Derleme
BibTex RIS Kaynak Göster

Non-traditional preservation alternatives for fruit and vegetable products: Overview, technological constraints

Yıl 2025, Sayı: Advanced Online Publication, 22 - 38
https://doi.org/10.25092/baunfbed.1659715

Öz

The shelf life of many fresh cut or processed fruit and vegetable products is closely related to the quality of the raw materials. Furthermore, disinfection of fruits and vegetables is critical to ensuring food safety and extending shelf life. Ozone, ultraviolet [UV] light, ultrasound and chlorine applications, which emerged as alternatives to traditional approaches, offer significant advantages in inactivating microorganisms and preserving food quality. These modern techniques have many advantages when used alone or together, but they also have application limitations. At the same time, modern methods offer sustainable solutions and increase fooGd safety and quality. This study sheds light on the use and development of potential innovative disinfection approaches and technologies in the fruit and vegetable industry.

Kaynakça

  • WHO, Nutritional habits statistics, https://ec.europa.eu/eurostat/statisticsexplained/index.php?title=Nutritional_habits_statistics , (02.01.2024).
  • FAO, The Food and Agriculture Organization. (2020). http://www.fao.org/faostat/en/#data/FBS (Erişim 18.09.2023).
  • Barrera, M.J., Blenkinsop, R., ve Warriner, K., The effect of different processing parameters on the efficacy of commercial post-harvest washing of minimally processed spinach and shredded lettuce, Food Control, 25(2), 745–751, (2012).
  • López-Gálvez, F., Tudela, J.A., Allende, A., ve Gil, M.I., Microbial and chemical characterization of commercial washing lines of fresh produce highlights the need for process water control, Innovative Food Science & Emerging Technologies, 51, 211–219, (2019).
  • Kim, H., Moon, M.J., Kim, C.Y., ve Ryu, K. Efficacy of chemical sanitizers against Bacillus cereus on food contact surfaces with scratch and biofilm, Food Science and Biotechnology, 28, 581–590, (2019).
  • Zhang, H., Wang, S., Goon, K., Gilbert, A., Nguyen Huu, C., Walsh, M., Nitin, N., Wrenn, S., ve Tikekar, R.V. Inactivation of foodborne pathogens based on synergistic effects of ultrasound and natural compounds during fresh produce washing, Ultrasonics Sonochemistry, 64, (2020).
  • Koca, N., Saatli, T.E., ve Urgu, M. Gıda Sanayisinde Ultraviyole Işığın Yüzey Uygulamaları. Akademik Gıda 16(1) 88-100, (2018).
  • Byun, K., Han, S. H., Yoon, J., Park, S. H., ve Ha, S. Efficacy of chlorine-based disinfectants (sodium hypochlorite and chlorine dioxide) on Salmonella Enteritidis planktonic cells, biofilms on food contact surfaces and chicken skin. Food Control, 123, 107838, (2021).
  • Nielsen, A., Garcia, L., Silva, K., Sabogal-Paz, L., Hincapié, M., Montoya, L., Galeano, L., Galdos-Balzategui, A., Reygadas, F., Herrera, C., Golden, S., Byrne, J., ve Fernández-Ibáñez, P. Chlorination for low-cost household water disinfection – A critical review and status in three Latin American countries. International Journal of Hygiene and Environmental Health, 244, 114004, (2022).
  • Ban, H., Kim, H., Kang, H., ve Park, H. Comparison of the efficacy of physical and chemical strategies for the inactivation of biofilm cells of foodborne pathogens. Food Science and Biotechnology, 32(12), 1679, (2023).
  • Zadeh, J.H., ve Pazır, F. Investigation of Changes in Color and Textural Quality Characteristics of Arugula (Eruca vesicaria) by Disinfectant Treatments. Turkish Journal of Agriculture -Food Science and Technology, 10(8): 1491-1495, (2022)66.
  • Parveen, N., Chowdhury, S. ve Goel, S. Environmental impacts of the widespread use of chlorine-based disinfectants during the COVID-19 pandemic. Environmental Science and Pollution Research, 29, 85742–85760, (2022).
  • Epelle, E. I., Macfarlane, A., Cusack, M., , A., Okolie, J. A., Mackay, W., Rateb, M., ve Yaseen, M. Ozone application in different industries: A review of recent developments. Chemical Engineering Journal, 454, 140188, (2023).
  • Kaavya, R., Pandiselvam, R., Abdullah, S., Sruthi, N.U., Jayanath, Y., Ashokkumar, C., Khanashyam, A.C., Kothakota, A., ve Ramesh, S.V. Emerging non-thermal technologies for decontamination of Salmonella in food, Trends in Food Science & Technology, 112, 400–418, (2021).
  • Singh, S., Solanki, V., Bardhan, K., Kansara, R., Vyas, T. K., Gandhi, K., Dhakan, D., Ali, H. M., ve Siddiqui, M.H. Evaluation of Ozonation Technique for Pesticide Residue Removal in Okra and Green Chili Using GC-ECD and LC-MS/MS. Plants, 11(23), 3202, (2021).
  • Navya, K. P., Sudheer, K. P., Abdullah, S., Vithu, P., Pathrose, B., ve Rajesh, G. K. Effect of aqueous ozone treatment on the reduction of chlorpyrifos and physicochemical and microbial qualities of cucumber (Cucumis sativus L.): Process modeling and optimization. Journal of Food Process Engineering, 47(3), e14572, (2024).
  • Liu, C., Chen, C., Jiang, A., Zhang, Y., Zhao, Q., ve Hu, W., Effects of aqueous ozone treatment on microbial growth, quality, and pesticide residue of fresh-cut cabbage, Food Science & Nutrition, 9, 52–61, (2020).
  • Papachristodoulou, M., Koukounaras, A., Siomos, A.S., Liakou, A., ve Gerasopoulos, D. The effects of ozonated water on the microbial counts and the shelf life attributes of fresh-cut spinach, Journal of Food Processing and Preservation, 42, e13404, (2018).
  • Botondi, R., Barone, M., ve Grasso, C. A Review into the Effectiveness of Ozone Technology for Improving the Safety and Preserving the Quality of Fresh-Cut Fruits and Vegetables. Foods, 10(4), 748, (2021).
  • Silveira, A.C., Oyarzún, D. ve Escalona, V. Oxidative enzymes and functional quality of minimally processed grape berries sanitized with ozonated water, International Journal of Food Science and Technology, 53, 1371–1380, (2018).
  • Alothman, M., Bhat, R. ve Karim, A. A. UV radiation-induced changes of antioxidant capacity of fresh-cut tropical fruits. Innovative Food Science and Emerging Technology, 10:512–516, (2009).
  • Aguayo, E., Escalona, V., Silveira, A. C. ve Artés, F. Quality of tomato slices disinfected with ozonated water, Food Science and Technology International, 20, 227–35, (2014).
  • Chauhan, O. P., Raju, P. S., Ravi, N., Singh, A. ve Bawa, A. S. Effectiveness of ozone in combination with controlled atmosphere on quality characteristics including lignification of carrot sticks. Journal of Food Engineering, 102, 43–48, (2011).
