Loading [a11y]/accessibility-menu.js
Araştırma Makalesi
BibTex RIS Kaynak Göster

Farklı oranlarda alüminyum köpük takviyeli çarpışma-kutularının mekanik performanslarının karşılaştırılması

Yıl 2019, , 295 - 305, 15.03.2019
https://doi.org/10.25092/baunfbed.547179

Öz

Çarpışma-kutuları otomobillerde, kaza anında çarpışma enerjisini sönümleyerek aracın ve yolcuların en az zararı almasını sağlayan önemli elemanlardır. Bu çalışmada, öncelikle, alüminyum köpük malzemesinin yarı-statik basma testleri gerçekleştirilerek malzeme modeli oluşturulmuştur. Bu malzeme modeli; farklı oranlarda alüminyum köpük takviyesi yapılmış çarpışma-kutularının mekanik performansını, boş çarpışma-kutularınınki ile karşılaştırmak amacıyla, sanal çarpışma analizlerinde kullanılmıştır. Köpük takviyeli çarpışma-kutularının, köpük oranıyla artacak şekilde; plato kuvveti, çarpışma süresi, deformasyon davranışı ve enerji emilimi yönünden daha üstün olduğu görülmüştür.

Kaynakça

  • Kuznetcov A., Telichev I. ve Wu C.Q., Effect of thin-walled tube geometry on its crashworthiness performance, 14th International LS-DYNA Users Conference, Detroit, USA. 12-14 June, (2016).
  • Nia A.A. ve Hamedani J.H., Comparative analysis of energy absorption and deformations of thin walled tubes with various section geometries, Thin-walled Structures, 48, 946–954,(2010).
  • Boreanaz, M., Development of crash box for automotive application, Politecnico di Torino, Italy, (2018).
  • Rajak, D.P., Kumaraswamidhas, L.A. ve Das, S. , Technical overview of aluminium alloy foam, Reviews on Advanced Materials Science, 48, 68-86, (2017).
  • İnce, F., Türkmen, H.S., Mecitoğlu Z., Uludağ N., Durgun, İ., Altınok, E. ve Örenel, H., A numerical and experimental study on the impact behavior of box structures, Procedia Engineering, 10, 1736–1741, (2011).
  • Zhang, X. ve Cheng, G., A comparative study of energy absorption characteristics of foam-filled and multi-cell square columns, International Journal of Impact Engineering, 34, 1739–1752, (2007).
  • Shahbeyk, S., Vafai, A. ve Petrinic, N., Axial crushing of metal foam-filled square columns:Foam density distribution and impactor inclination effects, Thin-Walled Structures, 43, 1818–1830, (2005).
  • Gibson, L.J. ve Ashby, M.F., Cellular solids: structure and properties, Cambridge University Press, (1997).
  • Ashby, M.F., Evans, A.G.,. Fleck, N.A, Gibson, L.J., Hutchinson, J.W. ve Wadley, H.N.G., Metal foams: a design guide, Butterworth-Heinemann, (2000).
  • Kretz, R. ve Götzinger, B. Energy absorbing behaviour of aluminium foams: head impact tests on an a-pillar of a passenger car. Proceedings, the Cellular Metals and Metal Foaming Technology: Metfoam, 17–24, Bremen, (2001).
  • Rabiei, A. ve Vendra, L.J., A comparison of composite metal foam's properties and other comparable metal foams, Materials Letters, 63, 533–536, (2009).
  • Garcia-Moreno, F., Commercial applications of metal foams:their properties and production, Materials, 9, 85, 1–27 (2016).
  • Fiedler, T., Taherishargh, M., Krstulović-Opara, L. ve Vesenjak, M., Dynamic compressive loading of expanded perlite/aluminum syntactic foam, Materials Science Engineering A, 626, 296–304, (2015).
  • Sulong, M.A., Taherishargh, M., Belova, I.V., Murch, G.E. ve Fiedler, T., On the mechanical anisotropy of the compressive properties of aluminium perlite syntactic foam, Computatinal Materials Science, 109, 258–265, (2015).
  • Balcha, D.K., O’Dwyerb, J.G., Davis, G.R., Cady, C.M., Gray, G.T. ve Dunand, D.C., Plasticity and damage in aluminum syntactic foams deformed under dynamic and quasi-static conditions, Materials Science Engineering A, 391, 408–417,(2005).
  • ISO 13314, Compression Test for Porous and Cellular Metals, (2011).
  • Deshpande, V.S. ve Fleck, N.A., Isotropic constitutive models for metallic foams, Journal of the Mechanics and Physics of Solids, 48, 1253-1283, (2000).
  • ABAQUS User’s Manual, Version 6.14. Providence, RI: Dassault Systemes Simulia Corp., (2014).
  • Gülçimen, Ç.B. ve Ensarioğlu, C., Numerical modelling of aluminum foam for comparing foam-filled, partially foam-filled and empty crash-boxes, International Conference on Engineering Technologies (ICENTE’17), Konya/Turkey, (2017).
  • Kruszka, L., Anaszewicz, Ł., Janiszewski, J. ve Grazka, M., Experimental and numerical analysis of Al6063 duralumin using Taylor impact test, EPJ Web of Conferences, 26, 01062, (2012).

