Araştırma Makalesi
BibTex RIS Kaynak Göster

Jordan k-∗-türevlerinin Γ*-Banach cebirlerinde sabit nokta yöntemiyle stabilitesi

Yıl 2024, , 111 - 123, 19.01.2024
https://doi.org/10.25092/baunfbed.1300223

Öz

Sabit nokta yöntemlerini kullanarak, μf((x+y)/2)+μf((x-y)/2)=f(μx) ile tanımlı Jensen tipi fonksiyonel denklem için Jordan k-∗-türevlerinin Γ*-Banach cebirleri üzerindeki stabilitesini ve süper stabilitesini kanıtlıyoruz. Burada μ sayısı, |μ| = 1 şartını sağlayan bir karmaşık sayıdır. Ayrıca, Γ*-Banach cebirleri üzerindeki f(2μx+μy)+f(μx+2μy)=μ[f(3x)+f(3y)] fonksiyonel denklemi ile Jordan k-∗-türevlerinin stabilitesini ve süper stabilitesini araştırıyoruz.

Kaynakça

  • Ulam, S.M., Problems in modern mathematics, Chapter VI, science ed. Wiley, New York, (1940).
  • Hyers, D.H., On the stability of the linear functional equation, Proceedings of the National Academy of Sciences of the United States of America, 27, 222-224, (1941).
  • Rassias, Th. M., On the stability of the linear mapping in Banach spaces, Proceedings of the American Mathematical Society, 72, 297-300, (1978).
  • Hyers, D.H., Isac, G. ve Rassias, Th.M., Stability of functional equations in several variables, Birkhauser, Basel, (1998).
  • Czerwik, S., Functional equations and inequalities in several variables, River Edge, NJ: World Scientific, (2002).
  • Jung, S.M., Hyers-Ulam-Rassias stability of functional equations in mathematical analysis, Palm Harbor: Hadronic Press, (2001).
  • Semrl, P., The functional equation of multiplicative derivation is superstable on standard operator algebras, Integral Equations and Operator Theory, 18, 118-122, (1994).
  • An, J., Cui, J. ve Park, C., Jordan ∗-derivations on C∗-algebras and JC∗-algebras, Abstract Applied Analysis, Article ID 410437, 1-12, (2008).
  • Jang, S. ve Park, C., Approximate ∗-derivations and approximate quadratic ∗-derivations on C∗-algebras, Journal of Inequalities and Applications, Article ID 55, 1-13 pages, (2011).
  • Park, C. ve Bodaghi, A., On the stability of ∗-derivations on Banach ∗-algebras, Advances in Differential Equations, 55, 1-10, (2012).
  • Nobusawa, N. On the generalization of the ring theory, Osaka Journal of Mathematics, 1, 81-89, (1964).
  • Barnes, W.E., On the Γ-rings of Nobusawa, Pacific Journal of Mathematics, 18, 3, 411-422, (1966).
  • Sapanci, M. ve Nakajima, A., Jordan derivations on completely prime Γ-rings, Mathematica Japonica, 46, 1, 47-51, (1997).
  • Kandamar, H., The k-derivation of a Gamma ring, Turkish Journal of Mathematics, 24, 221-231, (2000).
  • Bhattacharya, D.K. ve Maity, A.K., Semilinear tensor product of Gamma Banach algebras, Ganita, 40, 78-80, (1989).
  • Hoque, M.F., Alshammari, F.S. ve Paul, A.C., Left centralizers of semiprime Γ-rings with involution, Applied Mathematical Sciences, 95, 4713-4722, (2014).
  • Park, C., Homomorphisms between Poisson JC∗-algebras, Bulletin of the Brazilian Mathematical Society, 36, 1, 79-97, (2005).
  • Caˇdariu, L. ve Radu, V., On the stability of the Cauchy functional equation: a fixed point approach, Grazer Mathematische Berichte, 346, 43-52, (2004).
  • Arslan, B. ve Arslan, O., On the stability of homomorphisms and k-derivations on Gamma-Banach algebras, University Politehnica of Bucharest Scientific Bulletin Series A, 80, 2, 69-78, (2018).
  • Najati, A. ve Park, C., Stability of homomorphisms and generalized derivations on Banach algebras, Journal of Inequalities and Applications, 2009, 1-12, (2009).

The stability of Jordan k-*-derivations on Γ∗-Banach algebras by fixed point method

Yıl 2024, , 111 - 123, 19.01.2024
https://doi.org/10.25092/baunfbed.1300223

Öz

Using fixed point methods, we prove the stability and the superstability of Jordan k-∗-derivations on Γ∗-Banach algebras for the following Jensen-type functional equation μf((x+y)/2)+μf((x-y)/2)=f(μx) where μ is a complex number such that |μ| = 1. We also investigate the stability and the superstability of Jordan k-∗-derivations with the functional equation f(2μx+μy)+f(μx+2μy)=μ[f(3x)+f(3y)] on Γ∗-Banach algebras.