  • Jamil, A., Farooq, S., ve Hashmi, I. Ozone Disinfection Efficiency for Indicator Microorganisms at Different pH Values and Temperatures. Ozone: Science & Engineering, 39(6), 407–416, (2017).
  • Anjali, K. U., Reshma, C., Sruthi, N. U., Pandiselvam, R., Kothakota, A., Kumar, M., ve Mousavi Khaneghah, A. Influence of ozone treatment on functional and rheological characteristics of food products: an updated review. Critical Reviews in Food Science and Nutrition, 64(12), 3687–3701, (2022).
  • Vijay Rakesh Reddy, S., Sudhakar Rao, D. V., Sharma, R. R., Preethi, P., ve Pandiselvam, R. Role of Ozone in Post-Harvest Disinfection and Processing of Horticultural Crops: A Review. Ozone: Science & Engineering, 44(1), 127–146, (2021).
  • Pandiselvam, R., Rathnakumar, K., Nickhil, C. et al. Ozone-Based Oxidation Treatment to Enhance Food Drying Rate and Quality: Mechanisms, Current Knowledge, and Future Outlook. Food and Bioprocess Technology, 18, 5038–5057, (2025).
  • Lante, A., Tinello, F., ve Nicoletto, M. UV-A light treatment for controlling enzymatic Browning of fresh-cut fruits. Innovative Food Science & Emerging Technologies, 34, 141-147, (2016).
  • Ma, L., Zhang, M., Bhandari, B., ve Gao, Z. Recent developments in novel shelf life extension technologies of fresh-cut fruits and vegetables. Trends in Food Science & Technology, 64, 23-38, (2017).
  • De Souza, V. R., Popović, V., Bissonnette, S., Ros, I., Mats, L., Duizer, L., Warriner, K., ve Koutchma, T. Quality changes in cold pressed juices after processing by high hydrostatic pressure, ultraviolet-c light and thermal treatment at commercial regimes. Innovative Food Science & Emerging Technologies, 64, 102398, (2020).
  • Gayán, E., Condón, S., ve Álvarez, I. Biological aspects in food preservation by ultraviolet light: A review. Food and Bioprocess Technology, 7, 1-20, (2014).
  • Idzwana, M.I.N., Chou, K.S., Shah, R.M., ve Soh, N.C. The Effect Of Ultraviolet Light Treatment In Extend Shelf Life And Preserve The Quality of Strawberry (Fragaria x ananassa) cv. Festival. International Journal of Food Agriculture and Natural Resources, 1(1), 15-18, (2020).
  • Chairat, B., Nutthachai, P., ve Varit, S. Effect of UV-C treatment on chlorophyll degradation, antioxidant enzyme activities and senescence in Chinese kale (Brassica oleracea var. alboglabra), International Food Research Journal, 20(2), 623–628, (2013).
  • Kasım, R., ve Kasım, M.U. UV-C treatments of freshcut garden cress (Lepidium sativum L.) enhanced chlorophyll content and prevent leaf yellowing, World Applied Sciences Journal, 17(4), 509–515, (2012).
  • Khademi, O., Zamani, Z., Poor Ahmadi, E., ve Kalantari, S. Effect of UV-C radiation on postharvest physiology of persimmon fruit (Diospyros kaki Thunb.) cv. 'Karaj' during storage at cold temperature, International Food Research Journal, 20(1), 247–253, (2013).
  • Pierscianowski, J.; Popović, V.; Biancaniello, M.; Bissonnette, S.; Zhu, Y.; Koutchma, T. Continuous-Flow UV-C Processing of Kale Juice for the Inactivation of E. Coli and Assessment of Quality Parameters. Food Research International, 140, 110085, (2021).
  • Pala, Ç. U., ve Toklucu, A. K. Effect of UV-C light on anthocyanin content and other quality parameters of pomegranate juice. Journal of Food Composition and Analysis, 24(6), 790-795, (2011).
  • Hemmaty, S., Hosseinzadeh, R., Dilmaghani, M. R., Tagiloo, R., ve Mohseniazar, M. . Effect of UV-C Irradiation on Phenolic Composition of ‘Rishbaba’ Table Grape (Vitis vinifera cv. Rishbaba). Journal of Plant Physiology and Breeding, 1(2), 29-38, (2011).
  • Gunasegaran, B., Ding, P., ve Kadir, J. Morphological identification and in vitro evaluation of Colletotrichum gloesporioides in 'Chok Anan' mango using UV-C irradiation. In III Asia Pacific Symposium on Postharvest Research, Education and Extension: APS2014 1213, 599-602, (2014).
  • Manzocco, L., Da Pieve, S., Bertolini, A., Bartolomeoli, I., Maifreni, M., Vianello, A., ve Nicoli, M.C. Surface decontamination of fresh-cut apple by UV-C light exposure: Effects on structure, colour and sensory properties. Postharvest Biology and Technology, 61(2-3), 165-171, (2011).
  • Martínez-Hernández, G. B., Huertas, J., Navarro-Rico, J., Gómez, P. A., Artés, F., Palop, A., ve Artés-Hernández, F. Inactivation kinetics of foodborne pathogens by UV-C radiation and its subsequent growth in fresh-cut kailan-hybrid broccoli. Food Microbiology, 46, 263-271, (2015).
  • Santo, D., Graça, A., Nunes, C., ve Quintas, C. Survival and growth of Cronobacter sakazakii on fresh-cut fruit and the effect of UV-C illumination and electrolyzed water in the reduction of its population. International Journal of Food Microbiology, 231, 10-15, (2016).
  • Kim, Y. H., Jeong, S.G., Back, K.H., Park, K.H., Chung, M.S. ve Kang, D.H. Effect of Various Conditions on Inactivation of Escherichia Coli O157:H7, Salmonella Typhimurium, and Listeria Monocytogenes in Fresh-Cut Lettuce Using Ultraviolet Radiation. International Journal of Food Microbiology, 166 (3), 349–355, (2013).
  • Usall, J., Ippolito, A., Sisquella, M., ve Neri, F. Physical treatments to control postharvest diseases of fresh fruits and vegetables. Postharvest Biology and Technology, 122, 30-40, (2016).
  • Wisniewski, M., Droby, S., Norelli, J., Liu, J., ve Schena, L. Alternative management technologies for postharvest disease control: The journey from simplicity to complexity. Postharvest Biology and Technology, 122, 3-10, (2016).
  • Zhang, W., ve Jiang, W. UV treatment improved the quality of postharvest fruits and vegetables by inducing resistance. Trends in Food Science & Technology, 92, 71-80, (2019).
  • Sonntag, F., Liu, H. ve Neugart, S. Nutritional and Physiological Effects of Postharvest UV Radiation on Vegetables: A Review. Journal of Agricultural and Food Chemistry, 71 (26), 9951-9972, (2023).
  • Basumatary, R., Vatankhah, H., Dwivedi, M., John, D., ve Ramaswamy, H.S. Ultrasound-steam combination process for microbial decontamination and heat transfer enhancement, Journal of Food Process Engineering, 43, (2020).
  • Mendoza, I..C., Luna, E.O., Pozo, M.D., Vásquez, M.V., Montoya, D.C., Moran, G. C., Romero, L.G., Yépez, X., Salazar, R., Romero-Peña, M., ve León, J.C. Conventional and non-conventional disinfection methods to prevent microbial contamination in minimally processed fruits and vegetables. LWT - Food Science and Technology, 165, 113714, (2022).
