Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of the effect of production process and material parameters on the variability of mechanical properties of composite sheets

Yıl 2024, , 441 - 454, 15.07.2024
https://doi.org/10.25092/baunfbed.1461630

Öz

This study investigated the effect of process and material parameters on the variability of mechanical properties of composite sheets produced by resin transfer molding. For this purpose, an RTM process was utilized for the production of composite sheets. The mold used in the process is a heated, fully closed metal mold that can be used for single or double point injection, and thanks to the vacuum support, the air in the mold can be evacuated during the process. The process parameters used in the study were injection pressure, curing pressure, number of injection points and ambient temperature. The composite sheets were fabricated using low-viscosity commercial polyester resin as the matrix and bidirectional woven-glass fabric of 500 g/m² as the fiber. A total of 10 composite sheets which have six layers, 0.5×0.5 m in size and of various thicknesses and fiber volumes, were produced at the end of the process. Standard test specimens were cut from the sheets at 0°/90°, 15°/75°, 30°/60° and 45°/45° fiber orientations. The specimens were subjected to tensile and flexural tests to determine their mechanical properties. SPSS-24 software was used to statistically analyze the data from a total of 367 samples. Mechanical properties are influenced by process and material parameters such as injection pressure, number of injection points, ambient temperature, fiber orientation and sheet thickness, respectively.