Kaynakça

  • Ulam, S.M., Problems in modern mathematics, Chapter VI, science ed. Wiley, New York, (1940).
  • Hyers, D.H., On the stability of the linear functional equation, Proceedings of the National Academy of Sciences of the United States of America, 27, 222-224, (1941).
  • Rassias, Th. M., On the stability of the linear mapping in Banach spaces, Proceedings of the American Mathematical Society, 72, 297-300, (1978).
  • Hyers, D.H., Isac, G. ve Rassias, Th.M., Stability of functional equations in several variables, Birkhauser, Basel, (1998).
  • Czerwik, S., Functional equations and inequalities in several variables, River Edge, NJ: World Scientific, (2002).
  • Jung, S.M., Hyers-Ulam-Rassias stability of functional equations in mathematical analysis, Palm Harbor: Hadronic Press, (2001).
  • Semrl, P., The functional equation of multiplicative derivation is superstable on standard operator algebras, Integral Equations and Operator Theory, 18, 118-122, (1994).
  • An, J., Cui, J. ve Park, C., Jordan ∗-derivations on C∗-algebras and JC∗-algebras, Abstract Applied Analysis, Article ID 410437, 1-12, (2008).
  • Jang, S. ve Park, C., Approximate ∗-derivations and approximate quadratic ∗-derivations on C∗-algebras, Journal of Inequalities and Applications, Article ID 55, 1-13 pages, (2011).
  • Park, C. ve Bodaghi, A., On the stability of ∗-derivations on Banach ∗-algebras, Advances in Differential Equations, 55, 1-10, (2012).
  • Nobusawa, N. On the generalization of the ring theory, Osaka Journal of Mathematics, 1, 81-89, (1964).
  • Barnes, W.E., On the Γ-rings of Nobusawa, Pacific Journal of Mathematics, 18, 3, 411-422, (1966).
  • Sapanci, M. ve Nakajima, A., Jordan derivations on completely prime Γ-rings, Mathematica Japonica, 46, 1, 47-51, (1997).
  • Kandamar, H., The k-derivation of a Gamma ring, Turkish Journal of Mathematics, 24, 221-231, (2000).
  • Bhattacharya, D.K. ve Maity, A.K., Semilinear tensor product of Gamma Banach algebras, Ganita, 40, 78-80, (1989).
  • Hoque, M.F., Alshammari, F.S. ve Paul, A.C., Left centralizers of semiprime Γ-rings with involution, Applied Mathematical Sciences, 95, 4713-4722, (2014).
  • Park, C., Homomorphisms between Poisson JC∗-algebras, Bulletin of the Brazilian Mathematical Society, 36, 1, 79-97, (2005).
  • Caˇdariu, L. ve Radu, V., On the stability of the Cauchy functional equation: a fixed point approach, Grazer Mathematische Berichte, 346, 43-52, (2004).
  • Arslan, B. ve Arslan, O., On the stability of homomorphisms and k-derivations on Gamma-Banach algebras, University Politehnica of Bucharest Scientific Bulletin Series A, 80, 2, 69-78, (2018).
  • Najati, A. ve Park, C., Stability of homomorphisms and generalized derivations on Banach algebras, Journal of Inequalities and Applications, 2009, 1-12, (2009).
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Cebir ve Sayı Teorisi
Bölüm Araştırma Makalesi
Yazarlar

Berna Arslan 0000-0002-6517-0452

Erken Görünüm Tarihi 6 Ocak 2024
Yayımlanma Tarihi 19 Ocak 2024
Gönderilme Tarihi 21 Mayıs 2023
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Arslan, B. (2024). The stability of Jordan k-*-derivations on Γ∗-Banach algebras by fixed point method. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 26(1), 111-123. https://doi.org/10.25092/baunfbed.1300223
AMA Arslan B. The stability of Jordan k-*-derivations on Γ∗-Banach algebras by fixed point method. BAUN Fen. Bil. Enst. Dergisi. Ocak 2024;26(1):111-123. doi:10.25092/baunfbed.1300223
Chicago Arslan, Berna. “The Stability of Jordan K-*-Derivations on Γ∗-Banach Algebras by Fixed Point Method”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 26, sy. 1 (Ocak 2024): 111-23. https://doi.org/10.25092/baunfbed.1300223.
EndNote Arslan B (01 Ocak 2024) The stability of Jordan k-*-derivations on Γ∗-Banach algebras by fixed point method. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 26 1 111–123.
IEEE B. Arslan, “The stability of Jordan k-*-derivations on Γ∗-Banach algebras by fixed point method”, BAUN Fen. Bil. Enst. Dergisi, c. 26, sy. 1, ss. 111–123, 2024, doi: 10.25092/baunfbed.1300223.
ISNAD Arslan, Berna. “The Stability of Jordan K-*-Derivations on Γ∗-Banach Algebras by Fixed Point Method”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 26/1 (Ocak 2024), 111-123. https://doi.org/10.25092/baunfbed.1300223.
JAMA Arslan B. The stability of Jordan k-*-derivations on Γ∗-Banach algebras by fixed point method. BAUN Fen. Bil. Enst. Dergisi. 2024;26:111–123.
MLA Arslan, Berna. “The Stability of Jordan K-*-Derivations on Γ∗-Banach Algebras by Fixed Point Method”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 26, sy. 1, 2024, ss. 111-23, doi:10.25092/baunfbed.1300223.
Vancouver Arslan B. The stability of Jordan k-*-derivations on Γ∗-Banach algebras by fixed point method. BAUN Fen. Bil. Enst. Dergisi. 2024;26(1):111-23.