  • Bhargava, N., Mor, R.S., Kumar, K., ve Sharanagat, V.S. Advances in application of ultrasound in food processing: A review. Ultrasonics Sonochemistry, 70, 105293, (2021).
  • Fu, X., Belwal, T., Cravotto, G., ve Luo, Z. Sono-physical and sono-chemical effects of ultrasound: Primary applications in extraction and freezing operations and influence on food components. Ultrasonics Sonochemistry, 60, 104726, (2019).
  • Cao, S., Hu, Z., Pang, B., Wang, H., Xie, H., ve Wu, F. Effect of ultrasound treatment on fruit decay and quality maintenance in strawberry after harvest, Food Control, 21(4), 529–532, (2010).
  • Gani, A., Baba, W. N., Ahmad, M., Shah, U., Khan, A. A., Wani, I. A., Masoodi, F., ve Gani, A. Effect of ultrasound treatment on physico-chemical, nutraceutical and microbial quality of strawberry. LWT - Food Science and Technology, 66, 496-502, (2016).
  • Brilhante São José, J.F., ve Dantas Vanetti, M.C. Effect of ultrasound and commercial sanitizers in removing natural contaminants and Salmonella enterica Typhimurium on cherry tomatoes, Food Control, 24(1-2), 95–99, (2012).
  • Zhang, H., Tsai, S., ve Tikekar, R. V. Inactivation of Listeria innocua on blueberries by novel ultrasound washing processes and their impact on quality during storage. Food Control, 121, 107580, (2021a).
  • Zhang, L., Yu, X., Yagoub, A.E.A., Owusu-Ansah, P., Wahia, H., Ma, H., ve Zhou, C. Effects of low frequency multi-mode ultrasound and its washing solution’s interface properties on freshly cut cauliflower, Food Chemistry, 366, 130683, (2021b).
  • Elizaquível, P., Sánchez, G., Selma, M., ve Aznar, R. Application of propidium monoazide-qPCR to evaluate the ultrasonic inactivation of Escherichia coli O157:H7 in fresh-cut vegetable wash water. Food Microbiology, 30(1), 316-320, (2012).
  • Huang, K., Wrenn, S., Tikekar, R., ve Nitin, N. Efficacy of decontamination and a reduced risk of cross-contamination during ultrasound-assisted washing of fresh produce. Journal of Food Engineering, 224, 95-104, (2018).
  • Alexandre, E. M., Brandão, T. R., and Silva, C. L. Impact of non-thermal technologies and sanitizer solutions on microbial load reduction and quality factor retention of frozen red bell peppers. Innovative Food Science & Emerging Technologies, 17, 99-105, (2012).
  • Irkin, R., Değirmencioğlu, N., ve Guldas, M. Effects of organic acids to prolong the shelf-life and improve the microbial quality of fresh cut broccoli florets, Quality Assurance and Safety of Crops & Foods, 7(5), 737–745, (2015).
  • Balkan, T., ve Yılmaz, Ö. Efficacy of some washing solutions for removal of pesticide residues in lettuce. Beni-Suef University Journal of Basic and Applied Sciences, 11(1), 1-10, (2022).
  • Al-Taher, F., Chen, Y., Wylie, P., ve Cappozzo, J. Reduction of pesticide residues in tomatoes and other produce, Journal of Food Protection, 76(3), 510–515, (2013).
  • Bian, Y., Wang, J., Liu, F., Mao, B., Huang, H., Xu, J., Li, X., ve Guo, Y. Residue behavior and removal of iprodione in garlic, green garlic, and garlic shoot, Journal of the Science of Food and Agriculture, 100(13), 4705–4713, (2020).
  • Amjad, A., Khalid Saeed, M., Rizwan Amjad, M., Hameed, A., Nawaz, H., Ullah, N., Sarwar, A., Aziz, T., Zahra, N., S. Alamri, A., Alsanie, W. F., ve Alhomrani, M. Effect of ozone, hydrogen peroxide, and chlorine solution in reduction of chlorpyrifos and cypermethrin residues from cauliflower. Italian Journal of Food Science, 36(4), 142-150, (2024).
  • Pandiselvam, R., Subhashini, S., Banuu Priya, E., Kothakota, A., Ramesh, S., & Shahir, S.. Ozone based food preservation: A promising green technology for enhanced food safety. Ozone: Science & Engineering, 41, 17–34, (2019).
  • Tchonkouang, R. D., Lima, A. R., Quintino, A. C., Cristofoli, N. L., ve Vieira, M. C. UV-C Light: A Promising Preservation Technology for Vegetable-Based Nonsolid Food Products. Foods, 12:17, 3227, (2023).
  • Hassenberg, K., Huyskens-Keil, S., ve Herppich, W.B. Impact of postharvest UV-C and ozone treatments on microbiological properties of white asparagus (Asparagus officinalis L.), Journal of Applied Botany and Food Quality, 85(2), 174–181, (2012).
  • Sun, Y., Wu, Z., Zhang, Y., ve Wang, J. Use of aqueous ozone rinsing to improve the disinfection efficacy and shorten the processing time of ultrasound-assisted washing of fresh produce, Ultrasonics Sonochemistry, 83, 105931, (2022).
  • Karaca, H., ve Velioglu, Y.S. Effects of ozone and chlorine washes and subsequent cold storage on microbiological quality and shelf life of fresh parsley leaves, LWT - Food Science and Technology, 127, 109421, (2020).
  • Ha, J.H., Lee, D.U., Auh, J.H., ve Ha, S.D. Synergistic effects of combined disinfecting treatments using sanitizers and UV to reduce levels of Bacillus cereus in oyster mushroom, Journal of Korean Society of Applied Biology and Chemistry, 54(2), 269–274, (2011).
  • Mustapha, A.T., Zhou, C., Wahia, H., Amanor-Atiemoh, R., Otu, P., Qudus, A., Abiola Fakayode, O., ve Ma, H. Sonozonation: Enhancing the antimicrobial efficiency of aqueous ozone washing techniques on cherry tomato, Ultrasonics Sonochemistry, 64, (2020).
  • Alenyorege, E.A., Ma, H., Ayim, I., Aheto, J.H., Hong, C., ve Zhou, C. Reduction of Listeria innocua in fresh-cut Chinese cabbage by a combined washing treatment of sweeping frequency ultrasound and sodium hypochlorite, LWT - Food Science and Technology, 101, 410–418, (2019).
  • Chen, C., Hu, W., He, Y., Jiang, A., ve Zhang, R. Effect of citric acid combined with UV-C on the quality of fresh-cut apples. Postharvest Biology and Technology, 111, 126-131, (2015).
  • Raybaudi-Massilia, R., Calderón-Gabaldón, M. I., Mosqueda-Melgar, J., ve Tapia, M. S. Inactivation of Salmonella enterica ser. Poona and Listeria monocytogenes on fresh-cut “Maradol” red papaya (Carica papaya L) treated with UV-C light and malic acid. Journal für Verbraucherschutz und Lebensmittelsicherheit, 8, 37-44, (2013).
  • Gutiérrez, D. R., Chaves, A. R., ve Rodríguez, S.D.C. Use of UV‐C and gaseous ozone as sanitizing agents for keeping the quality of fresh‐cut rocket (Eruca sativa mill). Journal of Food Processing and Preservation, 41(3), e12968, (2017).