Proje Numarası

BAP2013/40

Kaynakça

  • Gao G., ve Li Y., Mechanical properties of woven glass fiber-reinforced polymer composites, Emerging Materials Research, 5, 2, 201-208, (2016).
  • Rajak D.K., Pagar D.D., Kumar R., ve Pruncu C.I., Recent progress of reinforcement materials: a comprehensive overview of composite materials, Journal of Materials Research and Technology, 8, 6, 6354-6374, (2019).
  • Rajak D.K., Pagar D.D., Menezes P.L., ve Linul E., Fiber-reinforced polymer composites: Manufacturing, properties, and applications, Polymers, 11, 10, 1667-1704, (2019).
  • Diniță A., Ripeanu R.G., Ilincă C.N., Cursaru D., Matei D., Naim R.I., Tănase M., ve Portoacă A.I., Advancements in Fiber-Reinforced Polymer Composites: A Comprehensive Analysis, Polymers, 16, 1, 2-50, (2023).
  • Karim M.A., Abdullah M.Z., Deifalla A.F., Azab M., ve Waqar A., An assessment of the processing parameters and application of fibre-reinforced polymers (FRPs) in the petroleum and natural gas industries: A review, Results in Engineering, 18, 101091, 1-20, (2023).
  • Zhang W., ve Evans K.E., Numerical prediction of the mechanical properties of anisotropic composite materials, Computers & structures, 29, 3, 413-422, (1988).
  • Seshaiah T., ve Reddy V.K., Effect of fiber orientation on the mechanical behavior of e-glass fibre reinforced epoxy composite materials, International Journal of Mechanical and Production Engineering Research and Development, 8, 8, 379-396, (2018).
  • Kumar N., ve Singh A., Study the effect of fiber orientation on mechanical properties of bidirectional basalt fiber reinforced epoxy composites, Materials Today: Proceedings, 39, 1581-1587, (2021).
  • Sayam A., Rahman A.M., Rahman M.S., Smriti S.A., Ahmed F., Rabbi M.F., Hossain M., ve Faruque M.O., A review on carbon fiber-reinforced hierarchical composites: mechanical performance, manufacturing process, structural applications and allied challenges, Carbon Letters, 32, 5, 1173-1205, (2022).
  • Fu Y., ve Yao X., A review on manufacturing defects and their detection of fiber reinforced resin matrix composites, Composites Part C: Open Access, 8, 100276, 1-24, (2022).
  • Mishra R.K., Petru M., Behera B.K., ve Behera P.K., 3D woven textile structural polymer composites: effect of resin processing parameters on mechanical performance, Composite Interfaces, 31, 1, 1-28, (2022).
  • Örçen G., Turan K., ve BingöL S., Mechanical properties of composite plates at different conditions, European Journal of Technique, 10, 1, 13-24, (2020).
  • Karbhari V., Slotte S., Steenkamer D., ve Wilkins D., Effect of material, process, and equipment variables on the performance of resin transfer moulded parts, Composites Manufacturing, 3, 3, 143-152, (1992).
  • Kim J.-H., Kwon D.-J., Shin P.-S., Beak Y.-M., Park H.-S., DeVries K.L., ve Park J.-M., Interfacial properties and permeability of three patterned glass fiber/epoxy composites by VARTM, Composites Part B: Engineering, 148, 61-67, (2018).
  • https://plasto.com.tr/wp-content/uploads/2023/05/POLIPOL-336-RTM-Tipi-Polyester-Recine-tds.pdf, (25.04.2024).
  • Subaşi A., Reaktif termoplastik reçine ile sürekli elyaf takviyeli kompozit üretilmesi ve alev geciktiricilerin etkilerinin tespiti, Y.Lisans Tezi, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Kimya Mühendisliği ABD, İstanbul, (2017).
  • Kaynak C., ve Kas Y.O., Effects of injection pressure in resin transfer moulding (RTM) of woven carbon fibre/epoxy composites, Polymers and Polymer Composites, 14, 1, 55-64, (2006).
  • Han S.H., Cho E.J., Lee H.C., Jeong K., ve Kim S.S., Study on high-speed RTM to reduce the impregnation time of carbon/epoxy composites, Composite Structures, 119, 50-58, (2015).
  • Chang C.-Y., Hourng L.-W., ve Chou T.-Y., Effect of Process Variables on the Quality of Compression Resin Transfer Molding, Journal of Reinforced Plastics and Composites, 25, 10, 1027-1037, (2006).
  • Hickey C., The influence of variation in process parameters on the manufacturing of advanced fibre composites, PhD Thesis, Department of Mechanical Engineering, The University of Auckland, (2014).
  • Lee C.L., ve Wei K.H., Effect of material and process variables on the performance of resin‐transfer‐molded epoxy fabric composites, Journal of Applied Polymer Science, 77, 10, 2149-2155, (2000).
  • Olodu D.D., ve Ihenyen O., Fibre Volume Fraction and Impact Strength Analysis of Reinforced Polyester Composites, European Mechanical Science, 5, 2, 80-85, (2021).
  • EN-ISO-527-4, Plastics - Determination of tensile properties - Part 4: Test conditions for isotropic and orthotropic fibre-reinforced plastic composites, CH-1214 Vernier, Geneva, Switzerland, 2021.
  • ASTM-D7264/D7264M, Standard Test Method for Flexural Properties of Polymer Matrix Composite Materials, Pennsylvania 19428-2959, USA, 2007.
  • George D., ve Mallery P., SPSS for windows step by step: A simple study guide and reference, 17th ed., New York: Allyn & Bacon, (2010).
  • Landis J.R., ve Koch G.G., The measurement of observer agreement for categorical data, Biometrics, 159-174, (1977).
  • Olivero K.A., Barraza H.J., O’Rear E.A., ve Altan M.C., Effect of injection rate and post-fill cure pressure on properties of resin transfer molded disks, Journal of Composite Materials, 36, 16, 2011-2028, (2002).
  • Salokhe S., Rahmati M., ve Masoodi R., Numerical modelling of the flow in a swelling preform during LCM mould filling, Journal of Reinforced Plastics and Composites, 40, 13-14, 490-504, (2021).
  • Jeswani A., ve Roux J., Numerical modelling of design parameters for manufacturing polyester/glass composites by resin injection pultrusion, Polymers and Polymer Composites, 14, 7, 651-670, (2006).
  • Vengalrao K., Kumar K.P., Shanker D.V.R., Srinivasababu N., ve Yadav A.K.K., An Investigation on the Quality of the Laminates Produced by VARTM Process and Process parameters, Materials Today: Proceedings, 4, 8, 9196-9202, (2017).
  • Kopparthi P.K., Kundavarapu V.R., Dasari V.R., ve Pathakokila B.R., Determination of flow front velocity and optimal injection pressures for better impregnation of E-glass with polyester in resin transfer mold, INCAS Bulletin, 11, 3, 87-98, (2019).
  • Wisnom M.R., The effect of specimen size on the bending strength of unidirectional carbon fibre-epoxy, Composite Structures, 18, 1, 47-63, (1991).
  • Fortin-Simpson J., Effect of Thickness and Ply Orientation on the Flexural Bending Behaviour of Thick Composite Laminates, MSc Theses, The Department of Mechanical and Industrial Engineering, Concordia University, (2019).
  • Wang Y., ve Soutis C., Modelling the effect of tufted yarns in composite T-joints, Proceedings of the Institution of Civil Engineers-Engineering and Computational Mechanics, 169, 4, 158-170, (2016).
  • Naresh K., Alia R.A., Cantwell W.J., Umer R., ve Khan K.A., Influence of face sheet thickness on flexural strength characteristics of carbon/epoxy/Nomex honeycomb sandwich panels, Journal of Sandwich Structures & Materials, 25, 5, 537-554, (2023).
  • Babukiran B., ve Harish G., Influence of resin and thickness of laminate on flexural properties of laminated composites, International Journal of Engineering Science and Innovative Technology, 3, 1, (2014).
  • Kumar M.S., Krishna S.G., ve Rajanna S., Study on effect of thickness and fibre orientation on a tensile and flexural properties of a hybrid composite, Int J Eng Res Appl, 4, 8, 56-66, (2014).
  • Liu H., Ma X., Jiang L., Sang L., Hou W., Zhang Z., ve Wu H., Effect of ply thickness on tensile and bending performances of carbon fiber reinforced thermoplastic unidirectional laminate, Polymer Composites, 44, 3, 1889-1901, (2023).
  • Da Gama M., ve Soares C.M., Defects tracking in Out-of-Autoclave composite materials, MSc Thesis, Department of Mechanical Engineering, Faculty of Engineering, University of Porto, (2017).
  • Kedari V.R., Farah B.I., ve Hsiao K.-T., Effects of vacuum pressure, inlet pressure, and mold temperature on the void content, volume fraction of polyester/e-glass fiber composites manufactured with VARTM process, Journal of composite materials, 45, 26, 2727-2742, (2011).
  • Cairns D.S., Shramstad J.D., ve Mandell J.F. Evaluation of hand lay-up and resin transfer molding in composite wind turbine blade manufacturing, Proceedings, 20th 2001 ASME Wind Energy Symposium., American Institute of Aeronautics & Astronautics, Reno, NV, USA, (2001).
  • Yu H.-W., ve Young W.-B., Optimal design of process parameters for resin transfer molding, Journal of Composite Materials, 31, 11, 1113-1140, (1997).
  • Oleiwi J.K., Al-Hassani E.S., ve Abd Mohammed A., Experimental Investigation and Mathematical Modeling of Tensile Properties of Unsaturated Polyester Reinforced by Woven Glass Fibers, Eng. & Tech. Journal, 32, 3, 653-666, (2014).
  • Jariwala H., Jain P., ve Maisuriya V., Experimental and statistical analysis of strength of glass fiber reinforced polymer composite for different fiber architecture, Polymer Composites, 42, 3, 1407-1419, (2021).

