Araştırma Makalesi
BibTex RIS Kaynak Göster

Removal of diazo-dye Direct Blue 2 (DB2) in aqueus solution by P(HEMA) nanoparticles

Yıl 2019, , 278 - 294, 15.03.2019
https://doi.org/10.25092/baunfbed.546653

Öz

In this work, the adsorption of diazo-dye Direct Blue 2 (DB2) in aqueus solution were worked by poly(hydroxyethyl methacrilate) [P(HEMA)].  The effect of pH, temperature, initial dye concentration and contact time to adsorption were investigated.  Under optimum conditions, 50 mg/mL initial dye concentration and 2 mg of polymer were used and removal of dye was obtained as 89.1 % .  To understand the adsorption mechanism, Langmuir, Freundlich and Sips (Langmuir-Freundlich) isotherm constants were calculated.  According to the data obtained, it was reported that the adsorption was suitable for Langmuir isotherm model (R2: 0.993, Qmax: 27.1 mg/g).  Concentrations of dye were measured before and after adsorption by UV-Vis spectrophotometer, polymer was characterized by FTIR and SEM before and after adsorption. 

Kaynakça

  • Rajabi, M., Mirza, B., Mahanpoor, K., Mirjalili, M., Najafi, F., Moradi, O., Sadegh, H., Shahryari-ghoshekandi, R., Asif, M., Tyagi, I., Agarwal, S. ve Gupta, V. K., Adsorption of malachite green from aqueous solution by carboxylate group functionalized multi-walled carbon nanotubes: Determination of equilibrium and kinetics parameters, Journal of Industrial and Engineering Chemistry, 34, 130-138, (2016).
  • Kaur, S. ve Rani, R. K., Adsorption kinetics fort he removal of hazardous dye congo red by biowaste materials as adsorbents Mahajan, Journal of Chemistry, 1-12, (2013).
  • García, E. R., Medina, R. L., Lozano, M. M., Pérez, I. H., Valero, M. J. ve Franco, A. M. M., Adsorption of Azo-Dye Orange II from Aqueous Solutions Using a Metal-Organic Framework Material: Iron- Benzenetricarboxylate, Materials, 7, 8037-8057, (2014).
  • Hameed, B. H. ve El-Khaiary, M. I., Equilibrium, kinetics and mechanism of malachite green adsorption on activated carbon prepared from bamboo by K2CO3 activation and subsequent gasification with CO2, Journal of Hazardous Materials, 157, 2-3, 344-351, (2008).
  • Chen, H. ve Zhao, J., Adsorption study for removal of Congo red anionic dye using organo-attapulgite, Adsorption, 15, 4, 381-389, (2009).
  • Hamoda, M. F., Al-Ghusain, I. ve Al-Mutairi, N. Z., Sand filtration of wastewater for tertiary treatment and water reuse, Desalination, 164, 203–211, (2004).
  • Shi, B. Y., Li, G. H., Wang, D. S., Feng, C. H. ve Tang, H. X., Removal of direct dyes by coagulation: the performance of preformed polymeric aluminum species, Journal of Hazardous Materials,143, 567–574, (2007).
  • Slokar, Y. M. ve Lemarechal, A. M., Methods of decoloration of textile wastewaters, Dyes Pigments, 37, 335–356, (1998).
  • Kornaros, M. ve Lyberatos, G., Biological treatment of wastewaters from a dye manufacturing company using a trickling filter, Journal of Hazardous Materials, 136, 95–102, (2006).
  • Hall, K., Eagleton, L., Acrivos, A., ve Vermeulen, T., Pore-and solid-diffusion kinetics in fixed-bed adsorption under constant pattern conditions, Industrial & Engineering Chemistry Fundamentals, 5, 212–223, (1966).
  • Kaur, S., Rani, S., ve Mahajan, R. K., Adsorption kinetics fort he removal of hazardous dye congo red by biowaste materials as adsorbents, Journal of Chemistry, 2013, 1-12, (2013).
  • Abramian, L. ve El-Rassy, H., Adsorption kinetics and thermodynamics of azo-dye Orange II onto highly porous titania aerogel, Chemical Engineering Journal, 150, 403–410, (2009).
  • Ma, J., Qi, J., Yao, C., Cui, B., Zhang, T. ve Li, D., A novel bentonite-based adsorbent for anionic pollutant removal from water, Chemical Engineering Journal, 200, 97–103, (2012).
  • Ribeiro, R. S., Fathy, N. A., Attia, A. A., Silva, A. M. T., Faria, J. L. ve Gomes, H. T., Activated carbon xerogels for the removal of the anionic azo dyes Orange II and Chromotrope 2R by adsorption and catalytic wet peroxide oxidation, Chemical Engineering Journal , 195, 112–121, (2012).
  • Hsiu-Mei, C., Ting-Chien, C., San-De, P. ve Hung-Lung, C., Adsorption characteristics of Orange II and Chrysophenine on sludge adsorbent and activated carbon fibers, Journal of Hazardous Materials, 161, 1384–1390, (2009).
  • Rodríguez, A., García, J., Ovejero, G. ve Mestanza, M., Adsorption of anionic and cationic dyes on activated carbon from aqueous solutions: Equilibrium and kinetics, Journal of Hazardous Materials, 172, 1311–1320, (2009).
  • Chiou, M. S., Ho, P. Y. ve Li, H. Y., Adsorption of anionic dyes in acid solutions using chemically cross-linked chitosan beads, Dyes Pigments, 60, 69–84, (2004).
  • Güzel, F., Saygılı, H., Saygılı, G. A. ve Koyuncu, F., Elimination of anionic dye by using nanoporous carbon prepared from an industrial biowaste, Journal of Molecular Liquids, 194, 130–140, (2014).
  • Ayoub, G. M., Hamzeh, A. ve Semerjian, L., Post treatment of tannery wastewater using lime/bittern coagulation and activated carbon adsorption, Desalination, 273, 359–365, (2011).
  • Papadia, S., Rovero, G., Fava, F. ve Di Gioia, D., Comparison of different pilot scale bioreactors for the treatment of a real wastewater from the textile industry, International Biodeterioration & Biodegradation, 65, 396–403, (2011).