Meyve ve sebze ürünleri için geleneksel olmayan koruma alternatifleri: Genel bakış, teknolojik kısıtlamalar

Yıl 2025, Sayı: Advanced Online Publication, 22 - 38
https://doi.org/10.25092/baunfbed.1659715

Öz

Taze kesim veya işlenmiş pekçok meyve sebze ürününün raf ömrü hammadde kalitesi ile yakından ilişkilidir. Ayrıca meyve ve sebzelerin dezenfeksiyonu, gıda güvenliğinin sağlanması ve raf ömrünün uzatılması açısından kritik bir öneme sahiptir. Uygulanan gelenekçi yaklaşımlara alternatif olarak ortaya çıkan ozon, ultraviyole [UV] ışık, ultrason ve klor uygulamaları, mikroorganizma inaktivasyonu ve gıda kalitesinin korunmasında kayda değer kolaylıklar sunmaktadır. Bu modern teknikler tek başına ya da birlikte kullanıldıklarında pek çok avantaja sahip olmakla birlikte uygulama kısıtları da bulunmaktadır. Aynı zamanda modern yöntemler, sürdürülebilir çözümler sunmakta ve gıda güvenliği ile kaliteyi artırmaktadır. Bu çalışmanın, potansiyel yenilikçi dezenfeksiyon yaklaşımlarının ve teknolojilerin meyve ve sebze endüstrisinde kullanımı ve gelişimine ışık tutacağı düşünülmektedir.

