Ecological linkages between aboveground and belowground biota. Science, 304; 1629-1633.
  • Wardle, D.A., Yeates, G.W., Barker, G.M., Bonner, K.I. (2006). The influence of plant litter diversity on decomposer abundance and diversity. Soil Biology and Biochemistry, 38; 1052-1062.
  • WRB (2006). IUSS Working Group, World reference base for soil resources 2006. 2nd edition. World Soil Resources Reports No. 103. FAO: Rome.
Toplam 43 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Ekoloji
Bölüm Biodiversity, Environmental Management and Policy, Sustainable Forestry
Yazarlar

Meriç Çakır 0000-0001-8402-5114

Ender Makineci 0000-0003-3396-3279

Proje Numarası 3122
Yayımlanma Tarihi 15 Nisan 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 23 Sayı: 1

Kaynak Göster

APA Çakır, M., & Makineci, E. (2021). Toprak Makrofaunasının Saf ve Karışık Meşcerelerdeki Komünite Yapıları. Bartın Orman Fakültesi Dergisi, 23(1), 226-235. https://doi.org/10.24011/barofd.788658


Bartin Orman Fakultesi Dergisi Editorship,

Bartin University, Faculty of Forestry, Dean Floor No:106, Agdaci District, 74100 Bartin-Turkey.

Tel: +90 (378) 223 5094, Fax: +90 (378) 223 5062,

E-mail: bofdergi@gmail.com