Comparison of mechanical performances of the crash-boxes filled with various percentages of aluminium foam

Yıl 2019, , 295 - 305, 15.03.2019
https://doi.org/10.25092/baunfbed.547179

Öz

In this study, firstly, compression tests of aluminium foam material were carried out to determine its constitutive material model. This model was then utilized in virtual crash tests of crash-boxes filled with various percentages of aluminium foam. The results were compared with those of the empty crash-boxes to evaluate their mechanical performances. It was observed that the foam-filled crash-boxes exhibited superior properties of plateau force, impact duration, deformation behaviour and energy absorption, which get better by the increasing foam percentage. 

Kaynakça

  • Kuznetcov A., Telichev I. ve Wu C.Q., Effect of thin-walled tube geometry on its crashworthiness performance, 14th International LS-DYNA Users Conference, Detroit, USA. 12-14 June, (2016).
  • Nia A.A. ve Hamedani J.H., Comparative analysis of energy absorption and deformations of thin walled tubes with various section geometries, Thin-walled Structures, 48, 946–954,(2010).
  • Boreanaz, M., Development of crash box for automotive application, Politecnico di Torino, Italy, (2018).
  • Rajak, D.P., Kumaraswamidhas, L.A. ve Das, S. , Technical overview of aluminium alloy foam, Reviews on Advanced Materials Science, 48, 68-86, (2017).
  • İnce, F., Türkmen, H.S., Mecitoğlu Z., Uludağ N., Durgun, İ., Altınok, E. ve Örenel, H., A numerical and experimental study on the impact behavior of box structures, Procedia Engineering, 10, 1736–1741, (2011).
  • Zhang, X. ve Cheng, G., A comparative study of energy absorption characteristics of foam-filled and multi-cell square columns, International Journal of Impact Engineering, 34, 1739–1752, (2007).
  • Shahbeyk, S., Vafai, A. ve Petrinic, N., Axial crushing of metal foam-filled square columns:Foam density distribution and impactor inclination effects, Thin-Walled Structures, 43, 1818–1830, (2005).
  • Gibson, L.J. ve Ashby, M.F., Cellular solids: structure and properties, Cambridge University Press, (1997).
  • Ashby, M.F., Evans, A.G.,. Fleck, N.A, Gibson, L.J., Hutchinson, J.W. ve Wadley, H.N.G., Metal foams: a design guide, Butterworth-Heinemann, (2000).
  • Kretz, R. ve Götzinger, B. Energy absorbing behaviour of aluminium foams: head impact tests on an a-pillar of a passenger car. Proceedings, the Cellular Metals and Metal Foaming Technology: Metfoam, 17–24, Bremen, (2001).
  • Rabiei, A. ve Vendra, L.J., A comparison of composite metal foam's properties and other comparable metal foams, Materials Letters, 63, 533–536, (2009).
  • Garcia-Moreno, F., Commercial applications of metal foams:their properties and production, Materials, 9, 85, 1–27 (2016).
  • Fiedler, T., Taherishargh, M., Krstulović-Opara, L. ve Vesenjak, M., Dynamic compressive loading of expanded perlite/aluminum syntactic foam, Materials Science Engineering A, 626, 296–304, (2015).
  • Sulong, M.A., Taherishargh, M., Belova, I.V., Murch, G.E. ve Fiedler, T., On the mechanical anisotropy of the compressive properties of aluminium perlite syntactic foam, Computatinal Materials Science, 109, 258–265, (2015).
  • Balcha, D.K., O’Dwyerb, J.G., Davis, G.R., Cady, C.M., Gray, G.T. ve Dunand, D.C., Plasticity and damage in aluminum syntactic foams deformed under dynamic and quasi-static conditions, Materials Science Engineering A, 391, 408–417,(2005).
  • ISO 13314, Compression Test for Porous and Cellular Metals, (2011).
  • Deshpande, V.S. ve Fleck, N.A., Isotropic constitutive models for metallic foams, Journal of the Mechanics and Physics of Solids, 48, 1253-1283, (2000).
  • ABAQUS User’s Manual, Version 6.14. Providence, RI: Dassault Systemes Simulia Corp., (2014).
  • Gülçimen, Ç.B. ve Ensarioğlu, C., Numerical modelling of aluminum foam for comparing foam-filled, partially foam-filled and empty crash-boxes, International Conference on Engineering Technologies (ICENTE’17), Konya/Turkey, (2017).
  • Kruszka, L., Anaszewicz, Ł., Janiszewski, J. ve Grazka, M., Experimental and numerical analysis of Al6063 duralumin using Taylor impact test, EPJ Web of Conferences, 26, 01062, (2012).
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Araştırma Makalesi
Yazarlar