Kompozit levhaların mekanik özelliklerindeki değişkenliği üzerinde üretim prosesi ve malzeme parametrelerinin etkisinin incelenmesi

Yıl 2024, , 441 - 454, 15.07.2024
https://doi.org/10.25092/baunfbed.1461630

Öz

Bu çalışmada reçine transfer kalıplama (RTM) yöntemiyle üretilen kompozit levhaların mekanik özelliklerindeki değişkenliğinde proses ve malzeme parametrelerinin etkisi incelenmiştir. Bu amaçla, kompozit levhaların üretimi için bir RTM prosesinden yararlanılmıştır. Proseste kullanılan kalıp, ısıtmalı, tam kapalı, tek veya çift noktadan enjeksiyon uygulanabilen metal bir kalıp olup vakum desteği sayesinde kalıp içindeki hava proses süresince boşaltılabilmektedir. Çalışmada kullanılan proses parametreleri ise enjeksiyon basıncı, kürleme basıncı, enjeksiyon nokta sayısı ve ortam sıcaklığıdır. Kompozit plaka imalatı için matris olarak düşük viskoziteli ticari bir polyester reçine, fiber olarak ise 500 g/m²’lik iki-yönlü cam-dokuma kumaş kullanılmıştır. Proses sonunda kalıptan her biri 6 tabakalı, 0.5×0.5 m boyutlarında, farklı kalınlık ve fiber hacimlerinde toplam 10 adet kompozit levha üretilmiştir. Levhalardan 0°/90°, 15°/75°, 30°/60° ve 45°/45° fiber oryantasyonlarında standartlara uygun numuneler kesilmiştir. Numuneler, mekanik özelliklerini belirlemek için çekme ve eğme testlerine tabi tutulmuştur. Toplam 367 adet numune test edilmiş ve elde edilen veriler SPSS-24 yazılımıyla istatistik olarak analiz edilmiştir. Mekanik özelliklerin, enjeksiyon basıncı, enjeksiyon nokta sayısı ve ortam sıcaklığı gibi proses parametreleri ile fiber oryantasyonu ve levha kalınlığı gibi malzeme parametrelerinden etkilendiği tespit edilmiştir.