  • Ozcan, A. ve Ozcan, A. S., Adsorption of Acid Red 57 from aqueous solutions onto surfactant-modified sepiolite, Journal of Hazardous Materials, 125, 1–3, 252–259, (2005).
  • Sílvia C. R. ve Santos Rui, A. R., Boaventura Adsorption modelling of textile dyes by sepiolite, Applied Clay Science, 42, 137–145, (2008).
  • Ozcan, A. S. ve Ozcan, A., Adsorption of acid dyes from aqueous solutions onto acid-activated bentonite, Journal of Colloid and Interface Science, 276, 1, 39–46, (2004).
  • Ozdemir, O., Armagan, B., Turan, M. ve Celik, M. S., Comparison of the adsorption characteristics of azo-reactive dyes on mesoporous minerals, Dyes and Pigments, 62, 1, 49–60, (2004).
  • Wibulswas, R., Batch and fixed bed sorption of methylene blue on precursor and QACs modified montmorillonite, Separation and Purification Technology, 39, 1–2, 3–12, (2004).
  • Figueiredo, S. A., Loureiro, J. M. ve Boaventura, R. A., Natural waste materials containing chitin as adsorbents for textile dyestuffs: batch and continuous studies, Water Research, 39, 17, 4142–4152, (2005).
  • Aksu, Z. ve Tezer, S., Equilibrium and kinetic modelling of biosorption of Remazol Black B by Rhizopus arrhizus in a batch system: effect of temperature, Process Biochemistry, 36, 5, 431–439, (2000).
  • Robinson, T., Chandran, B. ve Nigam, P., Removal of dyes from an artificial textile dye effluent by two agricultural waste residues, corncob and barley husk, Environment International, 28, 1–2, 29–33, (2002).
  • Mahmoodian, H., Moradi, O., Shariatzadeha, B., Saleh, T. A., Tyagi, I., Maity, A., Asif, M. ve Gupta, V. K., Enhanced removal of methyl orange from aqueous solutions by poly HEMA–chitosan-MWCNT nano-composite, Journal of Molecular Liquids, 202, 189-198, (2014).
  • Saleh, T. A. ve Gupta, V. K., Column with CNT/magnesium oxide composite for lead(II) removal from water, Environmental Science and Pollution Research, 19, 1224-1229, (2012).
  • Nekouei, F., Nekouei, S., Tyagi, I. ve Gupta, V. K., Kinetic, thermodynamic and isotherm studies for acid blue 129 removal from liquids using copper oxide nanoparticle-modified activated carbon as a novel adsorbent, Journal of Molecular Liquids, 201, 124-133 (2015).
  • Gupta, V. K., Jain, R., Mittal, A., Agarwal, S. ve Sikarwar, S., Photo-catalytic degradation of toxic dye amaranth on TiO(2)/UV in aqueous suspensions, Material Science and Engineering C, 32, 12-17, (2012).
  • Gupta, V. K. ve Nayak, A., Cadmium removal and recovery from aqueous solutions by novel adsorbents prepared from orange peel and Fe2O3 nanoparticles, Chemical Engineering Journal, 180, 81-90, (2012).
  • Gupta, V. K., Jain, R., Agarwal, S. ve Shrivastava, M., Removal of the hazardous dye-Tartrazine by photodegradation on titanium dioxide surface, Material Science & Engineering C, 31, 1062-1067, (2011).
  • Gupta, V. K., Mittal, A. ve Mittal, J., Removal and recovery of chrysoidine Y from aqueous solutions by waste materials, Journal of Colloid and Interface Science, 344, 497-507, (2010).
  • Gupta, V. K., Srivastava, S. K., Mohan, D. ve Sharma, S., Design parameters for fixed bed reactors of activated carbon developed from fertilizer waste for the removal of some heavy metal ions, Waste Management, 17, 517-522, (1998).
  • Gupta, V. K., Mittal, A. ve Mittal, J., Decoloration treatment of a hazardous triarylmethane dye, Light Green SF (Yellowish) by waste material adsorbents, Journal of Colloid and Interface Science, 342, 518-527, (2010).
  • Movahedian Attar, H. ve Rezaee, R., Investigating the efficiency of advanced photochemical oxidation (APO) technology in degradation of direct azo dye by UV/H2O2 process, Water and Wastewater, 59, 75-83, (2006).
  • Peng, Y., Fu, D., Liu, R., Zhang, F. ve Liang, X., NaNO(2)/FeCl(3) catalyzed wet oxidation of the azo dye Acid Orange 7, Chemosphere, 71, 5, 990-997, (2008).
  • Bali, U., Catalkaya, E. ve Sengul, F., Photodegradation of Reactive Black 5, Direct Red 28 and Direct Yellow 12 using UV, UV/H2O2 and UV/H2O2/Fe2+: A comparative study, Journal of Hazardous Materials, 114, 1-3, 159-66, (2004).
  • Bazrafshan, E., Mostafapour, F.K. ve Mahvi, A. H., Phenol removal from aqueous solutions using Pistachio-nut shell ash as a low cost adsorbent, Fresenius Environmental Bulletin, 21, 10, 2962-2968, (2012).
  • Liu, Y., Chen, X., Li, J. ve Burda, C., Photocatalytic degradation of azo dyes by nitrogen-doped TiO2 nanocatalysts, Chemosphere, 61, 1, 11-18, (2005).
  • El-Bahy, Z. M., Ismail, A. A., Mohamed, R. M., Enhancement of titania by doping rare earth for photodegradation of organic dye (Direct Blue), Journal of Hazardous Materials, 166, 1, 138–143, (2009).
  • Armagan, B., Turan, M. Elik, M. S., Equilibrium studies on the adsorption of reactive azo dyes into zeolite, Desalination, 170, 1, 33–39, (2004).
  • Ertugay, N., Acar, F. N., Removal of COD and color from Direct Blue 71 azo dye wastewater by Fenton’s oxidation: Kinetic study, Arabian Journal of Chemistry, 10, 1, S1158-S1163, (2017).
  • Hassaan, M. A., El Nemr, A., Madkour, F. F., Testing the advanced oxidation processes on the degradation of Direct Blue 86 dye in wastewater, The Egyptian Journal of Aquatic Research, 43, 1, 11-19, (2017).