Etik Beyan

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Destekleyen Kurum

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Kaynakça

  • WHO, Nutritional habits statistics, https://ec.europa.eu/eurostat/statisticsexplained/index.php?title=Nutritional_habits_statistics , (02.01.2024).
  • FAO, The Food and Agriculture Organization. (2020). http://www.fao.org/faostat/en/#data/FBS (Erişim 18.09.2023).
  • Barrera, M.J., Blenkinsop, R., ve Warriner, K., The effect of different processing parameters on the efficacy of commercial post-harvest washing of minimally processed spinach and shredded lettuce, Food Control, 25(2), 745–751, (2012).
  • López-Gálvez, F., Tudela, J.A., Allende, A., ve Gil, M.I., Microbial and chemical characterization of commercial washing lines of fresh produce highlights the need for process water control, Innovative Food Science & Emerging Technologies, 51, 211–219, (2019).
  • Kim, H., Moon, M.J., Kim, C.Y., ve Ryu, K. Efficacy of chemical sanitizers against Bacillus cereus on food contact surfaces with scratch and biofilm, Food Science and Biotechnology, 28, 581–590, (2019).
  • Zhang, H., Wang, S., Goon, K., Gilbert, A., Nguyen Huu, C., Walsh, M., Nitin, N., Wrenn, S., ve Tikekar, R.V. Inactivation of foodborne pathogens based on synergistic effects of ultrasound and natural compounds during fresh produce washing, Ultrasonics Sonochemistry, 64, (2020).
  • Koca, N., Saatli, T.E., ve Urgu, M. Gıda Sanayisinde Ultraviyole Işığın Yüzey Uygulamaları. Akademik Gıda 16(1) 88-100, (2018).
  • Byun, K., Han, S. H., Yoon, J., Park, S. H., ve Ha, S. Efficacy of chlorine-based disinfectants (sodium hypochlorite and chlorine dioxide) on Salmonella Enteritidis planktonic cells, biofilms on food contact surfaces and chicken skin. Food Control, 123, 107838, (2021).
  • Nielsen, A., Garcia, L., Silva, K., Sabogal-Paz, L., Hincapié, M., Montoya, L., Galeano, L., Galdos-Balzategui, A., Reygadas, F., Herrera, C., Golden, S., Byrne, J., ve Fernández-Ibáñez, P. Chlorination for low-cost household water disinfection – A critical review and status in three Latin American countries. International Journal of Hygiene and Environmental Health, 244, 114004, (2022).
  • Ban, H., Kim, H., Kang, H., ve Park, H. Comparison of the efficacy of physical and chemical strategies for the inactivation of biofilm cells of foodborne pathogens. Food Science and Biotechnology, 32(12), 1679, (2023).
  • Zadeh, J.H., ve Pazır, F. Investigation of Changes in Color and Textural Quality Characteristics of Arugula (Eruca vesicaria) by Disinfectant Treatments. Turkish Journal of Agriculture -Food Science and Technology, 10(8): 1491-1495, (2022)66.
  • Parveen, N., Chowdhury, S. ve Goel, S. Environmental impacts of the widespread use of chlorine-based disinfectants during the COVID-19 pandemic. Environmental Science and Pollution Research, 29, 85742–85760, (2022).
  • Epelle, E. I., Macfarlane, A., Cusack, M., , A., Okolie, J. A., Mackay, W., Rateb, M., ve Yaseen, M. Ozone application in different industries: A review of recent developments. Chemical Engineering Journal, 454, 140188, (2023).
  • Kaavya, R., Pandiselvam, R., Abdullah, S., Sruthi, N.U., Jayanath, Y., Ashokkumar, C., Khanashyam, A.C., Kothakota, A., ve Ramesh, S.V. Emerging non-thermal technologies for decontamination of Salmonella in food, Trends in Food Science & Technology, 112, 400–418, (2021).
  • Singh, S., Solanki, V., Bardhan, K., Kansara, R., Vyas, T. K., Gandhi, K., Dhakan, D., Ali, H. M., ve Siddiqui, M.H. Evaluation of Ozonation Technique for Pesticide Residue Removal in Okra and Green Chili Using GC-ECD and LC-MS/MS. Plants, 11(23), 3202, (2021).
  • Navya, K. P., Sudheer, K. P., Abdullah, S., Vithu, P., Pathrose, B., ve Rajesh, G. K. Effect of aqueous ozone treatment on the reduction of chlorpyrifos and physicochemical and microbial qualities of cucumber (Cucumis sativus L.): Process modeling and optimization. Journal of Food Process Engineering, 47(3), e14572, (2024).
  • Liu, C., Chen, C., Jiang, A., Zhang, Y., Zhao, Q., ve Hu, W., Effects of aqueous ozone treatment on microbial growth, quality, and pesticide residue of fresh-cut cabbage, Food Science & Nutrition, 9, 52–61, (2020).
  • Papachristodoulou, M., Koukounaras, A., Siomos, A.S., Liakou, A., ve Gerasopoulos, D. The effects of ozonated water on the microbial counts and the shelf life attributes of fresh-cut spinach, Journal of Food Processing and Preservation, 42, e13404, (2018).
  • Botondi, R., Barone, M., ve Grasso, C. A Review into the Effectiveness of Ozone Technology for Improving the Safety and Preserving the Quality of Fresh-Cut Fruits and Vegetables. Foods, 10(4), 748, (2021).
  • Silveira, A.C., Oyarzún, D. ve Escalona, V. Oxidative enzymes and functional quality of minimally processed grape berries sanitized with ozonated water, International Journal of Food Science and Technology, 53, 1371–1380, (2018).
  • Alothman, M., Bhat, R. ve Karim, A. A. UV radiation-induced changes of antioxidant capacity of fresh-cut tropical fruits. Innovative Food Science and Emerging Technology, 10:512–516, (2009).
  • Aguayo, E., Escalona, V., Silveira, A. C. ve Artés, F. Quality of tomato slices disinfected with ozonated water, Food Science and Technology International, 20, 227–35, (2014).
  • Chauhan, O. P., Raju, P. S., Ravi, N., Singh, A. ve Bawa, A. S. Effectiveness of ozone in combination with controlled atmosphere on quality characteristics including lignification of carrot sticks. Journal of Food Engineering, 102, 43–48, (2011).
  • Jamil, A., Farooq, S., ve Hashmi, I. Ozone Disinfection Efficiency for Indicator Microorganisms at Different pH Values and Temperatures. Ozone: Science & Engineering, 39(6), 407–416, (2017).
  • Anjali, K. U., Reshma, C., Sruthi, N. U., Pandiselvam, R., Kothakota, A., Kumar, M., ve Mousavi Khaneghah, A. Influence of ozone treatment on functional and rheological characteristics of food products: an updated review. Critical Reviews in Food Science and Nutrition, 64(12), 3687–3701, (2022).