Destekleyen Kurum

Balıkesir Üniversitesi

Proje Numarası

BAP2013/40

Teşekkür

Katkılarından dolayı Makine Mühendisi Mehmet Gülnar’a teşekkürler.

Kaynakça

  • Gao G., ve Li Y., Mechanical properties of woven glass fiber-reinforced polymer composites, Emerging Materials Research, 5, 2, 201-208, (2016).
  • Rajak D.K., Pagar D.D., Kumar R., ve Pruncu C.I., Recent progress of reinforcement materials: a comprehensive overview of composite materials, Journal of Materials Research and Technology, 8, 6, 6354-6374, (2019).
  • Rajak D.K., Pagar D.D., Menezes P.L., ve Linul E., Fiber-reinforced polymer composites: Manufacturing, properties, and applications, Polymers, 11, 10, 1667-1704, (2019).
  • Diniță A., Ripeanu R.G., Ilincă C.N., Cursaru D., Matei D., Naim R.I., Tănase M., ve Portoacă A.I., Advancements in Fiber-Reinforced Polymer Composites: A Comprehensive Analysis, Polymers, 16, 1, 2-50, (2023).
  • Karim M.A., Abdullah M.Z., Deifalla A.F., Azab M., ve Waqar A., An assessment of the processing parameters and application of fibre-reinforced polymers (FRPs) in the petroleum and natural gas industries: A review, Results in Engineering, 18, 101091, 1-20, (2023).
  • Zhang W., ve Evans K.E., Numerical prediction of the mechanical properties of anisotropic composite materials, Computers & structures, 29, 3, 413-422, (1988).
  • Seshaiah T., ve Reddy V.K., Effect of fiber orientation on the mechanical behavior of e-glass fibre reinforced epoxy composite materials, International Journal of Mechanical and Production Engineering Research and Development, 8, 8, 379-396, (2018).
  • Kumar N., ve Singh A., Study the effect of fiber orientation on mechanical properties of bidirectional basalt fiber reinforced epoxy composites, Materials Today: Proceedings, 39, 1581-1587, (2021).
  • Sayam A., Rahman A.M., Rahman M.S., Smriti S.A., Ahmed F., Rabbi M.F., Hossain M., ve Faruque M.O., A review on carbon fiber-reinforced hierarchical composites: mechanical performance, manufacturing process, structural applications and allied challenges, Carbon Letters, 32, 5, 1173-1205, (2022).
  • Fu Y., ve Yao X., A review on manufacturing defects and their detection of fiber reinforced resin matrix composites, Composites Part C: Open Access, 8, 100276, 1-24, (2022).
  • Mishra R.K., Petru M., Behera B.K., ve Behera P.K., 3D woven textile structural polymer composites: effect of resin processing parameters on mechanical performance, Composite Interfaces, 31, 1, 1-28, (2022).
  • Örçen G., Turan K., ve BingöL S., Mechanical properties of composite plates at different conditions, European Journal of Technique, 10, 1, 13-24, (2020).
  • Karbhari V., Slotte S., Steenkamer D., ve Wilkins D., Effect of material, process, and equipment variables on the performance of resin transfer moulded parts, Composites Manufacturing, 3, 3, 143-152, (1992).
  • Kim J.-H., Kwon D.-J., Shin P.-S., Beak Y.-M., Park H.-S., DeVries K.L., ve Park J.-M., Interfacial properties and permeability of three patterned glass fiber/epoxy composites by VARTM, Composites Part B: Engineering, 148, 61-67, (2018).
  • https://plasto.com.tr/wp-content/uploads/2023/05/POLIPOL-336-RTM-Tipi-Polyester-Recine-tds.pdf, (25.04.2024).
  • Subaşi A., Reaktif termoplastik reçine ile sürekli elyaf takviyeli kompozit üretilmesi ve alev geciktiricilerin etkilerinin tespiti, Y.Lisans Tezi, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Kimya Mühendisliği ABD, İstanbul, (2017).
  • Kaynak C., ve Kas Y.O., Effects of injection pressure in resin transfer moulding (RTM) of woven carbon fibre/epoxy composites, Polymers and Polymer Composites, 14, 1, 55-64, (2006).
  • Han S.H., Cho E.J., Lee H.C., Jeong K., ve Kim S.S., Study on high-speed RTM to reduce the impregnation time of carbon/epoxy composites, Composite Structures, 119, 50-58, (2015).
  • Chang C.-Y., Hourng L.-W., ve Chou T.-Y., Effect of Process Variables on the Quality of Compression Resin Transfer Molding, Journal of Reinforced Plastics and Composites, 25, 10, 1027-1037, (2006).
  • Hickey C., The influence of variation in process parameters on the manufacturing of advanced fibre composites, PhD Thesis, Department of Mechanical Engineering, The University of Auckland, (2014).
  • Lee C.L., ve Wei K.H., Effect of material and process variables on the performance of resin‐transfer‐molded epoxy fabric composites, Journal of Applied Polymer Science, 77, 10, 2149-2155, (2000).
  • Olodu D.D., ve Ihenyen O., Fibre Volume Fraction and Impact Strength Analysis of Reinforced Polyester Composites, European Mechanical Science, 5, 2, 80-85, (2021).