  • Fardood, S. T., Ramazani, A., Moradi, S., Asiabi, P. A., Green synthesis of zinc oxide nanoparticles using arabic gum and photocatalytic degradation of direct blue 129 dye under visible light, Journal of Materials Science: Materials in Electronics, 28, 18, 13596–13601, (2017).
  • Hefnawy, M. A., Gharieb, M. M., Shaaban, M. T., Soliman, A. M., Optimization of culture condition for enhanced decolorization of Direct Blue dye by Aspergillus flavus and Penicillium canescens, Journal of Applied Pharmaceutical Science, 7, 02, 083-092, (2017).
  • Esgair, K. K., A study on the removal of Direct Blue 71 dye from textile wastewater produced from state company of cotton industries by electrocoagulation using aluminum electrodes, Journal of Engineering, 2, 23, (2017).
  • Arica, T. A., Ayas, E., Arica, Y., Magnetic MCM-41 silica particles grafted with poly(glycidylmethacrylate) brush: Modification and application for removal of direct dyes, Microporous and Mesoporous Materials, 243, 164-175, (2017).
  • Nemr, A.E, Abdelwahab, O., El-Sikaily, A., Khaled, A., Removal of direct blue-86 from aqueous solution by new activated carbon developed from orange peel. Journal of Hazardous Materials, 161, 1, 102-110, (2009).
  • Khani, R., Sobhani, S., Beyki, M. H., Miri, S., Application of magnetic ionomer for development of very fast and highly efficient uptake of triazo dye Direct Blue 71 form different water samples, Ecotoxicology and Environmental Safety, 150, 54-61, (2018).
  • Fard, R. F., Sar, M. E. K., Fahiminia, M., Mirzaei, N., Yousefi, N., Mansoorian, H. J., Khanjani, N., Rezaei, S., Ghadiri, S. K., Efficiency of multi walled carbon nanotubes for removing Direct Blue 71 from aqueous solutions, Eurasian Journal of Analytical Chemistry, 13, 3, 1-10, (2018).
  • Hadi, M., Using Thomas model to evaluate dye removal from aqueous solutions in fixed-bed columns of activated carbon, Journal of Water and wastewater, 1, 23-34, (2011).
  • Bazrafshan, E., Evaluation of color removal of Methylene blue from aqueous solutions using plant stem ash of Persica, Journal of North Khorasan University of Medical Sciences, 4, 4, 523-532, (2011).
  • Malakootian, M., Fluoride removal using Regenerated Spent Bleaching Earth (RSBE) from groundwater: Case study on Kuhbonan water, Desalination, 277, 1, 244-249, (2011).
  • Malakootian, M., Evaluating the effectiveness of modified pumice in fluoride removal from water, Asian Journal of Chemistry, 23, 8, 3691, (2011).
  • Bulut, Y., Gözübenli, N., Aydın, H., Equilibrium and kinetics studies for adsorption of direct blue 71 from aqueous solution by wheat shells, Journal of Hazardous Materials, 144, 1–2, 300-306, (2007).
  • Fard, R. F., Kale Sar, M. E., Fahiminia, M., Mirzaei, N., Yousefi, N., Mansoorian, H. J., Khanjani, N., Rezaei, S., Ghadiri, S. K., Efficiency of multi walled carbon nanotubes for removing Direct Blue 71 from aqueous solutions, Eurasian Journal of Analytical Chemistry, 13, 2, 1-10, (2018).
  • Rehman, R., Mahmud, T., Ejaz, R., Rauf, A., Mitu, L., Sorptive removal of Direct Blue-15 dye from water using Camellia sinensis and Carica papaya leaves, Bulgarian Chemical Communications, 49, 1, 20 – 25, (2017).
  • Biglari, H., Javan, N., Khosravi, R., Zarei, A., Direct Blue 71 removal from aqueous solutions by adsorption on Pistachio hull waste: Equilibrium, kinetic and thermodynamic studies, Iranian Journal of Health Sciences, 4, 2, 55-70, (2016).
  • Mirzaei, N., Mahvi, A. H., Hossini, H., Equilibrium and kinetics studies of Direct blue 71 adsorption from aqueous solutions using modified zeolite, Adsorption Science & Technology, 36, 1–2, 80–94 (2018).
  • Prola, L. D. T., Machado, F. M., Bergmann, C. P., de Souza, F. E., Gally, C. R., Lima, C., Adebayo, M. A., Dias, S. L. P., Calvete, T., Adsorption of Direct Blue 53 dye from aqueous solutions by multi-walled carbon nanotubes and activated carbon, Journal of Environmental Management, 130, 166-175, (2013).
  • Nguyen, V. H., Haldorai, Y. ve Shim, J. J., Supercritical fluid mediated synthesis of poly(2-hydroxyethyl methacrylate)/Fe3O4 hybrid nanocomposite, Materials Science and Engineering: B, 176, 773–778, (2011).
  • Nguyen, V. H. ve Shim, J. J., Supercritical fluid-assisted synthesis of a carbon nanotubes-grafted biocompatible polymer composite, Composite Interfaces, 20, 155–162, (2013).
  • Kharismadewi, D., Haldorai, Y., Nguyen, V. H., Tuma, D. ve Shim, J. J., Synthesis of graphene oxide-poly(2-hydroxyethyl methacrylate) composite by dispersion polymerization in supercritical CO2: adsorption behavior for the removal of organic dye, Composite Interfaces, 23, 7, 719–739, (2016).
  • Özer, E. T., Göçenoğlu Sarıkaya, A. ve Osman, B., Adsorption and removal of diethyl phthalate from aqueous media with poly(hydroxyethyl methacrylate) nanobeads, Desalination and Water Treatmant, 57, 59, 28864-28874, (2016).
  • Langmuir, I., The adsorption of gases on plane surfaces of glass, mica and platinum, Journal of American Chemical Society, 40, 1361-1403, (1918).
  • El-Halwany, M. M., Study of adsorption isotherms and kinetic models for Methylene Blue adsorption on activated carbon developed from Egyptian rice hull (Part II), Desalination, 250, 208–213, (2010).
  • Freundlich H., Over the adsorption in solution, The Journal of Physical Chemistry, 57, 385, (1906).
  • Özüdoğru, Y. ve Merdivan, M., Metilen mavisinin modifiye edilmiş Cystoseira barbata (stackhouse) c. agardh kullanılarak biyosorpsiyonu, Trakya University Journal of Natural Sciences, 18, 2, 81-87, (2017).