  • Vijay Rakesh Reddy, S., Sudhakar Rao, D. V., Sharma, R. R., Preethi, P., ve Pandiselvam, R. Role of Ozone in Post-Harvest Disinfection and Processing of Horticultural Crops: A Review. Ozone: Science & Engineering, 44(1), 127–146, (2021).
  • Pandiselvam, R., Rathnakumar, K., Nickhil, C. et al. Ozone-Based Oxidation Treatment to Enhance Food Drying Rate and Quality: Mechanisms, Current Knowledge, and Future Outlook. Food and Bioprocess Technology, 18, 5038–5057, (2025).
  • Lante, A., Tinello, F., ve Nicoletto, M. UV-A light treatment for controlling enzymatic Browning of fresh-cut fruits. Innovative Food Science & Emerging Technologies, 34, 141-147, (2016).
  • Ma, L., Zhang, M., Bhandari, B., ve Gao, Z. Recent developments in novel shelf life extension technologies of fresh-cut fruits and vegetables. Trends in Food Science & Technology, 64, 23-38, (2017).
  • De Souza, V. R., Popović, V., Bissonnette, S., Ros, I., Mats, L., Duizer, L., Warriner, K., ve Koutchma, T. Quality changes in cold pressed juices after processing by high hydrostatic pressure, ultraviolet-c light and thermal treatment at commercial regimes. Innovative Food Science & Emerging Technologies, 64, 102398, (2020).
  • Gayán, E., Condón, S., ve Álvarez, I. Biological aspects in food preservation by ultraviolet light: A review. Food and Bioprocess Technology, 7, 1-20, (2014).
  • Idzwana, M.I.N., Chou, K.S., Shah, R.M., ve Soh, N.C. The Effect Of Ultraviolet Light Treatment In Extend Shelf Life And Preserve The Quality of Strawberry (Fragaria x ananassa) cv. Festival. International Journal of Food Agriculture and Natural Resources, 1(1), 15-18, (2020).
  • Chairat, B., Nutthachai, P., ve Varit, S. Effect of UV-C treatment on chlorophyll degradation, antioxidant enzyme activities and senescence in Chinese kale (Brassica oleracea var. alboglabra), International Food Research Journal, 20(2), 623–628, (2013).
  • Kasım, R., ve Kasım, M.U. UV-C treatments of freshcut garden cress (Lepidium sativum L.) enhanced chlorophyll content and prevent leaf yellowing, World Applied Sciences Journal, 17(4), 509–515, (2012).
  • Khademi, O., Zamani, Z., Poor Ahmadi, E., ve Kalantari, S. Effect of UV-C radiation on postharvest physiology of persimmon fruit (Diospyros kaki Thunb.) cv. 'Karaj' during storage at cold temperature, International Food Research Journal, 20(1), 247–253, (2013).
  • Pierscianowski, J.; Popović, V.; Biancaniello, M.; Bissonnette, S.; Zhu, Y.; Koutchma, T. Continuous-Flow UV-C Processing of Kale Juice for the Inactivation of E. Coli and Assessment of Quality Parameters. Food Research International, 140, 110085, (2021).
  • Pala, Ç. U., ve Toklucu, A. K. Effect of UV-C light on anthocyanin content and other quality parameters of pomegranate juice. Journal of Food Composition and Analysis, 24(6), 790-795, (2011).
  • Hemmaty, S., Hosseinzadeh, R., Dilmaghani, M. R., Tagiloo, R., ve Mohseniazar, M. . Effect of UV-C Irradiation on Phenolic Composition of ‘Rishbaba’ Table Grape (Vitis vinifera cv. Rishbaba). Journal of Plant Physiology and Breeding, 1(2), 29-38, (2011).
  • Gunasegaran, B., Ding, P., ve Kadir, J. Morphological identification and in vitro evaluation of Colletotrichum gloesporioides in 'Chok Anan' mango using UV-C irradiation. In III Asia Pacific Symposium on Postharvest Research, Education and Extension: APS2014 1213, 599-602, (2014).
  • Manzocco, L., Da Pieve, S., Bertolini, A., Bartolomeoli, I., Maifreni, M., Vianello, A., ve Nicoli, M.C. Surface decontamination of fresh-cut apple by UV-C light exposure: Effects on structure, colour and sensory properties. Postharvest Biology and Technology, 61(2-3), 165-171, (2011).
  • Martínez-Hernández, G. B., Huertas, J., Navarro-Rico, J., Gómez, P. A., Artés, F., Palop, A., ve Artés-Hernández, F. Inactivation kinetics of foodborne pathogens by UV-C radiation and its subsequent growth in fresh-cut kailan-hybrid broccoli. Food Microbiology, 46, 263-271, (2015).
  • Santo, D., Graça, A., Nunes, C., ve Quintas, C. Survival and growth of Cronobacter sakazakii on fresh-cut fruit and the effect of UV-C illumination and electrolyzed water in the reduction of its population. International Journal of Food Microbiology, 231, 10-15, (2016).
  • Kim, Y. H., Jeong, S.G., Back, K.H., Park, K.H., Chung, M.S. ve Kang, D.H. Effect of Various Conditions on Inactivation of Escherichia Coli O157:H7, Salmonella Typhimurium, and Listeria Monocytogenes in Fresh-Cut Lettuce Using Ultraviolet Radiation. International Journal of Food Microbiology, 166 (3), 349–355, (2013).
  • Usall, J., Ippolito, A., Sisquella, M., ve Neri, F. Physical treatments to control postharvest diseases of fresh fruits and vegetables. Postharvest Biology and Technology, 122, 30-40, (2016).
  • Wisniewski, M., Droby, S., Norelli, J., Liu, J., ve Schena, L. Alternative management technologies for postharvest disease control: The journey from simplicity to complexity. Postharvest Biology and Technology, 122, 3-10, (2016).
  • Zhang, W., ve Jiang, W. UV treatment improved the quality of postharvest fruits and vegetables by inducing resistance. Trends in Food Science & Technology, 92, 71-80, (2019).
  • Sonntag, F., Liu, H. ve Neugart, S. Nutritional and Physiological Effects of Postharvest UV Radiation on Vegetables: A Review. Journal of Agricultural and Food Chemistry, 71 (26), 9951-9972, (2023).
  • Basumatary, R., Vatankhah, H., Dwivedi, M., John, D., ve Ramaswamy, H.S. Ultrasound-steam combination process for microbial decontamination and heat transfer enhancement, Journal of Food Process Engineering, 43, (2020).
  • Mendoza, I..C., Luna, E.O., Pozo, M.D., Vásquez, M.V., Montoya, D.C., Moran, G. C., Romero, L.G., Yépez, X., Salazar, R., Romero-Peña, M., ve León, J.C. Conventional and non-conventional disinfection methods to prevent microbial contamination in minimally processed fruits and vegetables. LWT - Food Science and Technology, 165, 113714, (2022).
  • Bhargava, N., Mor, R.S., Kumar, K., ve Sharanagat, V.S. Advances in application of ultrasound in food processing: A review. Ultrasonics Sonochemistry, 70, 105293, (2021).