  • EN-ISO-527-4, Plastics - Determination of tensile properties - Part 4: Test conditions for isotropic and orthotropic fibre-reinforced plastic composites, CH-1214 Vernier, Geneva, Switzerland, 2021.
  • ASTM-D7264/D7264M, Standard Test Method for Flexural Properties of Polymer Matrix Composite Materials, Pennsylvania 19428-2959, USA, 2007.
  • George D., ve Mallery P., SPSS for windows step by step: A simple study guide and reference, 17th ed., New York: Allyn & Bacon, (2010).
  • Landis J.R., ve Koch G.G., The measurement of observer agreement for categorical data, Biometrics, 159-174, (1977).
  • Olivero K.A., Barraza H.J., O’Rear E.A., ve Altan M.C., Effect of injection rate and post-fill cure pressure on properties of resin transfer molded disks, Journal of Composite Materials, 36, 16, 2011-2028, (2002).
  • Salokhe S., Rahmati M., ve Masoodi R., Numerical modelling of the flow in a swelling preform during LCM mould filling, Journal of Reinforced Plastics and Composites, 40, 13-14, 490-504, (2021).
  • Jeswani A., ve Roux J., Numerical modelling of design parameters for manufacturing polyester/glass composites by resin injection pultrusion, Polymers and Polymer Composites, 14, 7, 651-670, (2006).
  • Vengalrao K., Kumar K.P., Shanker D.V.R., Srinivasababu N., ve Yadav A.K.K., An Investigation on the Quality of the Laminates Produced by VARTM Process and Process parameters, Materials Today: Proceedings, 4, 8, 9196-9202, (2017).
  • Kopparthi P.K., Kundavarapu V.R., Dasari V.R., ve Pathakokila B.R., Determination of flow front velocity and optimal injection pressures for better impregnation of E-glass with polyester in resin transfer mold, INCAS Bulletin, 11, 3, 87-98, (2019).
  • Wisnom M.R., The effect of specimen size on the bending strength of unidirectional carbon fibre-epoxy, Composite Structures, 18, 1, 47-63, (1991).
  • Fortin-Simpson J., Effect of Thickness and Ply Orientation on the Flexural Bending Behaviour of Thick Composite Laminates, MSc Theses, The Department of Mechanical and Industrial Engineering, Concordia University, (2019).
  • Wang Y., ve Soutis C., Modelling the effect of tufted yarns in composite T-joints, Proceedings of the Institution of Civil Engineers-Engineering and Computational Mechanics, 169, 4, 158-170, (2016).
  • Naresh K., Alia R.A., Cantwell W.J., Umer R., ve Khan K.A., Influence of face sheet thickness on flexural strength characteristics of carbon/epoxy/Nomex honeycomb sandwich panels, Journal of Sandwich Structures & Materials, 25, 5, 537-554, (2023).
  • Babukiran B., ve Harish G., Influence of resin and thickness of laminate on flexural properties of laminated composites, International Journal of Engineering Science and Innovative Technology, 3, 1, (2014).
  • Kumar M.S., Krishna S.G., ve Rajanna S., Study on effect of thickness and fibre orientation on a tensile and flexural properties of a hybrid composite, Int J Eng Res Appl, 4, 8, 56-66, (2014).
  • Liu H., Ma X., Jiang L., Sang L., Hou W., Zhang Z., ve Wu H., Effect of ply thickness on tensile and bending performances of carbon fiber reinforced thermoplastic unidirectional laminate, Polymer Composites, 44, 3, 1889-1901, (2023).
  • Da Gama M., ve Soares C.M., Defects tracking in Out-of-Autoclave composite materials, MSc Thesis, Department of Mechanical Engineering, Faculty of Engineering, University of Porto, (2017).
  • Kedari V.R., Farah B.I., ve Hsiao K.-T., Effects of vacuum pressure, inlet pressure, and mold temperature on the void content, volume fraction of polyester/e-glass fiber composites manufactured with VARTM process, Journal of composite materials, 45, 26, 2727-2742, (2011).
  • Cairns D.S., Shramstad J.D., ve Mandell J.F. Evaluation of hand lay-up and resin transfer molding in composite wind turbine blade manufacturing, Proceedings, 20th 2001 ASME Wind Energy Symposium., American Institute of Aeronautics & Astronautics, Reno, NV, USA, (2001).
  • Yu H.-W., ve Young W.-B., Optimal design of process parameters for resin transfer molding, Journal of Composite Materials, 31, 11, 1113-1140, (1997).
  • Oleiwi J.K., Al-Hassani E.S., ve Abd Mohammed A., Experimental Investigation and Mathematical Modeling of Tensile Properties of Unsaturated Polyester Reinforced by Woven Glass Fibers, Eng. & Tech. Journal, 32, 3, 653-666, (2014).
  • Jariwala H., Jain P., ve Maisuriya V., Experimental and statistical analysis of strength of glass fiber reinforced polymer composite for different fiber architecture, Polymer Composites, 42, 3, 1407-1419, (2021).
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Kompozit ve Hibrit Malzemeler
Bölüm Araştırma Makalesi
Yazarlar