  • Foo, K. Y. ve Hameed, B. H., Insights into the modeling of adsorption isotherm systems, Chemical Engineering Journal, 156, 1, 2–10, (2010).
  • Wang, S., Boyjoo, Y. ve Choueib, A. A., Comparative study of dye removal using fly ash treated by different methods, Chemosphere, 60, 10, 1401-1407, (2005)
  • Biglari, H., Javan, N., Khosravi, R. ve Zarei, A., Direct blue 71 removal from aqueous solutions by adsorption on pistachio hull waste: equilibrium, kinetic and thermodynamic studies, Iranian Journal of Health Sciences, 4, 2, 55-70, (2016).
  • Adak, A., Bandyopadhyay, M., Pal, A, Removal of crystal violet dye from wastewater by surfactant-modified alümina, Separation and Purification Technology, 44, 2, 139-144, (2005).
  • Weng, C. H. ve Pan, Y. F, Adsorption of a cationic dye (methylene blue) onto spent activated clay, The Journal of Hazardous Materials, 144, 1, 355-362, (2007).
  • Nandi, B. K., Goswami, A., Das, A. K., Mondal, B., Purkait, M. K., Kinetic and equilibrium studies on the adsorption of crystal violet dye using kaolin as an adsorbent, Separation Science and Technology, 43, 6, 1382-1403, (2008).
  • Kumar, K.V., Ramamurthi, V., Sivanesan, S., Modeling the mechanism involved during the sorption of methylene blue onto fly ash, Journal of Colloid and Interface Science, 284, 1, 14-21, (2005).
  • Yagub, M.T., Sen, T.K., Ang, H., Equilibrium, kinetics, and thermodynamics of methylene blue adsorption by pine tree leaves, Water Air Soil Pollution, 223, 8, 5267-5282, (2012).
  • Nassar, N. N., Kinetics, mechanistic, equilibrium, and thermodynamic studies on the adsorption of acid red dye from wastewater by γ-Fe2O3 nanoadsorbents, Separation Science and Technology, 45, 8, 1092-1103, (2010).
  • Khan, T. ve Chaudhuri, M., Adsorptive removal of Direct Blue 86 by coconut coir activated carbon, Environmental Science and Technology Conference (ESTEC2009), Kuala Terengganu, Malaysia, (2009).
  • Kumar A., Saakshy, Vyas R. K., Adsorption of direct blue 5 dye by activated carbon as adsorbent- modeling and kinetics, International Journal of Engineering Research&Technology (IJERT), 2, 12, 2246-2255, (2013).
  • Kanchi, S., Bisetty, K., Kumar, G., Robust adsorption of Direct Navy Blue-106 from textile industrial effluents by bio-hydrogen fermented waste derived activated carbon: Equilibrium and kinetic studies, Arabian Journal of Chemistry, 10, 2) S3084-S3096, (2017).
  • Pathania, D., Sharma, S., Singh, P., Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast, Arabian Journal of Chemistry, 10, 1, S1445-S1451, (2017).
  • Abbasi, M., Synthesis and characterization of magnetic nanocomposite of chitosan/SiO2/carbon nanotubes and its application for dyes removal, Journal of Cleaner Production, 145, 105-113, (2017).
  • Zarei, M., Djafarzadeh, N., Khadir, L., Removal of direct blue 129 from aqueous medium using surfactant-modified zeolite: a neural network modeling, Environmental Health Engineering and Management Journal, 5, 2, 101–113, (2018).
  • Miranda-Mandujano, E., Moeller-Chávez, G., Villegas-Rosas, O., Buitrón, G., Garzón-Zúñiga, M. A., Decolourization of Direct Blue 2 by peroxidases obtained from an industrial soybean waste, Water SA, 44, 2, 204-210, (2018).
  • Mouni, L., Belkhiri, L., Bollinger, J. C., Bouzaza, A., Assadi, A., Tirri, A. Dahmoune, F., Madani, K., Remini, H., Removal of Methylene Blue from aqueous solutions by adsorption on kaolin: Kinetic and equilibrium studies, Applied Clay Science, 153, 38-45, (2018).
  • Aksu, Z. ve Çağatay, Ş. Ş., Investigation of biosorption of Gemazol Turquise Blue-G reactive dye by dried Rhizopus arrhizus in batch and continuous systems, Separation and Purification Technology, 48, 1, 24-35, (2006).
  • Mane, V. S., Mall, I. D. ve Srivastava, V. C., Kinetic and equilibrium isotherm studies for the adsorptive removal of Brilliant Green dye from aqueous solution by rice husk ash, Journal of Environmental Management, 84, 390–400, (2007).

Direct Blue 2 diazo-boyarmaddesinin sulu çözeltiden P(HEMA) nanopartiküller ile uzaklaştırılması

Yıl 2019, , 278 - 294, 15.03.2019
https://doi.org/10.25092/baunfbed.546653

Öz

Bu çalışmada, Direct Blue 2 (DB2) diazo-boyar maddesinin poli(Hidroksietil metakrilat) [P(HEMA)] nanopartikülleri ile sulu çözeltiden giderimi çalışılmıştır.  Adsorpsiyona ortam pH’ının, sıcaklığın, başlangıç boya derişiminin ve temas süresinin etkileri incelenmiştir.  Optimum koşullar altında, 50 mg/mL başlangıç boya derişimi ve 2 mg polimer kullanılarak % 89.1 giderim elde edilmiştir.  Adsorpsiyon mekanizmasının anlaşılabilmesi için Langmuir, Freundlich ve Sips (Langmuir-Freundlich) izoterm sabitleri hesaplanmıştır.  Elde edilen verilere göre adsorpsiyonun Langmuir izoterm modeline uygun olduğu (R2: 0.993, Qmax: 27.1 mg/g) rapor edilmiştir.  Adsorpsiyon öncesi ve sonrası boya derişimleri UV-Vis spektrofotometresinde ölçülmüş, adsorpsiyon öncesi ve sonrası polimer FTIR ve SEM ile karakterize edilmiştir. 