Betül Gülçimen Çakan 0000-0003-1739-1143

Cihat Ensarioğlu 0000-0003-2843-9536

M. Cemal Çakır Bu kişi benim 0000-0003-0816-4029

Yayımlanma Tarihi 15 Mart 2019
Gönderilme Tarihi 23 Mayıs 2018
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Gülçimen Çakan, B., Ensarioğlu, C., & Çakır, M. C. (2019). Farklı oranlarda alüminyum köpük takviyeli çarpışma-kutularının mekanik performanslarının karşılaştırılması. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21(1), 295-305. https://doi.org/10.25092/baunfbed.547179
AMA Gülçimen Çakan B, Ensarioğlu C, Çakır MC. Farklı oranlarda alüminyum köpük takviyeli çarpışma-kutularının mekanik performanslarının karşılaştırılması. BAUN Fen. Bil. Enst. Dergisi. Mart 2019;21(1):295-305. doi:10.25092/baunfbed.547179
Chicago Gülçimen Çakan, Betül, Cihat Ensarioğlu, ve M. Cemal Çakır. “Farklı Oranlarda alüminyum köpük Takviyeli çarpışma-kutularının Mekanik performanslarının karşılaştırılması”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 21, sy. 1 (Mart 2019): 295-305. https://doi.org/10.25092/baunfbed.547179.
EndNote Gülçimen Çakan B, Ensarioğlu C, Çakır MC (01 Mart 2019) Farklı oranlarda alüminyum köpük takviyeli çarpışma-kutularının mekanik performanslarının karşılaştırılması. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 21 1 295–305.
IEEE B. Gülçimen Çakan, C. Ensarioğlu, ve M. C. Çakır, “Farklı oranlarda alüminyum köpük takviyeli çarpışma-kutularının mekanik performanslarının karşılaştırılması”, BAUN Fen. Bil. Enst. Dergisi, c. 21, sy. 1, ss. 295–305, 2019, doi: 10.25092/baunfbed.547179.
ISNAD Gülçimen Çakan, Betül vd. “Farklı Oranlarda alüminyum köpük Takviyeli çarpışma-kutularının Mekanik performanslarının karşılaştırılması”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 21/1 (Mart 2019), 295-305. https://doi.org/10.25092/baunfbed.547179.
JAMA Gülçimen Çakan B, Ensarioğlu C, Çakır MC. Farklı oranlarda alüminyum köpük takviyeli çarpışma-kutularının mekanik performanslarının karşılaştırılması. BAUN Fen. Bil. Enst. Dergisi. 2019;21:295–305.
MLA Gülçimen Çakan, Betül vd. “Farklı Oranlarda alüminyum köpük Takviyeli çarpışma-kutularının Mekanik performanslarının karşılaştırılması”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 21, sy. 1, 2019, ss. 295-0, doi:10.25092/baunfbed.547179.
Vancouver Gülçimen Çakan B, Ensarioğlu C, Çakır MC. Farklı oranlarda alüminyum köpük takviyeli çarpışma-kutularının mekanik performanslarının karşılaştırılması. BAUN Fen. Bil. Enst. Dergisi. 2019;21(1):295-30.
2