  • Fu, X., Belwal, T., Cravotto, G., ve Luo, Z. Sono-physical and sono-chemical effects of ultrasound: Primary applications in extraction and freezing operations and influence on food components. Ultrasonics Sonochemistry, 60, 104726, (2019).
  • Cao, S., Hu, Z., Pang, B., Wang, H., Xie, H., ve Wu, F. Effect of ultrasound treatment on fruit decay and quality maintenance in strawberry after harvest, Food Control, 21(4), 529–532, (2010).
  • Gani, A., Baba, W. N., Ahmad, M., Shah, U., Khan, A. A., Wani, I. A., Masoodi, F., ve Gani, A. Effect of ultrasound treatment on physico-chemical, nutraceutical and microbial quality of strawberry. LWT - Food Science and Technology, 66, 496-502, (2016).
  • Brilhante São José, J.F., ve Dantas Vanetti, M.C. Effect of ultrasound and commercial sanitizers in removing natural contaminants and Salmonella enterica Typhimurium on cherry tomatoes, Food Control, 24(1-2), 95–99, (2012).
  • Zhang, H., Tsai, S., ve Tikekar, R. V. Inactivation of Listeria innocua on blueberries by novel ultrasound washing processes and their impact on quality during storage. Food Control, 121, 107580, (2021a).
  • Zhang, L., Yu, X., Yagoub, A.E.A., Owusu-Ansah, P., Wahia, H., Ma, H., ve Zhou, C. Effects of low frequency multi-mode ultrasound and its washing solution’s interface properties on freshly cut cauliflower, Food Chemistry, 366, 130683, (2021b).
  • Elizaquível, P., Sánchez, G., Selma, M., ve Aznar, R. Application of propidium monoazide-qPCR to evaluate the ultrasonic inactivation of Escherichia coli O157:H7 in fresh-cut vegetable wash water. Food Microbiology, 30(1), 316-320, (2012).
  • Huang, K., Wrenn, S., Tikekar, R., ve Nitin, N. Efficacy of decontamination and a reduced risk of cross-contamination during ultrasound-assisted washing of fresh produce. Journal of Food Engineering, 224, 95-104, (2018).
  • Alexandre, E. M., Brandão, T. R., and Silva, C. L. Impact of non-thermal technologies and sanitizer solutions on microbial load reduction and quality factor retention of frozen red bell peppers. Innovative Food Science & Emerging Technologies, 17, 99-105, (2012).
  • Irkin, R., Değirmencioğlu, N., ve Guldas, M. Effects of organic acids to prolong the shelf-life and improve the microbial quality of fresh cut broccoli florets, Quality Assurance and Safety of Crops & Foods, 7(5), 737–745, (2015).
  • Balkan, T., ve Yılmaz, Ö. Efficacy of some washing solutions for removal of pesticide residues in lettuce. Beni-Suef University Journal of Basic and Applied Sciences, 11(1), 1-10, (2022).
  • Al-Taher, F., Chen, Y., Wylie, P., ve Cappozzo, J. Reduction of pesticide residues in tomatoes and other produce, Journal of Food Protection, 76(3), 510–515, (2013).
  • Bian, Y., Wang, J., Liu, F., Mao, B., Huang, H., Xu, J., Li, X., ve Guo, Y. Residue behavior and removal of iprodione in garlic, green garlic, and garlic shoot, Journal of the Science of Food and Agriculture, 100(13), 4705–4713, (2020).
  • Amjad, A., Khalid Saeed, M., Rizwan Amjad, M., Hameed, A., Nawaz, H., Ullah, N., Sarwar, A., Aziz, T., Zahra, N., S. Alamri, A., Alsanie, W. F., ve Alhomrani, M. Effect of ozone, hydrogen peroxide, and chlorine solution in reduction of chlorpyrifos and cypermethrin residues from cauliflower. Italian Journal of Food Science, 36(4), 142-150, (2024).
  • Pandiselvam, R., Subhashini, S., Banuu Priya, E., Kothakota, A., Ramesh, S., & Shahir, S.. Ozone based food preservation: A promising green technology for enhanced food safety. Ozone: Science & Engineering, 41, 17–34, (2019).
  • Tchonkouang, R. D., Lima, A. R., Quintino, A. C., Cristofoli, N. L., ve Vieira, M. C. UV-C Light: A Promising Preservation Technology for Vegetable-Based Nonsolid Food Products. Foods, 12:17, 3227, (2023).
  • Hassenberg, K., Huyskens-Keil, S., ve Herppich, W.B. Impact of postharvest UV-C and ozone treatments on microbiological properties of white asparagus (Asparagus officinalis L.), Journal of Applied Botany and Food Quality, 85(2), 174–181, (2012).
  • Sun, Y., Wu, Z., Zhang, Y., ve Wang, J. Use of aqueous ozone rinsing to improve the disinfection efficacy and shorten the processing time of ultrasound-assisted washing of fresh produce, Ultrasonics Sonochemistry, 83, 105931, (2022).
  • Karaca, H., ve Velioglu, Y.S. Effects of ozone and chlorine washes and subsequent cold storage on microbiological quality and shelf life of fresh parsley leaves, LWT - Food Science and Technology, 127, 109421, (2020).
  • Ha, J.H., Lee, D.U., Auh, J.H., ve Ha, S.D. Synergistic effects of combined disinfecting treatments using sanitizers and UV to reduce levels of Bacillus cereus in oyster mushroom, Journal of Korean Society of Applied Biology and Chemistry, 54(2), 269–274, (2011).
  • Mustapha, A.T., Zhou, C., Wahia, H., Amanor-Atiemoh, R., Otu, P., Qudus, A., Abiola Fakayode, O., ve Ma, H. Sonozonation: Enhancing the antimicrobial efficiency of aqueous ozone washing techniques on cherry tomato, Ultrasonics Sonochemistry, 64, (2020).
  • Alenyorege, E.A., Ma, H., Ayim, I., Aheto, J.H., Hong, C., ve Zhou, C. Reduction of Listeria innocua in fresh-cut Chinese cabbage by a combined washing treatment of sweeping frequency ultrasound and sodium hypochlorite, LWT - Food Science and Technology, 101, 410–418, (2019).
  • Chen, C., Hu, W., He, Y., Jiang, A., ve Zhang, R. Effect of citric acid combined with UV-C on the quality of fresh-cut apples. Postharvest Biology and Technology, 111, 126-131, (2015).
  • Raybaudi-Massilia, R., Calderón-Gabaldón, M. I., Mosqueda-Melgar, J., ve Tapia, M. S. Inactivation of Salmonella enterica ser. Poona and Listeria monocytogenes on fresh-cut “Maradol” red papaya (Carica papaya L) treated with UV-C light and malic acid. Journal für Verbraucherschutz und Lebensmittelsicherheit, 8, 37-44, (2013).
  • Gutiérrez, D. R., Chaves, A. R., ve Rodríguez, S.D.C. Use of UV‐C and gaseous ozone as sanitizing agents for keeping the quality of fresh‐cut rocket (Eruca sativa mill). Journal of Food Processing and Preservation, 41(3), e12968, (2017).
Toplam 75 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Gıda Mühendisliği
Bölüm Derleme
Yazarlar