Kaynakça

  • Rajabi, M., Mirza, B., Mahanpoor, K., Mirjalili, M., Najafi, F., Moradi, O., Sadegh, H., Shahryari-ghoshekandi, R., Asif, M., Tyagi, I., Agarwal, S. ve Gupta, V. K., Adsorption of malachite green from aqueous solution by carboxylate group functionalized multi-walled carbon nanotubes: Determination of equilibrium and kinetics parameters, Journal of Industrial and Engineering Chemistry, 34, 130-138, (2016).
  • Kaur, S. ve Rani, R. K., Adsorption kinetics fort he removal of hazardous dye congo red by biowaste materials as adsorbents Mahajan, Journal of Chemistry, 1-12, (2013).
  • García, E. R., Medina, R. L., Lozano, M. M., Pérez, I. H., Valero, M. J. ve Franco, A. M. M., Adsorption of Azo-Dye Orange II from Aqueous Solutions Using a Metal-Organic Framework Material: Iron- Benzenetricarboxylate, Materials, 7, 8037-8057, (2014).
  • Hameed, B. H. ve El-Khaiary, M. I., Equilibrium, kinetics and mechanism of malachite green adsorption on activated carbon prepared from bamboo by K2CO3 activation and subsequent gasification with CO2, Journal of Hazardous Materials, 157, 2-3, 344-351, (2008).
  • Chen, H. ve Zhao, J., Adsorption study for removal of Congo red anionic dye using organo-attapulgite, Adsorption, 15, 4, 381-389, (2009).
  • Hamoda, M. F., Al-Ghusain, I. ve Al-Mutairi, N. Z., Sand filtration of wastewater for tertiary treatment and water reuse, Desalination, 164, 203–211, (2004).
  • Shi, B. Y., Li, G. H., Wang, D. S., Feng, C. H. ve Tang, H. X., Removal of direct dyes by coagulation: the performance of preformed polymeric aluminum species, Journal of Hazardous Materials,143, 567–574, (2007).
  • Slokar, Y. M. ve Lemarechal, A. M., Methods of decoloration of textile wastewaters, Dyes Pigments, 37, 335–356, (1998).
  • Kornaros, M. ve Lyberatos, G., Biological treatment of wastewaters from a dye manufacturing company using a trickling filter, Journal of Hazardous Materials, 136, 95–102, (2006).
  • Hall, K., Eagleton, L., Acrivos, A., ve Vermeulen, T., Pore-and solid-diffusion kinetics in fixed-bed adsorption under constant pattern conditions, Industrial & Engineering Chemistry Fundamentals, 5, 212–223, (1966).
  • Kaur, S., Rani, S., ve Mahajan, R. K., Adsorption kinetics fort he removal of hazardous dye congo red by biowaste materials as adsorbents, Journal of Chemistry, 2013, 1-12, (2013).
  • Abramian, L. ve El-Rassy, H., Adsorption kinetics and thermodynamics of azo-dye Orange II onto highly porous titania aerogel, Chemical Engineering Journal, 150, 403–410, (2009).
  • Ma, J., Qi, J., Yao, C., Cui, B., Zhang, T. ve Li, D., A novel bentonite-based adsorbent for anionic pollutant removal from water, Chemical Engineering Journal, 200, 97–103, (2012).
  • Ribeiro, R. S., Fathy, N. A., Attia, A. A., Silva, A. M. T., Faria, J. L. ve Gomes, H. T., Activated carbon xerogels for the removal of the anionic azo dyes Orange II and Chromotrope 2R by adsorption and catalytic wet peroxide oxidation, Chemical Engineering Journal , 195, 112–121, (2012).
  • Hsiu-Mei, C., Ting-Chien, C., San-De, P. ve Hung-Lung, C., Adsorption characteristics of Orange II and Chrysophenine on sludge adsorbent and activated carbon fibers, Journal of Hazardous Materials, 161, 1384–1390, (2009).
  • Rodríguez, A., García, J., Ovejero, G. ve Mestanza, M., Adsorption of anionic and cationic dyes on activated carbon from aqueous solutions: Equilibrium and kinetics, Journal of Hazardous Materials, 172, 1311–1320, (2009).
  • Chiou, M. S., Ho, P. Y. ve Li, H. Y., Adsorption of anionic dyes in acid solutions using chemically cross-linked chitosan beads, Dyes Pigments, 60, 69–84, (2004).
  • Güzel, F., Saygılı, H., Saygılı, G. A. ve Koyuncu, F., Elimination of anionic dye by using nanoporous carbon prepared from an industrial biowaste, Journal of Molecular Liquids, 194, 130–140, (2014).
  • Ayoub, G. M., Hamzeh, A. ve Semerjian, L., Post treatment of tannery wastewater using lime/bittern coagulation and activated carbon adsorption, Desalination, 273, 359–365, (2011).
  • Papadia, S., Rovero, G., Fava, F. ve Di Gioia, D., Comparison of different pilot scale bioreactors for the treatment of a real wastewater from the textile industry, International Biodeterioration & Biodegradation, 65, 396–403, (2011).
  • Ozcan, A. ve Ozcan, A. S., Adsorption of Acid Red 57 from aqueous solutions onto surfactant-modified sepiolite, Journal of Hazardous Materials, 125, 1–3, 252–259, (2005).
  • Sílvia C. R. ve Santos Rui, A. R., Boaventura Adsorption modelling of textile dyes by sepiolite, Applied Clay Science, 42, 137–145, (2008).
  • Ozcan, A. S. ve Ozcan, A., Adsorption of acid dyes from aqueous solutions onto acid-activated bentonite, Journal of Colloid and Interface Science, 276, 1, 39–46, (2004).
  • Ozdemir, O., Armagan, B., Turan, M. ve Celik, M. S., Comparison of the adsorption characteristics of azo-reactive dyes on mesoporous minerals, Dyes and Pigments, 62, 1, 49–60, (2004).
  • Wibulswas, R., Batch and fixed bed sorption of methylene blue on precursor and QACs modified montmorillonite, Separation and Purification Technology, 39, 1–2, 3–12, (2004).
  • Figueiredo, S. A., Loureiro, J. M. ve Boaventura, R. A., Natural waste materials containing chitin as adsorbents for textile dyestuffs: batch and continuous studies, Water Research, 39, 17, 4142–4152, (2005).
  • Aksu, Z. ve Tezer, S., Equilibrium and kinetic modelling of biosorption of Remazol Black B by Rhizopus arrhizus in a batch system: effect of temperature, Process Biochemistry, 36, 5, 431–439, (2000).