Raif Sakin 0000-0001-6009-9573

Proje Numarası BAP2013/40
Erken Görünüm Tarihi 14 Temmuz 2024
Yayımlanma Tarihi 15 Temmuz 2024
Gönderilme Tarihi 30 Mart 2024
Kabul Tarihi 25 Nisan 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Sakin, R. (2024). Kompozit levhaların mekanik özelliklerindeki değişkenliği üzerinde üretim prosesi ve malzeme parametrelerinin etkisinin incelenmesi. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 26(2), 441-454. https://doi.org/10.25092/baunfbed.1461630
AMA Sakin R. Kompozit levhaların mekanik özelliklerindeki değişkenliği üzerinde üretim prosesi ve malzeme parametrelerinin etkisinin incelenmesi. BAUN Fen. Bil. Enst. Dergisi. Temmuz 2024;26(2):441-454. doi:10.25092/baunfbed.1461630
Chicago Sakin, Raif. “Kompozit levhaların Mekanik özelliklerindeki değişkenliği üzerinde üretim Prosesi Ve Malzeme Parametrelerinin Etkisinin Incelenmesi”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 26, sy. 2 (Temmuz 2024): 441-54. https://doi.org/10.25092/baunfbed.1461630.
EndNote Sakin R (01 Temmuz 2024) Kompozit levhaların mekanik özelliklerindeki değişkenliği üzerinde üretim prosesi ve malzeme parametrelerinin etkisinin incelenmesi. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 26 2 441–454.
IEEE R. Sakin, “Kompozit levhaların mekanik özelliklerindeki değişkenliği üzerinde üretim prosesi ve malzeme parametrelerinin etkisinin incelenmesi”, BAUN Fen. Bil. Enst. Dergisi, c. 26, sy. 2, ss. 441–454, 2024, doi: 10.25092/baunfbed.1461630.
ISNAD Sakin, Raif. “Kompozit levhaların Mekanik özelliklerindeki değişkenliği üzerinde üretim Prosesi Ve Malzeme Parametrelerinin Etkisinin Incelenmesi”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 26/2 (Temmuz 2024), 441-454. https://doi.org/10.25092/baunfbed.1461630.
JAMA Sakin R. Kompozit levhaların mekanik özelliklerindeki değişkenliği üzerinde üretim prosesi ve malzeme parametrelerinin etkisinin incelenmesi. BAUN Fen. Bil. Enst. Dergisi. 2024;26:441–454.
MLA Sakin, Raif. “Kompozit levhaların Mekanik özelliklerindeki değişkenliği üzerinde üretim Prosesi Ve Malzeme Parametrelerinin Etkisinin Incelenmesi”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 26, sy. 2, 2024, ss. 441-54, doi:10.25092/baunfbed.1461630.
Vancouver Sakin R. Kompozit levhaların mekanik özelliklerindeki değişkenliği üzerinde üretim prosesi ve malzeme parametrelerinin etkisinin incelenmesi. BAUN Fen. Bil. Enst. Dergisi. 2024;26(2):441-54.