Elif Çelen 0009-0003-1538-4916

Elif Savaş 0000-0002-4878-0013

Gönderilme Tarihi 18 Mart 2025
Kabul Tarihi 16 Temmuz 2025
Erken Görünüm Tarihi 10 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Sayı: Advanced Online Publication

Kaynak Göster

APA Çelen, E., & Savaş, E. (2025). Meyve ve sebze ürünleri için geleneksel olmayan koruma alternatifleri: Genel bakış, teknolojik kısıtlamalar. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi(Advanced Online Publication), 22-38. https://doi.org/10.25092/baunfbed.1659715
AMA Çelen E, Savaş E. Meyve ve sebze ürünleri için geleneksel olmayan koruma alternatifleri: Genel bakış, teknolojik kısıtlamalar. BAUN Fen. Bil. Enst. Dergisi. Aralık 2025;(Advanced Online Publication):22-38. doi:10.25092/baunfbed.1659715
Chicago Çelen, Elif, ve Elif Savaş. “Meyve ve sebze ürünleri için geleneksel olmayan koruma alternatifleri: Genel bakış, teknolojik kısıtlamalar”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, sy. Advanced Online Publication (Aralık 2025): 22-38. https://doi.org/10.25092/baunfbed.1659715.
EndNote Çelen E, Savaş E (01 Aralık 2025) Meyve ve sebze ürünleri için geleneksel olmayan koruma alternatifleri: Genel bakış, teknolojik kısıtlamalar. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi Advanced Online Publication 22–38.
IEEE E. Çelen ve E. Savaş, “Meyve ve sebze ürünleri için geleneksel olmayan koruma alternatifleri: Genel bakış, teknolojik kısıtlamalar”, BAUN Fen. Bil. Enst. Dergisi, sy. Advanced Online Publication, ss. 22–38, Aralık2025, doi: 10.25092/baunfbed.1659715.
ISNAD Çelen, Elif - Savaş, Elif. “Meyve ve sebze ürünleri için geleneksel olmayan koruma alternatifleri: Genel bakış, teknolojik kısıtlamalar”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi Advanced Online Publication (Aralık2025), 22-38. https://doi.org/10.25092/baunfbed.1659715.
JAMA Çelen E, Savaş E. Meyve ve sebze ürünleri için geleneksel olmayan koruma alternatifleri: Genel bakış, teknolojik kısıtlamalar. BAUN Fen. Bil. Enst. Dergisi. 2025;:22–38.
MLA Çelen, Elif ve Elif Savaş. “Meyve ve sebze ürünleri için geleneksel olmayan koruma alternatifleri: Genel bakış, teknolojik kısıtlamalar”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, sy. Advanced Online Publication, 2025, ss. 22-38, doi:10.25092/baunfbed.1659715.
Vancouver Çelen E, Savaş E. Meyve ve sebze ürünleri için geleneksel olmayan koruma alternatifleri: Genel bakış, teknolojik kısıtlamalar. BAUN Fen. Bil. Enst. Dergisi. 2025(Advanced Online Publication):22-38.