  • Robinson, T., Chandran, B. ve Nigam, P., Removal of dyes from an artificial textile dye effluent by two agricultural waste residues, corncob and barley husk, Environment International, 28, 1–2, 29–33, (2002).
  • Mahmoodian, H., Moradi, O., Shariatzadeha, B., Saleh, T. A., Tyagi, I., Maity, A., Asif, M. ve Gupta, V. K., Enhanced removal of methyl orange from aqueous solutions by poly HEMA–chitosan-MWCNT nano-composite, Journal of Molecular Liquids, 202, 189-198, (2014).
  • Saleh, T. A. ve Gupta, V. K., Column with CNT/magnesium oxide composite for lead(II) removal from water, Environmental Science and Pollution Research, 19, 1224-1229, (2012).
  • Nekouei, F., Nekouei, S., Tyagi, I. ve Gupta, V. K., Kinetic, thermodynamic and isotherm studies for acid blue 129 removal from liquids using copper oxide nanoparticle-modified activated carbon as a novel adsorbent, Journal of Molecular Liquids, 201, 124-133 (2015).
  • Gupta, V. K., Jain, R., Mittal, A., Agarwal, S. ve Sikarwar, S., Photo-catalytic degradation of toxic dye amaranth on TiO(2)/UV in aqueous suspensions, Material Science and Engineering C, 32, 12-17, (2012).
  • Gupta, V. K. ve Nayak, A., Cadmium removal and recovery from aqueous solutions by novel adsorbents prepared from orange peel and Fe2O3 nanoparticles, Chemical Engineering Journal, 180, 81-90, (2012).
  • Gupta, V. K., Jain, R., Agarwal, S. ve Shrivastava, M., Removal of the hazardous dye-Tartrazine by photodegradation on titanium dioxide surface, Material Science & Engineering C, 31, 1062-1067, (2011).
  • Gupta, V. K., Mittal, A. ve Mittal, J., Removal and recovery of chrysoidine Y from aqueous solutions by waste materials, Journal of Colloid and Interface Science, 344, 497-507, (2010).
  • Gupta, V. K., Srivastava, S. K., Mohan, D. ve Sharma, S., Design parameters for fixed bed reactors of activated carbon developed from fertilizer waste for the removal of some heavy metal ions, Waste Management, 17, 517-522, (1998).
  • Gupta, V. K., Mittal, A. ve Mittal, J., Decoloration treatment of a hazardous triarylmethane dye, Light Green SF (Yellowish) by waste material adsorbents, Journal of Colloid and Interface Science, 342, 518-527, (2010).
  • Movahedian Attar, H. ve Rezaee, R., Investigating the efficiency of advanced photochemical oxidation (APO) technology in degradation of direct azo dye by UV/H2O2 process, Water and Wastewater, 59, 75-83, (2006).
  • Peng, Y., Fu, D., Liu, R., Zhang, F. ve Liang, X., NaNO(2)/FeCl(3) catalyzed wet oxidation of the azo dye Acid Orange 7, Chemosphere, 71, 5, 990-997, (2008).
  • Bali, U., Catalkaya, E. ve Sengul, F., Photodegradation of Reactive Black 5, Direct Red 28 and Direct Yellow 12 using UV, UV/H2O2 and UV/H2O2/Fe2+: A comparative study, Journal of Hazardous Materials, 114, 1-3, 159-66, (2004).
  • Bazrafshan, E., Mostafapour, F.K. ve Mahvi, A. H., Phenol removal from aqueous solutions using Pistachio-nut shell ash as a low cost adsorbent, Fresenius Environmental Bulletin, 21, 10, 2962-2968, (2012).
  • Liu, Y., Chen, X., Li, J. ve Burda, C., Photocatalytic degradation of azo dyes by nitrogen-doped TiO2 nanocatalysts, Chemosphere, 61, 1, 11-18, (2005).
  • El-Bahy, Z. M., Ismail, A. A., Mohamed, R. M., Enhancement of titania by doping rare earth for photodegradation of organic dye (Direct Blue), Journal of Hazardous Materials, 166, 1, 138–143, (2009).
  • Armagan, B., Turan, M. Elik, M. S., Equilibrium studies on the adsorption of reactive azo dyes into zeolite, Desalination, 170, 1, 33–39, (2004).
  • Ertugay, N., Acar, F. N., Removal of COD and color from Direct Blue 71 azo dye wastewater by Fenton’s oxidation: Kinetic study, Arabian Journal of Chemistry, 10, 1, S1158-S1163, (2017).
  • Hassaan, M. A., El Nemr, A., Madkour, F. F., Testing the advanced oxidation processes on the degradation of Direct Blue 86 dye in wastewater, The Egyptian Journal of Aquatic Research, 43, 1, 11-19, (2017).
  • Fardood, S. T., Ramazani, A., Moradi, S., Asiabi, P. A., Green synthesis of zinc oxide nanoparticles using arabic gum and photocatalytic degradation of direct blue 129 dye under visible light, Journal of Materials Science: Materials in Electronics, 28, 18, 13596–13601, (2017).
  • Hefnawy, M. A., Gharieb, M. M., Shaaban, M. T., Soliman, A. M., Optimization of culture condition for enhanced decolorization of Direct Blue dye by Aspergillus flavus and Penicillium canescens, Journal of Applied Pharmaceutical Science, 7, 02, 083-092, (2017).
  • Esgair, K. K., A study on the removal of Direct Blue 71 dye from textile wastewater produced from state company of cotton industries by electrocoagulation using aluminum electrodes, Journal of Engineering, 2, 23, (2017).
  • Arica, T. A., Ayas, E., Arica, Y., Magnetic MCM-41 silica particles grafted with poly(glycidylmethacrylate) brush: Modification and application for removal of direct dyes, Microporous and Mesoporous Materials, 243, 164-175, (2017).
  • Nemr, A.E, Abdelwahab, O., El-Sikaily, A., Khaled, A., Removal of direct blue-86 from aqueous solution by new activated carbon developed from orange peel. Journal of Hazardous Materials, 161, 1, 102-110, (2009).
  • Khani, R., Sobhani, S., Beyki, M. H., Miri, S., Application of magnetic ionomer for development of very fast and highly efficient uptake of triazo dye Direct Blue 71 form different water samples, Ecotoxicology and Environmental Safety, 150, 54-61, (2018).
  • Fard, R. F., Sar, M. E. K., Fahiminia, M., Mirzaei, N., Yousefi, N., Mansoorian, H. J., Khanjani, N., Rezaei, S., Ghadiri, S. K., Efficiency of multi walled carbon nanotubes for removing Direct Blue 71 from aqueous solutions, Eurasian Journal of Analytical Chemistry, 13, 3, 1-10, (2018).
  • Hadi, M., Using Thomas model to evaluate dye removal from aqueous solutions in fixed-bed columns of activated carbon, Journal of Water and wastewater, 1, 23-34, (2011).
  • Bazrafshan, E., Evaluation of color removal of Methylene blue from aqueous solutions using plant stem ash of Persica, Journal of North Khorasan University of Medical Sciences, 4, 4, 523-532, (2011).
  • Malakootian, M., Fluoride removal using Regenerated Spent Bleaching Earth (RSBE) from groundwater: Case study on Kuhbonan water, Desalination, 277, 1, 244-249, (2011).
  • Malakootian, M., Evaluating the effectiveness of modified pumice in fluoride removal from water, Asian Journal of Chemistry, 23, 8, 3691, (2011).
  • Bulut, Y., Gözübenli, N., Aydın, H., Equilibrium and kinetics studies for adsorption of direct blue 71 from aqueous solution by wheat shells, Journal of Hazardous Materials, 144, 1–2, 300-306, (2007).
  • Fard, R. F., Kale Sar, M. E., Fahiminia, M., Mirzaei, N., Yousefi, N., Mansoorian, H. J., Khanjani, N., Rezaei, S., Ghadiri, S. K., Efficiency of multi walled carbon nanotubes for removing Direct Blue 71 from aqueous solutions, Eurasian Journal of Analytical Chemistry, 13, 2, 1-10, (2018).
  • Rehman, R., Mahmud, T., Ejaz, R., Rauf, A., Mitu, L., Sorptive removal of Direct Blue-15 dye from water using Camellia sinensis and Carica papaya leaves, Bulgarian Chemical Communications, 49, 1, 20 – 25, (2017).
  • Biglari, H., Javan, N., Khosravi, R., Zarei, A., Direct Blue 71 removal from aqueous solutions by adsorption on Pistachio hull waste: Equilibrium, kinetic and thermodynamic studies, Iranian Journal of Health Sciences, 4, 2, 55-70, (2016).
  • Mirzaei, N., Mahvi, A. H., Hossini, H., Equilibrium and kinetics studies of Direct blue 71 adsorption from aqueous solutions using modified zeolite, Adsorption Science & Technology, 36, 1–2, 80–94 (2018).
  • Prola, L. D. T., Machado, F. M., Bergmann, C. P., de Souza, F. E., Gally, C. R., Lima, C., Adebayo, M. A., Dias, S. L. P., Calvete, T., Adsorption of Direct Blue 53 dye from aqueous solutions by multi-walled carbon nanotubes and activated carbon, Journal of Environmental Management, 130, 166-175, (2013).
  • Nguyen, V. H., Haldorai, Y. ve Shim, J. J., Supercritical fluid mediated synthesis of poly(2-hydroxyethyl methacrylate)/Fe3O4 hybrid nanocomposite, Materials Science and Engineering: B, 176, 773–778, (2011).
  • Nguyen, V. H. ve Shim, J. J., Supercritical fluid-assisted synthesis of a carbon nanotubes-grafted biocompatible polymer composite, Composite Interfaces, 20, 155–162, (2013).
  • Kharismadewi, D., Haldorai, Y., Nguyen, V. H., Tuma, D. ve Shim, J. J., Synthesis of graphene oxide-poly(2-hydroxyethyl methacrylate) composite by dispersion polymerization in supercritical CO2: adsorption behavior for the removal of organic dye, Composite Interfaces, 23, 7, 719–739, (2016).
  • Özer, E. T., Göçenoğlu Sarıkaya, A. ve Osman, B., Adsorption and removal of diethyl phthalate from aqueous media with poly(hydroxyethyl methacrylate) nanobeads, Desalination and Water Treatmant, 57, 59, 28864-28874, (2016).
  • Langmuir, I., The adsorption of gases on plane surfaces of glass, mica and platinum, Journal of American Chemical Society, 40, 1361-1403, (1918).
  • El-Halwany, M. M., Study of adsorption isotherms and kinetic models for Methylene Blue adsorption on activated carbon developed from Egyptian rice hull (Part II), Desalination, 250, 208–213, (2010).
  • Freundlich H., Over the adsorption in solution, The Journal of Physical Chemistry, 57, 385, (1906).
  • Özüdoğru, Y. ve Merdivan, M., Metilen mavisinin modifiye edilmiş Cystoseira barbata (stackhouse) c. agardh kullanılarak biyosorpsiyonu, Trakya University Journal of Natural Sciences, 18, 2, 81-87, (2017).
  • Foo, K. Y. ve Hameed, B. H., Insights into the modeling of adsorption isotherm systems, Chemical Engineering Journal, 156, 1, 2–10, (2010).
  • Wang, S., Boyjoo, Y. ve Choueib, A. A., Comparative study of dye removal using fly ash treated by different methods, Chemosphere, 60, 10, 1401-1407, (2005)
  • Biglari, H., Javan, N., Khosravi, R. ve Zarei, A., Direct blue 71 removal from aqueous solutions by adsorption on pistachio hull waste: equilibrium, kinetic and thermodynamic studies, Iranian Journal of Health Sciences, 4, 2, 55-70, (2016).
  • Adak, A., Bandyopadhyay, M., Pal, A, Removal of crystal violet dye from wastewater by surfactant-modified alümina, Separation and Purification Technology, 44, 2, 139-144, (2005).
  • Weng, C. H. ve Pan, Y. F, Adsorption of a cationic dye (methylene blue) onto spent activated clay, The Journal of Hazardous Materials, 144, 1, 355-362, (2007).
  • Nandi, B. K., Goswami, A., Das, A. K., Mondal, B., Purkait, M. K., Kinetic and equilibrium studies on the adsorption of crystal violet dye using kaolin as an adsorbent, Separation Science and Technology, 43, 6, 1382-1403, (2008).
  • Kumar, K.V., Ramamurthi, V., Sivanesan, S., Modeling the mechanism involved during the sorption of methylene blue onto fly ash, Journal of Colloid and Interface Science, 284, 1, 14-21, (2005).
  • Yagub, M.T., Sen, T.K., Ang, H., Equilibrium, kinetics, and thermodynamics of methylene blue adsorption by pine tree leaves, Water Air Soil Pollution, 223, 8, 5267-5282, (2012).
  • Nassar, N. N., Kinetics, mechanistic, equilibrium, and thermodynamic studies on the adsorption of acid red dye from wastewater by γ-Fe2O3 nanoadsorbents, Separation Science and Technology, 45, 8, 1092-1103, (2010).
  • Khan, T. ve Chaudhuri, M., Adsorptive removal of Direct Blue 86 by coconut coir activated carbon, Environmental Science and Technology Conference (ESTEC2009), Kuala Terengganu, Malaysia, (2009).
  • Kumar A., Saakshy, Vyas R. K., Adsorption of direct blue 5 dye by activated carbon as adsorbent- modeling and kinetics, International Journal of Engineering Research&Technology (IJERT), 2, 12, 2246-2255, (2013).
  • Kanchi, S., Bisetty, K., Kumar, G., Robust adsorption of Direct Navy Blue-106 from textile industrial effluents by bio-hydrogen fermented waste derived activated carbon: Equilibrium and kinetic studies, Arabian Journal of Chemistry, 10, 2) S3084-S3096, (2017).
  • Pathania, D., Sharma, S., Singh, P., Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast, Arabian Journal of Chemistry, 10, 1, S1445-S1451, (2017).
  • Abbasi, M., Synthesis and characterization of magnetic nanocomposite of chitosan/SiO2/carbon nanotubes and its application for dyes removal, Journal of Cleaner Production, 145, 105-113, (2017).
  • Zarei, M., Djafarzadeh, N., Khadir, L., Removal of direct blue 129 from aqueous medium using surfactant-modified zeolite: a neural network modeling, Environmental Health Engineering and Management Journal, 5, 2, 101–113, (2018).
  • Miranda-Mandujano, E., Moeller-Chávez, G., Villegas-Rosas, O., Buitrón, G., Garzón-Zúñiga, M. A., Decolourization of Direct Blue 2 by peroxidases obtained from an industrial soybean waste, Water SA, 44, 2, 204-210, (2018).
  • Mouni, L., Belkhiri, L., Bollinger, J. C., Bouzaza, A., Assadi, A., Tirri, A. Dahmoune, F., Madani, K., Remini, H., Removal of Methylene Blue from aqueous solutions by adsorption on kaolin: Kinetic and equilibrium studies, Applied Clay Science, 153, 38-45, (2018).
  • Aksu, Z. ve Çağatay, Ş. Ş., Investigation of biosorption of Gemazol Turquise Blue-G reactive dye by dried Rhizopus arrhizus in batch and continuous systems, Separation and Purification Technology, 48, 1, 24-35, (2006).
  • Mane, V. S., Mall, I. D. ve Srivastava, V. C., Kinetic and equilibrium isotherm studies for the adsorptive removal of Brilliant Green dye from aqueous solution by rice husk ash, Journal of Environmental Management, 84, 390–400, (2007).
Toplam 90 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Araştırma Makalesi
Yazarlar

Aslı Göçenoğlu Sarıkaya 0000-0002-7161-7003

Yayımlanma Tarihi 15 Mart 2019
Gönderilme Tarihi 4 Mayıs 2018
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Göçenoğlu Sarıkaya, A. (2019). Direct Blue 2 diazo-boyarmaddesinin sulu çözeltiden P(HEMA) nanopartiküller ile uzaklaştırılması. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21(1), 278-294. https://doi.org/10.25092/baunfbed.546653
AMA Göçenoğlu Sarıkaya A. Direct Blue 2 diazo-boyarmaddesinin sulu çözeltiden P(HEMA) nanopartiküller ile uzaklaştırılması. BAUN Fen. Bil. Enst. Dergisi. Mart 2019;21(1):278-294. doi:10.25092/baunfbed.546653
Chicago Göçenoğlu Sarıkaya, Aslı. “Direct Blue 2 Diazo-Boyarmaddesinin Sulu çözeltiden P(HEMA) nanopartiküller Ile uzaklaştırılması”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 21, sy. 1 (Mart 2019): 278-94. https://doi.org/10.25092/baunfbed.546653.
EndNote Göçenoğlu Sarıkaya A (01 Mart 2019) Direct Blue 2 diazo-boyarmaddesinin sulu çözeltiden P(HEMA) nanopartiküller ile uzaklaştırılması. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 21 1 278–294.
IEEE A. Göçenoğlu Sarıkaya, “Direct Blue 2 diazo-boyarmaddesinin sulu çözeltiden P(HEMA) nanopartiküller ile uzaklaştırılması”, BAUN Fen. Bil. Enst. Dergisi, c. 21, sy. 1, ss. 278–294, 2019, doi: 10.25092/baunfbed.546653.
ISNAD Göçenoğlu Sarıkaya, Aslı. “Direct Blue 2 Diazo-Boyarmaddesinin Sulu çözeltiden P(HEMA) nanopartiküller Ile uzaklaştırılması”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 21/1 (Mart 2019), 278-294. https://doi.org/10.25092/baunfbed.546653.
JAMA Göçenoğlu Sarıkaya A. Direct Blue 2 diazo-boyarmaddesinin sulu çözeltiden P(HEMA) nanopartiküller ile uzaklaştırılması. BAUN Fen. Bil. Enst. Dergisi. 2019;21:278–294.
MLA Göçenoğlu Sarıkaya, Aslı. “Direct Blue 2 Diazo-Boyarmaddesinin Sulu çözeltiden P(HEMA) nanopartiküller Ile uzaklaştırılması”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 21, sy. 1, 2019, ss. 278-94, doi:10.25092/baunfbed.546653.
Vancouver Göçenoğlu Sarıkaya A. Direct Blue 2 diazo-boyarmaddesinin sulu çözeltiden P(HEMA) nanopartiküller ile uzaklaştırılması. BAUN Fen. Bil. Enst. Dergisi. 2019;21(1):278-94.